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CHAPTER 1

Introduction and motivation

Let (M, g) be a smooth Riemannian manifold with Riemannian curvature tensor Rijkl. In
the study of differential geometry, there are three types of curvatures that has received a lot of
attention.

The sectional curvature measures the curvature of two dimensional submanifolds of (M, g). In
local coordinate, the sectional curvature of a two dimensional tangent plan spanned by ei, ej is
given by Rijji. The Ricci curvature is the trace of the sectional curvature. In local coordinate, the
Ricci tensor is defined as Ricij =

∑
k Rikkj . The scalar curvature is the trace of the Ricci curvature:

R =
∑

i,j Rijji. Note that in our convention the scalar curvature of a two dimensional surface is
twice its Gauss curvature.

The study of curvature dates back to the time of Gauss and Riemann, where curvature was first
observed as the quantity that distinguish locally a general Riemannian manifold and the Euclidean
space. Since then lots of studies have been carried out to understand the connection between the
curvature with local and global geometric and topological aspects of the manifold. Here we just
name a few of well known results of this flavor: the Gauss-Bonnet theorem, Toponogov compara-
sion theorem, the Bochner-Weizenböck formula, Bonnet-Myers theorem, Cheeger-Gromoll’s volume
comparasion theorem, Gromov’s finiteness theorem, etc. From our very crude list one readily sees
that results concerning scalar curvature are much fewer compared to those of the sectional or Ricci
curvature. Indeed, scalar curvature measures the average the sectional curvature among all dis-
tinct two planes, and is believed to carry relatively few information about the manifold. This adds
considerable delicacy into the study of the scalar curvature.

In this chapter we introduce three motivations to study the scalar curvature, and various
phenamina unique to it.

1. Einstein equations of general relativity

The first senario where scalar curvature naturally occurs is the theory of general relativity.
Suppose (Sn+1, g) is a Minkowski manifold representing the space time. Then it satisfies the
Einstein equation, namely

RicS −
1

2
RSg = T,

where T is called the stress-energy tensor representing matter in the space time.
Assume that Mn is a submanifold of Sn+1. At a point in M , take a normal frame of S,

{ei}i=0,...,n such that e0 is the unit normal vector of M . Restrict the Einstein equation on M with
respect to e0, e0, we get

Ric00−
1

2
RS = T00.

Expanding in local coordinates, Ric00 =
∑

j R0jj0, and

1

2
RS =

∑
0≤i≤j≤n

Rijji =
∑
j

R0jj0 +
∑

1≤i≤j≤n
Rijji.
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6 1. INTRODUCTION AND MOTIVATION

Denote RM the Riemannian tensor on M and h the second fundamental form of the embedding
M ⊂ S. By the Gauss equation,

Rijji = RMijji + hiihjj − h2
ij .

Therefore
1

2
RS = Ric00 +

1

2
RM +

1

2
(trh)2 − 1

2
‖h‖2.

By the Einstein equation, one sees that

(1.1)
1

2
(RM ) + (trh)2 − ‖h‖2 = T00 := µ.

In the theory of general relativity, T00 = µ is called the mass density. One may also derive other
relations from the Einstein equation by taking the 0j component. By a similar calculation, we have

(1.2) div(h− (trh)g) = T0j .

Together, equation 1.1 and 1.2 are called the constraint equations. They provide a necessary
condition for a Riemannian manifold to be realized as a submanifold of a space time.

A particularly important case is when h is identically zero on M . In other words, M is a totally
geodecis submanifold of S. The physical reason is that, when h ≡ 0, the reflection of the time
variable t → −t is an isometry. It is called time symmetric space time. We see from the previous
equation that in this case RM = 2µ. Note that since µ is the mass density, we always assume that
µ is nonnegative. Then RM is nonnegative. We then conclude that

Any Riemannian manifold satisfying the constraint equations must have nonnegative scalar
curvature.

From this prospective, the study of Riemannian manifold with nonnegative scalar curvature
can be embedded into the study of the constraint equations of general relativity.

2. Variation of total scalar curvature

On a Riemannian manifold (M, g), consider Einstein-Hilbert functional

R(g) =

ˆ
M
Rgdµg

on all Riemannian metrics with unit volume. It is shown by Hilbert that for n ≥ 3 the critical
points of this functional are Einstein metrics, i.e. metrics satisfying Ric(g) = c · R(g)g. This can
be seen from the following calculation.

Let g be a Riemannian metric with unit volume which is a critical point of R. Set gt = g+ th,
t ∈ (−ε, ε) be a smooth family of Riemannian metrics, h a smooth compactly supported (0, 2)

tensor. Let ḡt = Vol(t)−2/ngt be normalized with unit volume. Then ḡt is a valid variation. To
calculate the derivative of R(ḡt), we first observe that in local coordinates,

Γkij =
1

2

∑
l

gkl(gil,j + gjl,i − gij,l),

Ricij =
∑
k

(
Γkij,k − Γkki,j +

∑
l

(ΓkklΓ
l
ji − ΓkjlΓ

l
ki)

)
,

where the comma denotes a partial derivative in the given direction. We then see the derivatives
of the Christoffel symbol and the Ricci curvature under this variation are

(2.1) Γ̇kij =
1

2

∑
gkl(hil,j + hjl,i − hij,l), Ṙicij =

∑
k

(Γ̇kij,k − Γ̇kki,j).
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Therefore we find that Ṙ can be written as

Ṙ = −
∑
i,j

hij Ricij +divergence terms,

here hij =
∑

k,l g
ikgjlhkl. As for the volume form, one easily checks that

d

dt
Volgt =

1

2
trgt(h)dVolgt .

Putting these together and use the divergence theorem, we find

d

dt
R(gt) = −

ˆ
M

〈
h,Ric(gt)−

1

2
Rtgt

〉
dVolgt .

Since R(ḡt) = Vol(gt)
(2−n)/nR(gt) we find that

d

dt
|t=0R(ḡt) = −Vol(g)(2−n)/n

ˆ
M

〈
h,Ric(g)− 1

2
R(g)g +

n− 2

2n
R(g)g

〉
dVolgt .

Therefore g is a critical point for R functional if and only if Ric(g) = cg for some constant c.
The existence and geometric properties of Einstein metrics have been long standing questions

that have stimulated the development of many area. In dimension 2 and 3 Einstein metrics are
metrics with constant sectional curvature, and can be handled by Ricci flow. In dimension 4 or
above, relatively few is known. One major difficulty, among others, is that we do not know whether
the extremal of the function R is local maximum or minimum.

3. Conformal geometry

Let’s continue looking at the Einstein-Hilbert functional. As discussed previously, we do not
know whether R has an infimum or supreme in general. However, we are going to see that R does
attain a minimum when we restrict our consideration within a special family of metrics, namely,
the conformal class of metrics.

Let g0 be a background metric on a compact manifold Mn, n ≥ 3. Define the conformal class
of g0 by

[g0] = {g = e2ug0 : u ∈ C∞(M)}.
And the Yamabe invariant of this conformal class

Y ([g0]) = inf{R(g) : g ∈ [g0],Vol(g) = 1}.

We are going to see shortly that Y ([g0]) is finite for any smooth background metric g0. For the

convenience of calculation, let’s use u
4

n−2 as the conformal factor, namely let g = u
4

n−2 g0. We have
the following important formula that will be used throughout our discussion.

Lemma 3.1 (Conformal formula). The scalar curvature of g = u
4

n−2 g0 and the scalar curvature
of g0 are related by

(3.1) R(g) = −c(n)−1u−
n+2
n−2Lu,

the constant c(n) = n−2
4(n−1) , L is an elliptic operator Lu = ∆g0u− c(n)R(g0)u, called the conformal

Laplacian.

Proof. Denote f = 2
n−2 log u, then g = e2fg0. Let Γ, Rijkl,Ric, etc. denote the geometric

quantities of the metric g and let Γ0, (R0)ijkl,Ric0, etc. denote those of g0. Take a local coordinate
normal at one point. Then we first see the new Christoffel symbols are given by

Γkij = (Γ0)kij + δki ∂jf + δkj ∂if − gij∂kf.
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By the previous formula relating the Christoffel symbol and the Ricci tensor,

Ricij = (Ric0)ij − (n− 2)[∂i∂jf − (∂if)(∂jf)] + (∆0f − (n− 2)‖∇f‖2)(g0)ij .

Taking trace we get

R = e−2f (R0 + 2(n− 1)∆f − (n− 2)(n− 1)‖∇f‖2).

Now replace f = 2
n−2 log u, we obtain the desired formula for the scalar curvature. �

Thus for a conformal metric g = u
4

n−2 g0 with unit volume, its total scalar curvature is given by

R(g) = c(n)−1

ˆ
M
|∇g0u|2 + c(n)R(g0)u2dVolg0 .

Therefore the Yamabe invariant is a well defined real number. Regarding the sign of the Yamabe
invariant, we have the follwoing trichotomy theorem.

Theorem 3.2. Let (Mn, g0) be a closed compact smooth Riemannian manifold with n ≥ 3.
Then the conformal class of g0 belongs to one of the following three classes:

(1) Y ([g0]) > 0⇔ ∃g ∈ [g0], R(g) > 0⇔ λ1(−L) > 0.
(2) Y ([g0]) = 0⇔ ∃g ∈ [g0], R(g) = 0⇔ λ1(−L) = 0.
(3) Y ([g0]) < 0⇔ ∃g ∈ [g0], R(g) < 0⇔ λ1(−L) < 0.

Proof. The theorem is an easy consequence of the variational characterization of λ1(−L):

λ1(−L) = inf
u∈C∞(M)

c(n)−1
´
M |∇u|

2 + c(n)R(g0)u2´
M u2

and the fact that the first eigenfunction is always positive. �

As a corollary, we have

Corollary 3.3. Let (Mn, g0) be a compact smooth Riemannian manifold with n ≥ 3. If
R(g0) < 0 then Y ([g0]) < 0.

Proof. Take u ≡ 1 into the variational characterization of λ1(−L), we find that λ1(−L) < 0.
By the above theorem, Y ([g0]) < 0. �

4. Manifolds with negative scalar curvature

A natural question in the study of scalar curvature is what topological consequences we may
obtain from scalar curvature conditions. As we will see in this section, negative scalar curvature
does not have any topological obstruction. Namely, we are going to prove

Theorem 4.1. Any smooth compact manifold Mn, n ≥ 3 has a metric with negative scalar
curvature.

The following basic example turns out to be important in constucting new manifolds with
controlled scalar curvature.

Example 4.2 (Schwarzschild metric). On a manifold x ∈ Rn − {0}, n ≥ 3, define gij = (1 +
m

2|x|n−2 )4/n−2δij, m is a positive real number. Since 1
|x|n−2 is the Green’s function of Laplacian, we

see that the scalar curvature of g is everywhere zero. The hypersurface determined by |x| = m/2 is a
totally geodesic submanifold, called the horizon. Now reflect the part |x| > m/2 across this horizon,
we obtain a complete smooth Riemannian manifold with zero scalar curvature. It is diffeomorphic
to an annulus Sn−1 × (0, 1).
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|x| ↑ Horizon |x| = m
2

Figure 1. Doubled Schwarzschild

Near |x| ≈ ∞ the Schwarzschild metric converges smoothly to the Euclidean metric. We can
use this property to constuct a metric on the connected sums of any two Riemannian manifolds
while keeping the total scalar curvature arbitrarily close to their sums. To see this, let (M1, g1)
and (M2, g2) be two Riemannian manifolds and p1 ∈M1, p2 ∈M2 be two points on them. For any
ε > 0, pick a very small radius δ, so that the geodesic ball of radius δ around p1 and p2 contains
arbitrarily small total scalar curvature:

´
Bδ(p1) |R(g1)| < ε,

´
Bδ(p2) |R(g2)| < ε. Take a very large

number R and scale Schwarzschild inside BR(0) down such that its two ends have radius δ/2. Then
use a cutoff function to glue this very small Schwarzschild neck to M1−Bδ/2(p1) and M2−Bδ/2(p2),
leaving elsewhere the same metric. Note that in this procedure, the total scalar curvature changes
by at most ε, provided that the the metric outside BR(0) on the Schwarzschild is ε-close to the
Euclidean metric in the C2 sense.

We therefore conclude the following

Proposition 4.3. For any two smooth compact Riemannian manifolds (M1, g1) and (M2, g2),
and any ε > 0, there exists a metric g on M1#M2 such that

|R(g)| −R(g1)−R(g2)| < ε.

As a special case, we note that taking the connect sum with a sphere of the same dimension
does not change the topology of the manifold. This observation leads to the following

Corollary 4.4. Let n ≥ 3. If Sn has a metric with negative total scalar curvature then so
does every other n dimensional manifold.

Proof. Fix a metric g0 on Sn with negative total scalar curvature. For any Riemannian
manifold (Mn, g) choose λ > 0 large such that R(λ2g0) = λn−2 < |R(g)|. Then take the connected
sum of (Sn, λ2g0) and (M, g). �

In the remaining of this section we are going to conctruct a metric on Sn with negative total
scalar curvature. To do so we first discuss a general smoothening technique that produces large
family of metric with prescribed total scalar curvature.

The simple case that motivates the construction is as follows.

M2

M1

Γ

Figure 2. Gluing two surfaces sharing a common boundary

Let M1,M2 be two identical pieces of a spherical cap of constant Gauss curvature reflective
along a common boundary curve Γ, and M = M1 ∪M2. Then by the Gauss-Bonnet theorem,ˆ

M1

K +

ˆ
M2

K + 2

ˆ
Γ
k =

ˆ
M
K = 4π.
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Therefore the convex curve Γ contributes positively to the total curvature of M . Conversely if Γ is
a concave curve then

´
Γ k contributes negatively to the total curvature.

In general, consider two manifolds Mn
1 , Mn

2 joining along a common hypersurface Σ, M =
M1 ∪ M2, ∂M1 = ∂M2 = Σ. Σ has two mean curvatures in M1 and M2, denoted by H1, H2,
respectively. Here our convention is that the standard unit sphere in the Eucliden space has
constant mean curvature 1. Then we actually have that

ˆ
M
R(g) ≈

ˆ
M1

R(g1) +

ˆ
M2

R(g2) + 2

ˆ
Σ

(H1 +H2)

in the sense that there is a smooth metric g on M such that its total scalar curvature is
arbitrarily closed to the right hand side. In fact, if H1 + H2 > 0 pointwise then one can actually
smoothen the metric on M to make its scalar pointwise positive. See [Mia02]. The motivation
behind it is following. Suppose M is a smooth Riemannian manifold. Let ν = en be the unit normal
vector of Σ pointing into M1, t be the coordinate such that t = constant representing hypersurfaces
of constant distance to Σ. Then by the Gauss equation,

RM − 2 Ric(ν, ν) =
n−1∑
i,j=1

RMijji

=

n−1∑
i,j=1

(RΣ
ijji − hiihjj + h2

ij)

= RΣ −H2 + |h|2

⇒ RM = RΣ −H2 + |h|2 + 2 Ric(ν, ν).

On the other hand, the derivative of the mean curvature assuming Σ moves with unit speed ν is
given by

∂H

∂t
= −Ric(ν, ν)− |h|2.

Therefore we conclude that

RM = RΣ − (|h|2 +H2)− 2
∂H

∂t
.

Now all terms on the right hand side except for 2∂H∂t are bounded. In particular, if two manifolds

M1, M2 meet along Σ in such a way that H1 < −H2, then the last term ∂H
∂t behaves like a positive

Dirac-Delta function in M supported on Σ.

=

Schwarzchild neck

Figure 3. Connect sum two manifold with a Schwarzschild neck
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Using this gluing-smoothening techinque, we will construct a metric in the unit ball with neg-
ative total scalar curvature. The basic model we use in our construction are Delaunay surfaces. It
is a periodic constant mean curvature surface in R3. Picture 4 is a picture 1 of this surface.

Figure 4. A Delaunay surface with constant mean curvature

Take a half ball of radius 1
2 . Dig out a portion of the Delaunay surface described above. Of

course in this procedure the constant mean curvature property is no longer preserved. However
the total negative part of the scalar curvature can be made as small as possible. Therefore we may
cap off a suffiently large part of the Delaunay surface to make it has positive total mean curvature
from outside, or negative total mean curvature from inside, as illustrated by the picture. Dig out
sufficiently many such ’Delaunay strings’ S1, . . . , Sk, we have that the total mean curvature of the
boundary of the manifold B′1/2 = B1/2−S1− . . .−Sk is less than −1. Now take two copies of B′1/2,

reflectively symmetric across the unit disk, and identify the interior boundary from the Delaunay
strings. By doing so we get a new manifold B̃1/2 which is diffeomorphic to a ball with a metric C0

across the boundary. By the gluing-smoothening technique discussed above we may smoothen its
metric, and since now the total mean curvature along the boundary is sufficiently negative, the total
scalar curvature after smoothening is negative. Denote this new Riemannian manifold (B1/2, g).
Take B1/2 ⊂ B1 and extend the metric g trivially into a new metric g in B1.

Figure 5. Digging Delaunay holes in half ball

Consider the Dirichlet problem of −L in B1. The above shows that the first Dirichlet eigenvalue
λ1(−L) < 0. Take the first eigenfunction u and some ε > 0 such that u > ε in B1/2. Define

v = 1
ε max{u, ε} and smoothen it in B1 such that it is still super harmonic. With a slight abuse of

notation we still call this smoothened function v. Therefore we get a function v with the following
properties:

v ≡ 1 on ∂B1, Lv ≥ 0.

1Picture from https://en.wikipedia.org/wiki/Unduloid
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Using v4/n−2 as the conformal factor, we see that R(v4/n−2g) < 0 in B1/2. From above we conclude

Proposition 4.5. There exits a metric g in B1 such that g is Euclidean on ∂B1 but the scalar
curvature is negative in B1/2.

Note that the above construction cannot be done for two dimensional surfaces. Since any
manifold is locally Euclidean, we deduce that

Proposition 4.6. Any compact manifold Mn, n ≥ 3 admits a Riemannian metric with negative
scalar curvature.

In fact, the following stronger result of J. Lohkamp [Loh99] says that one can locally push the
scalar curvature down by an arbitrary amount.

Theorem 4.7. Let n ≥ 3 and (Mn, ∂M, g) be Riemannian manifold. Let f ≤ R(g) in M ,
f = R(g) on ∂M be a smooth function. Then for any ε > 0 there is a metric gε which is equal to
g on ∂M such that f − ε ≤ R(gε) ≤ f . Moreover, the metric gε can be chosen arbitrarily close to
g in C0 topology.

As we have seen in this section, having negative scalar curvature does not put any topological
obstruction on a smooth compact manifold with dimension at least 3.

5. How about R > 0?

A natural and important question in geometry is to characterize curvature conditions locally.
For instance, a classical result by Alexandrov suggests that positive sectional curvature can be
charazterized by the Toponogov theorem on triangles. Recently people have been able to give a
good characterization of positive Ricci curvature via optimal transport, see [LV09], [Stu06a] and
[Stu06b]. How about positive scalar curvature?

As a motivating example, take any two dimensional Riemannian disk (Ω, ∂Ω) with boundary
∂Ω diffeomorphic to S1. By the Gauss-Bonnet theoremˆ

Ω
KdA = 2π −

ˆ
∂Ω
kds.

Embed ∂Ω as a round S1 in R2. Under this embedding,
´
∂Ω k0ds = 2π. Therefore

´
ΩK =´

∂Ω k0 −
´
∂Ω k, suggesting that K ≥ 0 implies

´
∂Ω k0 ≥

´
∂Ω k.

For higher dimensional manifolds, we have the following result of Y. Shi and L-F Tam [ST02].

Theorem 5.1. Suppose (M3, ∂M = Σ2) has nonnegative scalar curvature. Assume the mean
curvature HΣ > 0 and the Gauss curvature KΣ > 0. Isometrically embed Σ2 into R3 with mean
curvature function H0. Then ˆ

Σ
(H0 −H)dA ≥ 0,

with equality only when M is flat.

Recently Gromov suggested using polyhedron to characterize positive scalar curvature. His
proposal is the following: for a tetrahedron or a cube that has mean convex surfaces in a manifold
with nonnegative scalar curvature, the dihedral angles cannot be everywhere less than those of the
regular figures in R3.



CHAPTER 2

The positive mass theorem

1. Manifolds admitting metrics with positive scalar curvature

Previously we have seen that there is no topological or geometric constraints for a smooth closed
compact manifold to have negative scalar curvature. In fact by the theorem of Lohkamp we may
arbitrarily push down the scalar curvature. On the other hand, deforming the metric to increase
the scalar curvature may be hard in general. As a first observation, we have

Proposition 1.1. Suppose (Mn, g0) is a compact and closed manifold with R(g0) ≡ 0 and
Ric(g0) 6= 0 at some point. Then there is a nearby metric g such that R(g) > 0 everywhere.

Proof. The simplest mordern proof is through Ricci flow. Under the Ricci flow{
∂g
∂t = −2 Ricgt
g(0) = g0

The scalar curvature evolves by
∂R

∂t
= ∆R+ 2|Ricgt |2.

By the maximum principle for all t > 0 such that a smooth solution exists, R > 0 everywhere. The
result follows by the short time existance of the Ricci flow. �

Remark 1.2. We may also look at the question from a variational point of view. Recall that
under a deformation gt = g0 + th the total scalar curvature changes by

d

dt
|t=0R(g0 + th) = −

ˆ
M

〈
Ricg0 −

1

2
Rg0 , h

〉
dVolg0

= −
ˆ
M
〈Ricg0 , h〉 dVolg0

Where we have used that Rg0 ≡ 0. Note that if Ricg0 is not identically zero, then by choosing
h = −Ricg0 the total scalar curvature will be positive. Of course, having positive total scalar
curvature along is not enough to guarantee that the scalar curvature is pointwise positive. However,
one may calculate the deformation of the first eigenvalue of the conformal Laplacian to conclude
that the scalar curvature can be made everywhere positive.

Let’s discuss a little bit the classification of manifolds admitting a metric with positive scalar
curvature.

Example 1.3. Let (M4, g0) be a K3 surface. That is, a four dimensional closed compact simply

connected Calabi-Yau manifold. It is Ricci flat, spin and has nonzero Â genus. By a Dirac operator
argument M does not have any metric with positive scalar curvature.

We point here that in the study of positive scalar metrics, there are two main approaches.
One is through the study of minimal hypersurfaces, the other is through Diric operator on spin
manifolds. We will focus on the first approach here. We recommend a nice book of B. Lawson and
M. Michelsohn [LM89] of the Dirac operator approach for interested readers.

The next example shows the subtlety of deforming the scalar on a Ricci flat manifold.

13
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Example 1.4. Let n ≥ 3, (M2n, g0) be a Calabi-Yau manifold. In their work [DWW05] X.
Dai, X. Wang and G. Wei studied the second variation of the total scalar curvature functional and
proved that the Calabi-Yau metric g0 is a local maximum. On the other hand, there exists a metric
g which is ’far’ from g0 such that R(g) > 0.

For simply connected manifold (Mn, g) with n ≥ 5, there is a complete classification for positive
scalar curvature:

Theorem 1.5 ([GL80],[Sto92]). Let M be a simply connected manifold of dimension at least
5. Then M carries a metric of positive scalar curvature if and only if:

• M does not admit a spin structure, or
• M is a spin manifold with certain topological invariant α(M) vanishes (when the dimension

of M is a multiple of 4, α(M) is equivalent to Â(M)).

See also the surgery result in [YS79].
For non-simply connected manifolds the existence of a metric with positive scalar curvature is

still open. On one hand, take n ≥ 4 and an aribtrary closed compact manifold Mn−2
1 . Then the

manifold Mn = Mn−2
1 × S2 carries a metric g with positive scalar curvature, since we may take

a scaling of the standard metric on S2 such that the sectional curvature there is arbitrarily large.
On the other hand, there are certain instances where we do know the non-existence of metric with
positive scalar curvature. Let’s mention an open question in this direction.

Open Question 1.6. Let Mn, g ≥ 4 be a K(π, 1) manifold, that is, the universal cover of M
is contratible. Can M carry a metric with positive scalar curvature?

When n = 3 with the help of Ricci flow we have a complete classification of manifolds with
positive scalar curvature, regardless of the fundamental group:

Theorem 1.7. If a closed compact 3-manifold (M3, g) has positive scalar curvature then there

is a finite cover M̂ →M such that M̂ ' S3#(S1 × S2)# · · ·#(S1 × S2).

2. Positive mass theorem: first reduction

Inspried by the classification result above, one readily sees that any compact closed 3-manifold
with a T 3 prime factor does not support any metric with positive scalar curvature. Extending this
philosophy to the greatest generality, our central case is to study the existence of positive scalar
metrics on a manifold Mn = Mn

1 #Tn, where M1 is an arbitrary compact closed oriented manifold.
The best result until today can be summarized as:

Theorem 2.1. Let Mn
1 , n ≥ 3 a compact closed oriented manifold. Then Mn = Mn

1 #Tn does
not have any metric g with positive scalar curvature, if either

• M1 is spin manifold, or
• n ≤ 8.

It is believed that these restrictions are techinical. The first case was done by Witten [Wit81]
with spinnors and index theory, and a spin structure is necessary for the argument; The second case
uses the theory of minimal hypersurfaces, and the dimension restriction is to prevent the singularity
of area minimizing hypersurfaces. As will be seen shortly, in higher dimensions the possibility of
singularities of area minimizing hypersurfaces adds significant amount of difficulty of carrying out
a similar argument. Our first goal is to remove the dimension restriction.

Let’s start the discussion of the positive mass theorem. Under the classical setup 1, the objects
we consider are asymptotically flat manifolds.

1There are versions of the positive mass theorem for manifolds with lower regularity.
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Definition 2.2. A complete, noncompact smooth manifold (Mn, g) is called asymptotically
flat (with one end), if outside a compact subset K, M −K ' Rn−B1(0). Let x1, x2, . . . , xn be the
pull back of the Euclidean coordinates via this diffeomorphism. We require the metric g to satisfy

gij = δij +O(|x|−p), for some p >
n− 2

2
,

∂gij = O(|x|−p−1), ∂2gij = O(|x|−p−2)

R(g) = O(|x|−q), for some q > n.

We abbreviate the first decay condition by gij = δij +O2(|x|−p−1).

Example 2.3 (Schwarzschild). On Rn − {0} the metric

gij =

(
1 +

m

2|x|n−2

) 4
n−2

δij , m ≥ 0.

It is not hard to see that this metric is scalar flat and equals δ +O2(|x|−n+2) near infinity.

The mass of a gravitational system is not easily defined in the most generality. However, for
asymptotically flat spaces- or physically isolated gravitating systems- there is a notion of mass
called ADM mass (or energy) that mimic the usual Hamiltonian formalism. See [ADM59]. We
define

Definition 2.4. The ADM mass (introduced by R. Arnowitt, S. Deser and C.W. Misner) for
an asymptotically flat manifold is defined by

m =
1

4(n− 1)ωn−1
lim
σ→∞

ˆ
|x|=σ

(∂igij − ∂jgii) νjdS,

where ν is the outward normal vector field of |x| = σ. ωn−1 is the volume of the unit sphere of
dimension n− 1. The constant is chosen such that the ADM mass is equal to m for Schwarzschild.

Remark 2.5. The limit exists in the above definition. Indeed, by Stokes’ theorem,

ˆ
|x|=σ2

(∂igij − ∂jgii) νjdS −
ˆ
|x|=σ1

(∂igij − ∂jgii) νjdS

=

ˆ
σ1<|x|<σ2

∑
i,j

(∂i∂jgij − ∂j∂jgii)

 dVol .

Therefore if
∑

i,j(∂i∂jgij − ∂j∂jgii) is an integrable function then the above boundary integral on
balls of radius σ is a Cauchy sequence and hence has a limit. Recall that the scalar curvature, in
local coordinates, is given by

R(g) =
∑
i,j

(∂i∂jgij − ∂j∂jgii) +O((g − δ)∂2g) +O((∂g)2).

It is assumed that

g − δ ≈ |x|−p, ∂2g ≈ |x|−p−2, ∂g ≈ |x|−p−1, R(g) ≈ |x|−q,

and intergrability follows by virtue of |x|−2p−2, |x|−q ∈ L1.

Our main objective is to prove the positive mass theorem in all dimensions, namely

Theorem 2.6 (Positive mass theorem). Let (Mn, g) be an asymptotically flat manifold and
R(g) ≥ 0. Then its ADM mass m ≥ 0, and m = 0 if and only if (Mn, g) is isometric to (Rn, δ).
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Remark 2.7. The above formulation is also called the strong positive mass theorem. The weak
PMT is usually referred without the rigidity part. Namely, mADM ≥ 0 for asymptotically flat
manifolds with nonnegative scalar curvature.

In this section we first provide a connection of the positive mass theorem between the existence
of metric with positive scalar curvature on a compact manifold.

Theorem 2.8 (Compactification theorem). Suppose for all closed compact manifold Mn
1 , Mn =

Mn
1 #Tn has no metric with positive scalar curvature. Then the ADM mass is nonnegative for all

asymptotically flat manifold with nonnegative scalar curvature.

The proof will be divided into two steps.

Step 1 If (M, g) is asymptotically flat with mADM < 0 then there is a metric g̃ with conformally
flat asymptotics and m̃ADM < 0 and R(g̃) ≡ 0.

Definition 2.9. Call a metric g̃ conformally flat asymptotics, if
g̃ij = u

4
n−2 δij outside a compact set

∆u = 0 near ∞
u→ 1 as |x| → ∞

Step 2 This is an observation due to J. Lohkamp. If (M, g) has conformally flat asymptotics and
mADM < 0 then there exists a metric g̃ with R(g̃) > 0 and g̃ = δ near ∞.

Assuming these results, the compactification theorem follows. Take Mn
1 to be a manifold

diffeomorphic to the 1-point compactification of M . Take a big cube C on (Mn, g̃) such that
g̃ is Euclidean outside C. Since a neighborhood of the faces of C are Euclidean, and C is the
fundamental domain of the group Zn, we may isometrically identify the corresponding faces, and
get a compact manifold M . As a result the manifold M1#Tn is diffeomorphic to C/ ∼ and carries
a metric with positive scalar curvature.

In the proof we are going to use the following important function property of asymptotically
flat manifolds.

Proposition 2.10. Suppose (Mn, g) is an asymptotically flat manifold. Then there exists a

constant ε0 = ε0(g), such that if f is a smooth function, f ∈ Lq∩L
2n
n+2 with q > n

2 and ‖f ‖Ln/2 < ε0.
Then the equation

(2.1)

{
∆u− fu = 0 on M

u→ 1 as |x| → ∞

has a unique positive solution. Moreover, near infinity u has asymptotics

(2.2) u = 1 +
A

|x|n−2
+O(|x|−2).

Proof. The proof we include here are taken from [SY79]. Another nice treatment using
weighted Sobolev space can be found in [Bar86].

Let v = 1− u. We then try to solve the equation

(2.3)

{
∆v − fv = −f on M

v → 0 as |x| → ∞

On a compact subset Br, consider the Dirichlet problem

(2.4)

{
∆vr − fvr = −f in Br

vr = 0 on ∂Br
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We show that equation 2.4 has a unique solution. By Fredholm alternative, it suffices to prove
that the homogeneous equation

(2.5)

{
∆w − fw = 0 in Br

w = 0 on ∂Br

has no nonzero solution, provided ‖f ‖Ln/2 is sufficiently small. In fact, suppose w is a solution of
equation 2.5. Multiply w on both sides of 2.5 and integrate by parts, we have

(2.6)

ˆ
Br

|∇w|2 = −
ˆ
Br

fw2 ≤
ˆ
Br

f w2.

By the Cauchy-Schwartz inequality and the Sobolev inequality,

ˆ
Br

f w2 ≤
(ˆ

Br

f
n
2

) 2
n
(ˆ

Br

w
2n
n−2

)n−2
n

≤ c1

(ˆ
Br

f
n
2

) 2
n
(ˆ

Br

|∇w|2
)
.

(2.7)

Combine equation 2.6 and 2.7 we see that w = 0, provided ‖f ‖Ln/2 < 1/c1. Hence 2.4 has a unique
solution vr. Multiply vr on both sides of 2.4, using Cauchy-Schwartz and Sobolev inequality again,
we see that ˆ

|∇vr|2 ≤
ˆ
f v2

r +

ˆ
fvr

≤ c1

(ˆ
f

n
2

) 2
n
(ˆ
|∇vr|2

)
+ c1

(ˆ
f

2n
n+2

) 2n
n+2

(ˆ
|∇vr|2

)
.

(2.8)

Therefore there is a constant c2 depending on (M, g, f) such that ‖vr‖
L

2n
n−2

< c2 and ‖∇vr‖L2 < c2.

The standard theory of elliptic equations conclude that vr has uniformly bounded C2,α norm. By
Arzela-Ascoli we may pass to a limit and conclude that 2.3 has a solution.

A similar argument proves that the solution is nonnegative everywhere. Otherwise there exists
an open set Ω such that {

∆u− fu = 0 in Ω

u = 0 on ∂Ω.

This contradicts the Sobolev inequality and the choice of ε0 as above. By the strong maximum
principle u is positive everywhere.

To get the asymptotic behavior of the solution, we take the Green’s function the Laplace
operator on M . To do so consider the function

(2.9) Q(x, y) =

∑
i,j

gij(x)(yi − xi)(yj − xj)

n−2
2

.

Then we have, by virtue of asymptotic flatness, that

c−1
3 |x− y|

n−2 ≤ Q(x, y) ≤ c3|x− y|n−2, c−1
4 |x− y|

n−3 ≤ ∂yQ(x, y) ≤ c4|x− y|n−3,

lim
|x|→∞

|x|n−2Q(x, y) = 1.
(2.10)

The function Q(x, y)−1 resembles the Green’s function in a precise manner, namely

(2.11) ∆yQ(x, y)−1 = −(n− 1)ωn−1δx(y) + ξx(y), ξ is a function with rapid decay.
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Multiply Q(x, y)−1 on both sides of 2.3 and integrate on a large region Dr(x), we find that

(n− 1)ωn−1v(x) =

ˆ
Dr

v(y)ξx(y)dVol−
ˆ

(fv + f)(y)Q(x, y)−1dVol

+

ˆ
∂Dr

∂v

∂n
Q(x, y)−1dS −

ˆ
∂Dr

v(y)
∂

∂n
Q(x, y)−1dS.

(2.12)

By a direct calculation one checks that every term on the right hand side of 2.12 converges to
zero as r approaches to infinity, except for

´
(fv + f)(y)Q(x, y)−1dVol. Using 2.10 we find that

(2.13) lim
|x|→∞

|x|n−2

ˆ
M

(fv + f)(y)Q(x, y)−1dVol(y) =

ˆ
M

(fv + f)(y)dVol(y).

This proves the desired asymptotics. �

The next lemma follows from a direct calculation. It relates the mass of a metric and its
conformal change.

Lemma 2.11. Suppose (Mn, g) is an asymptotically flat manifold, u = 1 + A
2|x|n−2 +O(|x|−n+1).

Then the mass of (M, g) and of (M,u
4

n−2 g) are related by

(2.14) m(u
4

n−2 g) = m(g) + (n− 1)A.

Remark 2.12. In fact, it is proved in [Bar86] that if the metric is asymptotically flat and
conformally flat, then the leading coefficient A in the expansion of u is equal to m/(n− 1).

We are now ready to prove theorem 2.8.

Proof for step 1. Solve the equation{
Lu = 0 on M

u→ 1 as |x| → ∞.

Then the solution u exists and satisfies

(2.15) 0 < u < 1, u = 1− A

|x|n−2
+O(|x|−2),

where A = 1
(n−1)ωn−1

´
c(n)Ru ≥ 0.

The metric g′ = u
4

n−2 g then satisfies

R(g′) ≡ 0, m(g′) ≤ m(g).

Denote g′ = δ+α, αij = O2(|x|−p). Take a cutoff function Ξ(r) compactly supported in B2r(0)
and is 1 in Br(0). Consider the metric ĝ defined by

ĝij(x) = δij + Ξ(|x|)αij
Then ĝij = δij + O2(|x|−p) uniformly in r. Since R(g′) = 0 and αij = O(|x|−p), for r sufficiently
large we have that

‖R(ĝ) ‖Ln/2 < ε0.
2

We then take the solution of

(2.16)

{
Lĝv = 0 in M

v → 1 as |x| → ∞.

2The Sobolev constant is equivalent to the isoperimetric constant. Therefore for a sequence of metrics converging
in C0 their Sobolev constants are bounded. This means that ε0 can be chosen independently of r.
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And let g̃ = v
4

n−2 ĝ. We see that the metric g̃ then satisfies

(2.17)


g̃ij = u

4
n−2 δij outside a compact set,

∆u = 0 near ∞,
u→ 1 as |x| → ∞.

In other words, the metric g̃ is conformally flat asymptotics. By choosing r sufficiently large, the
mass of g̃ and ĝ can be arbitrarily close. Therefore the mass of g̃ is also negative. �

Proof of step 2. Suppose g is conformally flat asymptotics, g = u
4

n−2 δ, and m(g) < 0. Note
that u is not a constant function. We are going to see that there exists a metric g̃ such that
R(g̃) ≥ 0, g̃ = δ near ∞.

By virtue of proposition 2.10, we know that

(2.18) u(x) = 1 +
A

2|x|n−2
+O(|x|−n+1), A < 0.

Therefore we may find ε > 0 and r > 0 such that max|x|=r u < 1− ε.
The function v = min{u, 1 − ε

2} is the minimum of two harmonic functions, hence is super-
harmonic. Mollify v to be a smooth function such that it is still super-harmonic and equals to 1− ε

2
near infinity. By slight abuse of notation we still denote it by v. Note that since u is not a constant
function, the function v is not harmonic for sufficiently large r.

Define a metric

(2.19) g̃ =

{
g inside |x| ≤ r
v

4
n−2 δ when |x| ≥ r.

Then we find that R(g̃) is nonnegative everywhere and is not identically zero.
Near infinity,

g̃ij =
(

1− ε

2

) 4
n−2

δij .

In a new coordinate system yi = (1− ε
2)

2
n−2xi the metric is Euclidean near infinity.

�

As a last step in this reduction, let us look at the rigidity case of the positive mass theorem. In
fact, the structure of asymptotically flat manifolds impose a strong condition of the manifold near
infinity that the weak version of the theorem also implies the rigidity case.

Theorem 2.13. Suppose on any asymptotically flat manifolds (Mn, g), n ≥ 3, we have the
weak positive mass theorem. Namely if the scalar curvature is everywhere nonnegative then its
ADM mass is nonnegative. Then we also have the rigidity case. That is, m = 0 only when (Mn, g)
is isometric to (Rn, δ).

Proof. The proof proceeds by first showing that R(g) = 0, then Ric(g) = 0, then Rijkl(g) = 0.
We first prove that the scalar curvature of M is identically zero. For the sake of contradiction

let us assume supR(g) > 0 on M . Solve the equation

(2.20)

{
∆u− c(n)Ru = 0 on M ,

u→ 1 as |x| → ∞.

Then a unique solution u exists and 0 < u < 1. Define ĝ = u
4

n−2 g. Then R(ĝ) = 0 and

(2.21) m(ĝ) = (n− 1)m0 +m(g),
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where m0 is the leading order term in the expansion of u:

(2.22) u(x) = 1 +
m0

2|x|n−2
+O(|x|1−n).

The fact that 0 < u < 1 tells us that m0 ≤ 0. However, by Proposition 2.10, m0 can be obtained
by integrating equation 2.20 against the Green’s function:

(2.23) m0 = −C1(n)

ˆ
M
R(g)u < 0.

Therefore m(ĝ) < 0, contradiction.
Next we prove that the Ricci curvature of M is identically zero. This is done by calculating

the first variation of the mass under a compactly supported deformation of the metric. Let h be
a compactly supported (0, 2) tensor and gt = g + th, where g is an asymptotically flat metric with
zero scalar curvature. Consider the equation

(2.24)

{
∆tut − c(n)R(gt)ut = 0, on M,

ut → 1 as |x| → ∞.

For any h since the scalar curvature depends smoothly on t, we have that ‖R(gt)‖L3/2 is suffi-
ciently small. Therefore the equation has a unique positive solution ut by Proposition 2.10. Define

g̃t = u
4

n−2

t gt. Then R(g̃t) = 0. Let m(t) denote the mass of the metric g̃t. Using the asymptotic
formula again we see that

(2.25) m(t) = −C1(n)

ˆ
M
R(gt)utdVolgt ,

hence in particular m(t) is C1 differentiable in t. Taking its first derivative at t = 0, and use the
facts that u0 ≡ 1, R(g0) = 0, we have

d

dt

∣∣∣∣
t=0

m(t) = −C1(n)

ˆ
M
Ṙ(0)dVol

= C1(n)

ˆ
M
〈Ricg, h〉 dVol .

(2.26)

See the calculation in equation 2.1 for more details in the above differentiation. If Ric is not
identically zero then take h = ηRic, η a cutoff function, we see that

d

dt

∣∣∣∣
t=0

m(t) 6= 0.

This means that for some small t, m(t) < 0, contradiction.
We then prove that the Riemannian curvature tensor is zero on M . Recall that by Bishop-

Gromov volume comparision theorem, since Ric ≥ 0 on (M, g), the ratio

Vol(Bσ(p))

ωnσn

is a monotone decreasing function in σ for any point p. However, since (M, g) is asymptotically
flat, we get that

lim
σ→∞

Vol(Bσ(p))

ωnσn
= 1.

On the other hand we also know that limσ→0
Vol(Bσ(p))
ωnσn

= 1. Therefore the volume ratio

Vol(Bσ(p))

ωnσn
≡ 1,
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for any point p and any radius σ. By the rigidity statement of Bishop-Gromov theorem we have
that (Mn, g) is isometric to (Rn, δ).

�

Let us highlight the conclusion of this section:

No metric on Mn
1 #Tn with positive scalar curvature ⇒ Positive mass theorem.

3. Minimal slicing

In this section we study metrics on manifolds Mn
1 #Tn, where Mn

1 is a closed compact oriented
manifold. Our goal is to prove

Goal 3.1. For any closed compact oriented manifold Mn
1 , n ≥ 3, there is no metric with

positive scalar curvature on Mn
1 #Tn.

The idea is to perform induction on the dimension n by constructing a nested family of min-
imizing hypersurfaces with precise control on their scalar curvature in each stage. We begin by
introducing the general strategy to do this induction.

3.1. General strategy. We first give some intuition of the conctruction we will make. For
the sake of simplicity let us for now ignore the regularity issue that will be dealt with eventually.
For k < n, the object we would like to have is a nested family of oriented submanifolds

Σk ⊂ · · · ⊂ Σn−1 ⊂ Σn = (M, g)

such that each Σj−1 ⊂ Σj is a least volume hypersurface for some weighted volume function in its
homology class. The construction is done through a backward inductive procedure which we will
briefly describe now.

Suppose there is a nontrivial (n − 1)-dimensional integral homology class in (Mn, g). By the
general existence theorem in geometric measure theory, take Σn−1 ⊂M to be a volume minimizing
current representing this class. Let us assume that Σn−1 is a properly embedded minimal hyper-
surface. Then it is also a stable minimal hypersurface, meaning that the second variation of its
volume is always nonnegative. Choose un−1 > 0 on Σn−1 to be the first eigenfunction of the Jacobi
operator determined by the second variation, and define ρn−1 = un−1.

Assume, by induction, that we have already constructed Σj+1 ⊂ · · · ⊂ Σn−1 ⊂ Σn = M ,
together with the positive functions ul, ρl on Σl, l ≥ j + 1. Then Let Σj be a volume minimizer in
some nontrivial homology class in Σj+1 of the weighted volume functional

Vρj+1(Σj) =

ˆ
Σj

ρj+1dHj ,

where dHj is the j-dimensional Hausdorff measure induced from the ambient metric on (Mn, g).
Assuming regularity of Σj , choose uj on Σj to be the first eigenfunction of the Jacobi operator,
and inductively define ρj = ujρj+1.

Definition 3.2. We call a nested family of minimal surfaces

Σk ⊂ · · · ⊂ Σn−1 ⊂ Σn = (M, g)

and positive functions uj , ρj a minimal k-slicing, if Σj ⊂ Σj+1 is a volume minimizer for the
weighted volume functional Vρj+1 , uj is the first Jacobi eigenfunction on Σj , and ρj = ujρj+1.

Example 3.3. A trivial example of a minimal k-slicing can be constructed in Xk × Tn−k,
equipped with a product metric gX + δ, where δ is the flat metric on the torus. Indeed, just take the
nested family of totally geodesic embeddings

X ⊂ X × S1 ⊂ · · · ⊂ X × Tn−k,
with all the Jacobi eigenfunctions and weight functions uj = ρj = 1.
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The geometric significance of a minimal slicing is the folloiwng.

Theorem 3.4. If the scalar curvature on M is positive, then for an appropriately chosen min-
imal k-slicing

Σk ⊂ · · · ⊂ Σn−1 ⊂ Σn = (M, g),

Σl is Yamabe positive for every k ≤ l ≤ n. In particular, if k = 2 then Σ2 is diffeomorphic to S2.

In example 3.3, if we further let X = S2 equipped with a metric with positive Gauss curvature,
then the above theorem just says that the trivial minimal 2-slicing on S2 × Tn−2 given by

S2 ⊂ S2 × S1 ⊂ · · · ⊂ S2 × Tn−2

is such that each S2 × T j is Yamabe positive.
One sees that the existence of a minimal k-slicing depends on the topology of (M, g). To get the

first hypersurface one needs a nontrivial integral homology class αn−1 in Hn−1(M,Z). In general,
a n − j dimensional submanifold in M may be viewed as the intersection of j − 1 hypersurfaces.
Given n− k integral homology classes α1, · · · , αn−k in Hn−1(M,Z) such that α1 ∩ · · · ∩ αn−k 6= 0,
we may minimize the weighted volume in the class α1 ∩ · · · ∩ αj inductively in the construction of
a minimal k-slicing. Using Poincaré duality, this is implied by the existence of n − k one forms
ω1, · · · , ωn−k ∈ H1(M,R) such that ω1 ∧ · · · ∧ ωn−k 6= 0.

Note that such an assumption is naturally satisfied by the torus Tn, for every k = 1, · · · , n.
Moreover, it is satisfied by any manifold Mn which admits a degree one map to Tn, by pulling
back those 1-forms on Tn. In particular, the manifold Mn = Mn

1 #Tn in our consideration has the
correct topological structure for the construction of a minimal k-slicing. We will give more details
later.

3.2. Geometry of second variation. The proof of Theorem 3.4, granted that all the nested
submanifolds Σj are embedded, relies on the second variation of a stable minimal hypersurface.
Suppose (Σn−1) ⊂ (Mn, g) is a two-sided embedded stable minimal hypersurface with a unit vector
field ν. Then S(ϕ,ϕ) ≥ 0, for any ϕ ∈ C1

0 (Σ), where the quadratic form S is defined to be

(3.1) S(ϕ,ϕ) =

ˆ
Σ

(
|∇ϕ|2 − (|A|2 + RicM (ν, ν))ϕ2

)
.

To see the connection between the stability and the scalar curvature, let us choose a local frame
e1, · · · , en with en = ν. Then

(3.2) RM =
n∑

i,j=1

RMijji = 2 RicM (en, en) +
n−1∑
i,j=1

RMijji.

By the Gauss equation, RMijji = RΣ
ijji + hiihjj − h2

ij . Plugging this into 3.2, we get

(3.3) RicM (ν, ν) =
1

2
(RM −RΣ − |A|2).

Therefore the second variation may be rewritten as

(3.4) S(ϕ,ϕ) =

ˆ
Σ
|∇ϕ|2 − 1

2
(RM −RΣ + |A|2)ϕ2 = −

ˆ
M
ϕJϕ,

J = ∆Σ + 1
2(RM −RΣ + |A|2) is the Jacobi operator.

We compare two interpretations of the connection between the stability of a minimal hypersur-
face and the positivity of scalar curvature.
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• Conformal interpretation. If Σ is stable and RM > 0 then Σ is Yamabe positive.
To see this, let us use the similarity of the Jacobi operator from stability and the

conformal Laplacian. We see that for any ϕ ∈ C1
0 (Σ),

0 ≤ S(ϕ,ϕ)

<

ˆ
Σ
|∇ϕ|2 +

1

2
RΣϕ

2

=
1

2c(n)

ˆ
Σ

2c(n)|∇ϕ|2 + c(n)RΣϕ
2

≤ 1

2c(n)

ˆ
Σ
|∇ϕ|2 + c(n)RΣϕ

2.

(3.5)

Note that we have used c(n) = n−2
4(n−1) <

1
2 . We therefore conclude from the variational

characterization that λ1(−L) > 0, L is the conformal Laplacian.
Therefore we may conformally deform the metric on Σ with positive scalar curvature,

and find a stable minimal hypersurface of it. The induction may be carried.
• Warp product interpretation. Assume S(ϕ,ϕ) ≥ 0 for any ϕ ∈ C1

0 (Σ), that is, stability
of Σ. Then there exists a positive first eigenfunction u of the Jacobi operator. On the
manifold Σ × S1 consider the warp product metric gΣ + u2dt2, where gΣ is the induced
metric on Σ and t is the parameter on S1. Then the scalar curvature of this warp product
can be easily calculated as

R(gΣ + u2dt2) = −2u−1(∆u− 1

2
RΣu).

Since Ju = −λ1u, λ1 ≥ 0, we then conclude that

R(gΣ + u2dt2) = −2u−1(∆u− 1

2
RΣu)

≥ −2u−1(−1

2
RMu−

1

2
|A|2u)

= RM + |A|2.

(3.6)

Therefore if RM ≥ κ then R(gΣ + u2dt2) ≥ κ.
To illustrate the inductive procedure, suppose we already have Σn−1 ⊂ Σn stable.

Then by above calculation R(gn−1 + u2
n−1dt

2
n−1) ≥ κ > 0. For an embedded hypersurface

Σn−2 ⊂ Σn−1, we may embed Σn−2 × S1 into Σn−1 × S1 by taking identity map on the
S1 factor. Then the volume of Σn−2 × S1 with respect to the warped product metric
gn−1 + dt2n−1 is given by

Vol(Σn−2 × S1, gn−1 + dt2n−1) =

ˆ
Σn−2

un−1dHn−2.

We then minimize the volume of Σn−2 × S1 among all the embedded hypersurfaces Σn−2,
namely consider the minimization problem

(3.7) inf{Vol(Σn−2 × S1, gn−1 + dt2n−1) : Σn−2 ⊂ Σn−1 is an embedded hypersurface}.

Take ρn−1 = un−1. Note that this is equivalent to the minimization problem

(3.8) inf{Vol(Σn−2, gn−1) =

ˆ
Σn−2

un−1dHn−2 : Σn−2 is an embedded hypersurface}.

In a general inductive procedure, suppose we have already constructed Σn−j+1. Then
for an embedded hypersurface Σn−j ⊂ Σn−j+1, the volume of the embedded hypersurface
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Σn−j × T j−1 ⊂ Σn−j+1 × T j−1 is given by

Vol(Σn−j × T j−1, gn−j+1+u2
n−j+1dt

2
n−j+1 + · · ·+ u2

n−1dt
2
n−1)

=

ˆ
Σn−j

un−j+1 · · ·un−1dHn−j .
(3.9)

We then minimize for an embedded hypersurface Σn−j ⊂ Σn−j+1, the volume of Σn−j ×
T j−1 ⊂ Σn−j+1×T j−1. Note that this is equivalent to the minimization of Σn−j ⊂ Σn−j+1

with the weighted volume.

When the dimension of M is less than or equal to 7, area minimizing hypersurfaces are smooth
and embedded. In this case both the conformal interpretation and the warp product interpretation
can be used to prove the nonexistence of a metric on Mn

1 #Tn with positive scalar curvature, and
the positive mass theorem follows. Such an argument can be generalized to dimension 8 with
some extra work. In fact, in dimension 8, only isolated singularities may occur for a minimizing
hypersurface Σ7 ⊂M8. They can be perturbed away by the result of N. Smale [Sma93]:

Theorem 3.5 ([Sma93]). Suppose M8 is a closed compact manifold, α ∈ H7(M,Z). Then there
is a set of metrics, dense in the Ck topology for any k, such that there exists a Σ(g) representing
α which is homologically volume minimizing and is regular.

Using this theorem the positive mass theorem also holds in dimension 8: we just need to deform
the ambient metric on a manifold M8

1 #T 8 such that the scalar curvature is still positive everywhere,
and the volume minimizing hypersurface is regular.

However, in general dimension singularities of area minimizing currents may occur. The ad-
vantage of the warp product interpretation over the conformal interpretation is two-fold: with the
presence of singular metric, there is few control of the first eigenfunction near the singularities;
Also in the conformal interpretation, RM ≥ κ does not imply RΣ ≥ κ. We therefore use the warp
product interpretation in our proof.

To better handle the singular set it helps to work with a quadratic form which is more ’coercive’.
To see this, define

(3.10) Q(ϕ,ϕ) = S(ϕ,ϕ) +

ˆ
Σ
Pϕ2,

P is a positive function to be chosen later. If the hypersurface is stable then an eigenfunction u of
Q provides a bound of P and u2 in an integral sense, by virtue ofˆ

Σ
Pu2 ≤ Q(u, u) ≤ λ1

ˆ
Σ
u2.

This is an analytic advantage for us.
On the other hand, this extra term a priori may cause some geometric disadvantage, since for

the first eigenfunction u,

(3.11) − Ju+ Pu = λ1u, λ1 ≥ 0.

(3.12) ⇒ ∆u+
1

2
(RM −RΣ + |A|2)u2 − Pu ≤ 0.

We then see that the new scalar curvature of the warped product metric gΣ + u2dt2 becomes

(3.13) R(g + u2dt2) ≥ RM + |A|2 − P.

Therefore it is safe to pick P ∼ 1
2 |A|

2 to keep the scalar curvature lower bound. The idea is to
choose Pj on Σj , on one hand large enough such that it makes the analysis work, and on the other
hand small enough such that it still makes the scalar curvature uniformly bounded from below.
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3.3. Calculation at regular points. We fix some notations and derive necessary geometric
formulas that hold at smooth points. Ignoring regularity issues for now, consider a smooth minimal
k-slicing

Σk ⊂ · · · ⊂ Σn,

Σj minimizes the weighted volume Vρj+1(·) among oriented hypersurfaces in Σj+1. Let gk be the
metric on Σk induced by the embedding Σk ⊂ Σn, νk be the unit normal vector field of Σk ⊂ Σk+1.
Then νk, · · · , νn−1 forms an orthonormal basis of the normal bundle of Σk. Denote Ak the vector
valued second fundamental form of Σk in Σn, that is, for any tangent vectors X,Y on Σk,

Ak(X,Y ) = (∇(n)
X Y )⊥ =

n−1∑
p=k

A
νp
k (X,Y )νp,

where A
νp
k is the scalar valued second fundamental form defined by A

νp
k = 〈Ak, νp〉. Clearly we then

have

|Ak|2 =

n−1∑
p=k

|Aνpk |
2.

There are two more relavent metrics g̃j and ĝj . On Σj × Tn−j define a warped product metric

(3.14) ĝj = gj +
n−1∑
p=j

u2
pdt

2
p.

Here (tj , · · · , tn−1) are variables on Tn−j , up is the first eigenfunction of a quadratic form Qp on
Σp which we will define later. Then

Vol(Σj × Tn−j , ĝj) =

ˆ
Σj

ρjdνj ,

dνj is just the j dimensional Hausdorff measure.
Recall that Σj ⊂ Σj+1 is a minimizer of the weighted volume functional Vρj+1 , or equivalently

Σj × Tn−j−1 ⊂ Σj+1 × Tn−j−1

is minimizing for the metric ĝj+1. Let g̃j be the metric on Σj×Tn−j−1 induced from the embedding
Σj × Tn−j−1 ⊂ Σj+1 × Tn−j−1. Equivalently

(3.15) g̃j = gj +

n−1∑
p=j+1

u2
pdt

2
p.

We point out here that despite their appearing similarity, the metrics ĝj and g̃j have very
different geometric behaviors. In particular, the metric ĝj more or less has positive scalar curvature.

Let Ãj be the second fundamental form of Σj × Tn−j−1 ⊂ Σj+1 × Tn−j−1. We then have

Lemma 3.6.

(3.16) Ãj = A
νj
j −

n−1∑
p=j+1

up(νjup)dt
2
p,

(3.17) |Ãj |2 = |Aνjj |
2 +

n−1∑
p=j+1

(νj log up)
2.
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Proof. On Σj+1 take a local orthonormal frame e1, · · · , ej+1 such that e1 is the unit normal
vector field of Σj ⊂ Σj+1. For p = 1, · · · , n − j − 1 let Yp = ∂tp . With a slight abuse of notation

let us denote e1, · · · , ej+1 the vector fields under the embedding Σj × Tn−j−1 ⊂ Σj+1 × Tn−j−1.
Note that they are still orthonormal with respect to the metric ĝj+1, and e1 is still the unit normal
vector field. For notational simplicity let us abbreviate ĝj+1 to ĝ and gj+1 to g.

To calculate the second fundamental form, we first see that if X1, X2 ∈ span{e2, · · · , ej+1} then

Ãj(X1, X2) =
1

2
ĝ11 (X1ĝ(X2, e1) +X2ĝ(X1, e1)− e1ĝ(X1, X2))

=
1

2
g11 (X1g(X2, e1) +X2g(X1, e1)− e1g(X1, X2))

= A
νj
j (X1, X2).

(3.18)

We also have the calculation for Ã(ei, Yp) and Ã(Yp, Yq):

(3.19) Ãj(ei, Yp) =
1

2
ĝ11(eiĝ(Yp, e1) + Ypĝ(ei, e1)− e1ĝ(ei, Yp)) = 0.

Ãj(Yp, Yq) =
1

2
ĝ11(Ypĝ(Yq, e1) + Yq ĝ(Yp, e1)− e1

ˆg(Yp, Yq))

= −1

2
e1ĝ(Yp, Yq)

= −δqp
1

2
e1[(up)

2].

(3.20)

We therefore get the expression for Ãj . Take the square norm with respect to the metric g̃j we get

the desired formula for |Ãj |2.
�

For any function ϕ on Σj , it can be viewed as a function on Σj × Tn−j which does not depend
on Tn−j . The Dirichlet integral is then equal toˆ

Σj

|∇jϕ|2ρj+1dµj ,

and therefore the weighted Laplacian is given by

(3.21) ∆̃jϕ = ρ−1
j+1 div(ρj+1∇ϕ).

Let us now define the coercive quadratic form Q.

Qj(ϕ,ϕ) = Sj(ϕ,ϕ) +
3

8

ˆ
Σj

[
|Ãj |2

+
1

3n

n∑
p=j+1

(|∇j log up|2 + |Ãp|2)

]
ϕ2ρj+1dµj .

(3.22)

We also assume that Ãn = 0, un = 1. Sj is the second fundamental form with respect to the
weighted metric, given by

(3.23) Sj(ϕ,ϕ) =

ˆ
Σj

[
|∇jϕ|2 −

1

2
(R̂j+1 − R̃j + |Ãj |2)ϕ2

]
ρj+1dµj .

Note that the quadratic form Qj is more coercive than the second fundamental form, and hence
by choosing uj to be its first eigenfunction, the scalar curvature of the warped metric tends to
decrease. Nevertheless we still have the geometric theorem, Theorem 3.4, namely

Theorem 3.7. If Rn ≥ κ and a minimal k-slicing exists. Then:

• For k ≤ j ≤ n− 1, if Σj is a smooth submanifold then it is Yamabe positive.
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• If k = 2 then Σ2 is a union of two spheres with diameter bounded from above by 2π√
κ

.

• If k = 1 then Σ1 is an arc with length bounded from above by 2π√
κ

.

We prove this theorem through a number of calculational lemmas. We begin from the following
basic lemma in local calculation.

Lemma 3.8. The scalar curvature of the warped product Riemannian manifold (Σ×S1, g+u2dt2)
is given by

(3.24) R(g + u2dt2) = R(g)− 2u−1∆gu.

Proof. Choose x1, · · · , xn to be a local coordinate system on Σ normal at one point. Then
∂1, · · · , ∂n, ∂t/u is a local coordinate system on Σ×S1 normal at one poin. The covariant derivatives
involving t are given by

∇∂i∂t =
2

u
∂t, ∇∂t∂t = −2

∑
i

(∂iu)u∂i.

The scalar curvature is then given by

R(g + u2dt2) = R(g) + 2
n∑
i=1

Ritti

= R(g) + 2
∑
i

(〈
∇i∇∂t/u(∂t/u), ∂i

〉
−
〈
∇∂t/u∇i(∂t/u), ∂i

〉)
= R(g) + 2

∑
i

∂i(−
1

u
∂iu)− 2

∑
i

1

u2
(∂iu)2

= R(g)− 2u−1∆gu.

�

Lemma 3.9. The scalar curvature of the metric g̃j is given by

(3.25) R̃j = Rj − 2

n−1∑
p=j+1

u−1
p ∆jup − 2

∑
j+1≤p<q≤n−1

〈∇j log up,∇j log uq〉 .

Or equivalently,

(3.26) R̃j = Rj − 4ρ
−1/2
j+1 ∆j(ρ

1/2
j+1)−

n−1∑
p=j+1

|∇j log up|2.

Proof. We apply 3.24 finitely many times in an inductive manner. For k = j + 1, · · · , n − 1
let ḡk = gj +

∑n−1
p=k u

2
pdt

2
p. We prove the formula

R̄k = Rj − 2

n−1∑
p=k

u−1
p ∆jup − 2

∑
k≤p<q≤n−1

〈∇j log up,∇j log uq〉

by a finite reverse induction on k. When k = n − 1 the formula follows directly from 3.24. Now
suppose the formula is correct for ḡk+1. Note that ḡk = ḡk+1 + u2

kdt
2
k. We apply 3.24 to obtain

R̄k = R̄k+1 − 2u−1
k ∆̄k+1uk.

Note that uk does not depend on the extra variables tp. We use 3.21 to write ∆̄k+1 in terms of ∆j :

u−1
k ∆̄k+1uk = u−1

k ρ−1
k+1 divj(ρk+1∇juk) = u−1

k ∆juk +

n−1∑
p=k+1

〈∇j log up,∇j log uk〉 .

Here ρk = uk · · ·un−1. The formula follows from induction.
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To prove 3.26, we observe that the cross terms appear in 3.25 can be rewritten as

2
∑

j+1≤p<q≤n−1

〈∇j log up,∇j log uq〉 =

∣∣∣∣ n−1∑
p=j+1

∇j log up

∣∣∣∣2 − n−1∑
p=j+1

|∇jup|2.

Therefore

R̃j = Rj − 2
∑
p

(
∆j log up + |∇j log up|2

)
− 2

∑
j+1≤p<q≤n−1

〈∇j log up,∇j log uq〉

= Rj − 2∆j log ρj+1 −
∑
p

|∇j log up|2 − |∇j log ρj+1|2

= Rj − 4ρ
−1/2
j+1 ∆j(ρ

1/2
j+1)−

n−1∑
p=j+1

|∇j log up|2.

�

Next we calculate the scalar curvature of the metric ĝj . We point out again that ĝj and g̃j are
very different geometrically.

Lemma 3.10. The scalar curvature of the metric ĝj is given by

(3.27) R̂j = Rn + 2
n−1∑
p=j

λp +
1

4

n−1∑
p=j

|Ãp|2 − 1

n

n−1∑
q=p+1

(|∇p log uq|2 + |Ãq|2)

 ,
where λp is the first eigenvalue of the quadratic form Qp.

Proof. Recall that uk is the first eigenfunction of Qk associated to λk, and that Qk is given
by

Qk(ϕ,ϕ) =

ˆ
Σk

[
|∇kϕ|2 −

1

2
(R̂k+1 − R̃k)ϕ2

− 1

8

|Ãk|2 − 1

n

n∑
p=k+1

(|∇k log uk|2 + |Ãk|2)

ϕ2

]
ρk+1dµk.

Denote Lk the linear operator associated to Qk. Then

Lk = ∆̃k +
1

2
(R̂k+1 − R̃k) +

1

8

|Ãk|2 − 1

n

n∑
p=k+1

(|∇k log up|2 + |Ãp|2)

 ,

and up satisfies the eigenfunction equation Lkuk = −λkuk, λk > 0.
We prove 3.27 by a reverse induction beginning with j = n − 1. From 3.24 we have that

R̂n−1 = Rn−1 − 2u−1
n−1∆n−1un−1. The equation un−1 satisfies is

∆n−1un−1 +
1

2
(Rn −Rn−1)un−1 +

1

8
|Ãn−1|2un−1 = −λn−1un−1,

and so we have R̂n−1 = Rn + 2λn−1 + 1
4 |Ãn−1|2. This proves the result for j = n− 1.
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Suppose 3.27 is satisfied by ĝj+1. We first observe that ĝj = g̃j + u2
jdt

2
j , and therefore R̂j =

R̃j − 2u−1
j ∆̃juj . On the other hand uj satisfies the equation

∆̃juj +
1

2
(R̂j+1 − R̃j)uj

+
1

8

|Ãj |2 − 1

n

n∑
p=j+1

(|∇j log up|2 + |Ãp|2)

uj = −λjuj .

Substituting this above we have that

R̂j = R̃j + 2

[
λj +

1

2
(R̂j+1 − R̃j)

+
1

8

|Ãj |2 − 1

n

n∑
p=j+1

(|∇j log up|2 + |Ãp|2)

]

= 2λj + R̂j+1 +
1

4

|Ãj |2 − 1

n

n∑
p=j+1

(|∇j log up|2 + |Ãp|2)

 .

Therefore 3.27 follows from the induction. �

Lemma 3.11. Assume the scalar curvature Rn ≥ κ. Then R̂j ≥ κ− 1
4

∑n−1
p=j |∇j log up|2.

Proof. From 3.17 we have the expression for the second fundamental form |Ãj |2. Therefore

n−1∑
p=j

(
n|Ãp|2 −

n−1∑
q=p+1

(|∇p log uq|2 + |Ãq|2)

)

≥
n−1∑
p=j

 n∑
r=j

|Ãr|2 −
n∑

q=p+1

(|∇p log uq|2 + |Ãq|2)


≥

n−1∑
p=j

n∑
q=p+1

p−1∑
r=j

(νr log uq)
2 − |∇p log uq|2


= −

n−1∑
p=j

n∑
q=p+1

|∇j−1 log uq|2

≥ −n
n∑
q=j

|∇j log uq|2.

We therefore conclude that if Rn ≥ κ then R̂j ≥ κ− 1
4

∑n−1
p=j |∇j log up|2. �

Combe this with 3.17, we find that

|Ãj |2 + R̂j+1 ≥ κ+

n−1∑
p=j+1

(νj log up)
2 − 1

4

n−1∑
p=j+1

|∇j+1 log up|2

≥ κ− 1

4

n−1∑
p=j+1

|∇j log up|2.

(3.28)

The importance of 3.28 is that it implies the following unweighted estimates using stability.
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Proposition 3.12. Assume stability (Sj(ϕ,ϕ) ≥ 0) on Σj equipped with the warped metric,
that is, for any smooth function ϕ,

(3.29)

ˆ
Σj

(R̂j+1 + |Ãj |2 − R̃j)ϕ2ρj+1dµj ≤ 2

ˆ
Σj

|∇jϕ|2ρj+1dµj .

Then we have, for any smooth function ϕ,

(3.30)

ˆ
Σj

κ+
3

4

n−1∑
p=j+1

|∇j log up|2 −Rj

ϕ2dµj ≤ 4

ˆ
Σj

|∇jϕ|2dµj .

Proof. We use 3.28 and 3.26 into the stability inequality 3.29 and get that, for any smooth
function ϕ,

ˆ
Σj

[
κ− 1

4

n−1∑
p=j+1

|∇j log up|2 −Rj + 4ρ
−1/2
j+1 ∆jρ

1/2
j+1 +

n−1∑
p=j+1

|∇j log up|2
]
ϕ2ρj+1dµj

≤ 2

ˆ
Σj

|∇jϕ|2dµj

≤ 4

ˆ
Σj

|∇jϕ|2dµj .

(3.31)

Replacing ϕ by ϕρ
−1/2
j+1 , we are able to cancel the weight ρj+1 on the left hand side. For the right

hand side we see that

4

ˆ
|∇(ϕρ

−1/2
j+1 )|2ρj+1 = 4

ˆ
|∇ϕ|2 + 2ϕρj+1∇ϕ · ∇(ρ

−1/2
j+1 ) + ϕ2|∇jρ−1/2

j+1 |
2ρj+1.

Using integration by parts, we have

4

ˆ
2ϕρ

1/2
j+1∇ϕ · ∇ρ

−1/2
j+1 = −4

ˆ
∇(ϕ2) ·

∇ρ1/2
j+1

ρ
1/2
j+1

= 4

ˆ
ϕ2

∆(ρ
1/2
j+1)

ρ
1/2
j+1

−
ˆ
ϕ2|∇ log ρ

1/2
j+1|

2.

Plugging this into 3.31 we see that all terms involving ρj+1 cancel, and the desired estimate follows.
�

Now the geometric theorem, Theorem 3.7, is a direct consequence of Proposition 3.12.

Proof of Theorem 3.7. A smooth compact closed manifold Σn is Yamabe positive if and
only if ˆ

Σ
−Rϕ2 ≤ c(n)−1

ˆ
Σ
|∇kϕ|2,

for any smooth function ϕ. Since c(n) = n−2
4(n−1) <

1
4 , c(n)−1 > 4. The statement follows from

Proposition 3.12.
For the diameter bound, consider any curve Σ1. Take s to be the arclength parameter, 0 ≤ s ≤ l.

From Proposition 3.12 we have that

κ

ˆ l

0
ϕ2ds ≤ 4

ˆ l

0
(ϕ′(s))2ds,

for any compactly supported smooth function ϕ. Therefore π2

l2
≥ κ

4 . Therefore l ≤ 2π√
κ

. �
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Remark 3.13. About the sharpness of the constant in the diameter bound, one might speculate
that the following example should be optimal. Take M = S2 × Tn−2, the product of a two-sphere
and a flat torus, equipped witht the product metric. Then R = 2KS2 = κ. Then KS2 = κ/2. By
the Bonnet theorem we see that

diam(S2) ≤ π√
κ/2

=

√
2π√
κ
.

In our bound the constant is 2 instead of
√

2. The sharp bound is not known, but when we used
the inequality 2 < 4 we lost information. If the extra term could be exploited the bound might be
improved.

3.4. Existence and regularity. We discuss the existence and regularity of a minimal k-
slicing. For a volume minimizing hypersurface Σn−1 ⊂ Σn let Sn−1 be the closed subset of singular
points, and Rn−1 = Σn−1 \ Sn−1 be the regular set. The standard theory of volume minimizing
hypersurfaces then implies that dimSn−1 ≤ n− 8. For a nested family of currents

Σj ⊂ · · · ⊂ Σn,

we define

Definition 3.14. The regular set Rj is defined to be the set of points

{x ∈ Σj : there is an open neighborhood O of x such that O ∩ Σp is regular, p = j, · · · , n− 1.}

The singular set Sj = Σj \ Rj .

We clearly have that

(3.32) dim(Sj) ≤ max{dim(Sj+1), n− 7}.

In the regularity theory we are going to prove that

dim(Sj) ≤ j − 3.

The basic strategy for this partial regularity theorem is to use a dimension reduction argument
and study homogeneous minimal slicings in the Euclidean spaces. As a first step, it is essential to
understand the construction of the weight functions ρp in presence of singularities. In particular,
we will need an argument to prove that each eigenfunction up is not concentrated near the singular
sets. To do so let us first embed Σn into some RN . For each j and an open set Ω ⊂ RN , define the
weighted norms

(3.33) ‖ϕ‖20,j,Ω =

ˆ
Σj∩Ω

ϕ2ρj+1dµj ,

(3.34) ‖ϕ‖21,j,Ω = ‖ϕ‖0,j,Ω +

ˆ
Σj∩Ω

(|∇jϕ|2 + Pjϕ
2)ρj+1dµj .

Here Pj is defined by

(3.35) Pj = |Aj |2 +
n−1∑
p=j+1

|∇j log up|2.

The term Pj is used to make the weighted norm more coercive, which will give us some analytic
advantage in controlling the singular sets. We define the weighted L2 space and Sobolev spaces Hj ,
Hj,0 as follows.
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Definition 3.15. Let L2(Σj ,Ω) be the Hilbert spaces of square integrable functions on Σj with
respect to the measure ρj+1µj .

Let Hj ,Hj,0 be the Hilbert space which is the completion with respect to the norm ‖ · ‖21,j of

functions in C1
0 (Ω̄ ∩Rj), C1

0 (Ω ∩Rj), respectively.

As in the usual definition of Sobolev spaces, the only difference between Hj and Hj,0 is that
Hj,0 contains those functions in Hj with zero boundary data on Σj ∩ ∂Ω.

Remark 3.16. We will say that a minimal k-slicing in an open set Ω is partially regular if
dim(Sj) ≤ j − 3 for j = k, · · · , n− 1. It then follows from 3.32 that if the (k+ 1)-slicing associated
to the minimal k-slicing is partially regular then dim(Sk) ≤ min{dim(Sk+1), n− 7} ≤ k− 2. In the
inductive procedure, we therefore assume in the study of uj that the singular set Sj is of at least
codimension two. Intuitively Sj has zero capacity hence do not affect the Dirichlet integral. We
will prove this with the weighted volume.

Next we prove the existence of uj , the first eigenfunction of the quadratic form Qj . To do so
we will need a coercivity estimate.

Proposition 3.17. Suppose ϕ ∈ Hj,0(Ω). Then there exists a constant c that only depends on
the minimal slicing but not on the choice of ϕ, such that

c‖ϕ‖21,j,Ω ≤ Qj(ϕ,ϕ) + ‖ϕ‖20,j,Ω,

where Qj is the quadratic form defined as 3.22.

Proof. Recall that

Qj(ϕ,ϕ) = Sj(ϕ,ϕ) +
3

8

ˆ
Σj

|Ãj |2 +
1

3n

n−1∑
p=j+1

(|Ãp|2 + |∇j log up|2)

ϕ2ρj+1dµj ,

and Sj is the form from the second variation for the weighted volume functional:

Sj(ϕ,ϕ) =

ˆ
Σj

[
|∇jϕ|2 −

1

2
(R̂j+1 − R̃j + |Ãj |2)ϕ2

]
ρj+1dµj .

Denote

qj =
1

2
(R̂j+1 − R̃j + |Ãj |2).

To prove the desired estimate, it suffices to bound ‖ϕ‖21,j,Ω for any C1 function compactly
supported on Ω ∩Rj , that is, to bound

(3.36)

ˆ
Σj∩Ω

ϕ2ρj+1dµj +

ˆ
Σj∩Ω

|∇jϕ|2ρj+1dµj + Pjϕ
2ρj+1dµj .

The first term can be handled by ‖ϕ‖20,j,Ω by definition. The second term, namely the gradient

term, appeared in Sj(ϕ,ϕ), and thus can be controlled:ˆ
Σj∩Ω

|∇jϕ|2ρj+1dµj = Sj(ϕ,ϕ) +

ˆ
Σj∩Ω

qjϕ
2ρj+1dµj .

To deal with the third term, we need to treat the quadratic form Qj more carefully. Denote

P̄j =
3

8

|Ãj |2 +
1

3n

n∑
p=j+1

(|Ãp|2 + |∇j log up|2)

 .

We then have the following easy observation:
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(3.37)
1

8n

 n∑
q=j

|Ãq|2 +
n∑

p=j+1

|∇j log up|2
 ≤ P̄j ≤ 3

8

 n∑
q=j

|Ãq|2 +
n∑

p=j+1

|∇j log up|2
 .

Using 3.17 we may simplify the above expression further:

Claim 3.18.
n−1∑
q=j

|Ãq|2 +

n−1∑
p=j+1

|∇j log up|2

=
n−1∑
q=j

|Aνpp |2 +
n−1∑
p=j+1

|∇p log up|2.

(3.38)

Proof of claim. We have
n−1∑
q=j

|Ãq|2 =

n−1∑
q=j

|Aνqq |2 +

n−1∑
q=j

n−1∑
p=q+1

(νq log up)
2

=
n−1∑
q=j

|Aνqq |2 +
n−1∑
p=j+1

p−1∑
q=j

(νq log up)
2.

(3.39)

Therefore

n−1∑
q=j

|Ãq|2 +

n−1∑
p=j+1

|∇j log up|2 =

n−1∑
q=j

|Aνqq |2 +

n−1∑
p=j+1

|∇j log up|2 +

p−1∑
q=j

(νq log up)
2


=

n−1∑
p=j

|Aνpp |2 +

n−1∑
p=j+1

|∇p log up|2.

(3.40)

Thus the claim is proved. �

Now let us use the geometric relation |Aνpp | ≥ |Aνpj |, for p ≥ j. Then by 3.17,

n−1∑
p=j

|Ãp|2 ≥
n−1∑
p=j

|Aνpp |2 ≥
n−1∑
p=j

|Aνpj |
2 = |Aj |2.

Combine the above estimates with the stability inequality Sj(ϕ,ϕ) ≥ 0, we have

ˆ
Σj

Pjϕ
2ρj+1dµj =

ˆ
Σj

|Aj |2 +
n−1∑
p=j+1

|∇j log up|2
ϕ2ρj+1dµj

≤
ˆ

Σj

n−1∑
p=j

|Ãp|2 +
n−1∑
p=j+1

|∇j log up|2
ϕ2ρj+1dµj

≤ 8nQ(ϕ,ϕ).

A last term we need to bound is
´

Σj
1
2qjϕ

2ρj+1dµj . By Lemma 3.10, we have

(3.41) R̂j ≤ c+
1

4

n−1∑
p=j

|Ãp|2.
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Therefore

qj ≤ c+
1

2

n−1∑
p=j

|Ãp|2 −
1

2
R̃k.

Here c is an upper bound for Rn +
∑

p λp.
Now from Lemma 3.9 we have that

−1

2
R̃j ≤

1

2
|Rj |+

n−1∑
p=j+1

|∇j log up|2 + divj(Xj),

where Xj =
∑n−1

p=j+1∇j log up is a vector field. We use the Gauss equation on the regular part of
Σj ⊂ Σn and get that

|Rj | ≤ c(1 + |Aj |2).

Therefore

qj ≤ c+ c

n−1∑
p=j

|Ãp|2 +

n−1∑
p=j+1

|∇j log up|2 + divj(Xj).

We therefore conclude that

(3.42)

ˆ
Σj

(
|∇jϕ|2 +

1

8n
Pjϕ

2

)
ρj+1dµj ≤ 2Qj(ϕ,ϕ) +

ˆ
Σj

qjϕ
2ρj+1dµj ,

and

ˆ
Σj

qjϕ
2ρj+1dµj ≤ c

ˆ
Σj

1 +
n−1∑
p=j

|Ãp|2 +
n−1∑
p=j+1

|∇j log up|2
ϕ2ρj+1dµj

+

ˆ
Σj

divj(Xj)ϕ
2ρj+1dµj .

(3.43)

All the terms on the right hand side except for the last one can be bounded by a multiple of
Qj(ϕ,ϕ). The last term can be dealt with using integration by parts. Since ϕ vanishes on the
boundary of Ω ∩ Σj , we have

ˆ
Σj

divj(Xj)ϕ
2ρj+1dµj = −

ˆ
Σj

〈
Xj ,∇j(ϕ2ρj+1)

〉
dµj

= −
ˆ

Σj

〈Xj , 2ϕ∇jϕ〉 ρj+1dµj −
ˆ

Σj

〈Xj ,∇ρj+1〉ϕ2dµj .

(3.44)

By Cauchy-Schwartz inequality, we have∣∣∣∣ˆ
Σj

〈Xj , 2ϕ∇jϕ〉 ρj+1dµj

∣∣∣∣ ≤ 1

2

ˆ
Σj

|∇jϕ|2ρj+1dµj + 2

ˆ
Σj

|Xj |2ϕ2ρj+1dµj

≤ 1

2

ˆ
Σj

|∇jϕ|2ρj+1dµj + 2

ˆ
Σj

Pjϕ
2ρj+1dµj

≤ 1

2

ˆ
Σj

|∇jϕ|2ρj+1dµj + 16nQj(ϕ,ϕ).
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And similarly, ∣∣∣∣ ˆ
Σj

〈Xj ,∇ρj+1〉ϕ2dµj

∣∣∣∣
=

∣∣∣∣ ˆ
Σj

〈Xj ,∇ log ρj+1〉ϕ2ρj+1dµj

∣∣∣∣
=

ˆ
Σj

|∇j log ρj+1|2ϕ2ρj+1dµj

≤
ˆ

Σj

Pjϕ
2ρj+1dµj

≤ 8nQj(ϕ,ϕ).

We therefore conclude from 3.42 that

1

8n
‖ϕ‖1,j,Ω ≤ 2Qj(ϕ,ϕ) + (c+ 24n)Qj(ϕ,ϕ) + c‖ϕ‖20,j,Ω,

where c is an upper bound for the scalar curvature of Σn and the first eigenvalues λp, as desired. �

An essential consequence of this proposition is the non-concentration result for functions in
Hj,0(Ω). By Cauchy-Schwartz inequality we have

|Hj |2 ≤ j|Aj |2 ≤ jPj .

As a result, we have that

(3.45)

ˆ
Σj∩Ω

(
|∇j(ϕ

√
ρj+1)|2 + |Hj |2ϕ2ρj+1

)
dµj ≤ 2j‖ϕ‖21,j,Ω.

Motivated by the classical Michael-Simon Sobolev inequality, a typical term like the left hand

side of 3.45 controls the L
2n
n−2 norm of the function ϕ

√
ρj+1. In particular, the L2 norm of the

function ϕ
√
ρj+1 cannot be concentrated on any closed set of Hausdorff dimension less than n.

In our context we cannot directly apply the classical Michael-Simon Sobolev inequality because of
the weight ρj+1. Nevertheless we could adapt the idea and prove the non-concentration property
directly.

Proposition 3.19 (L2 non-concentration). Let S be a closed set of zero (j − 1) Hausdorff
measure. Let Σj be a member of a partially regular minimal j-slicing in Ω1. Then for any η > 0
there exists an open neighborhood V ⊂ Ω1 containing V ∩ Ω such thatˆ

Σj∩V
ϕ2ρj+1dµj ≤ η‖ϕ‖21,j,Ω,

for all functions ϕ ∈ Hj,0(Ω).

Proof. From 3.45 we have already seen thatˆ
Σj∩Ω

(|∇j(ϕ2ρj+1)|+ |Hj |2ϕ2ρj+1)dµj ≤ c‖ϕ‖21,j,Ω.

Therefore it suffices to prove that for any η > 0 there is a neighborhood V such that

ˆ
Σj∩V

ϕ2ρj+1dµj ≤ η

(ˆ
Σj∩Ω

(|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1)dµj +

ˆ
Σj∩Ω

ϕ2ρj+1dµj

)
.
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For a C1 vector field X defined in Ω, the first variation formula of minimal hypersurfaces givesˆ
Σj

divΣj (X)dµj = −
ˆ

Σj

〈Hj , X〉 dµj +

ˆ
∂Σj

〈X, ν0〉 ,

where ν0 is the conormal vector field of ∂Σj ⊂ Σj .
Take X(x) = ϕ2ρj+1(~x− ~x0). Let e1, · · · , ej be an orthonormal basis for TΣj . Then

divΣj (X) =

j∑
i=1

〈∇eiX, ei〉

= jϕ2ρj+1 +
〈
∇j(ϕ2ρj+1), ~x− ~x0

〉
.

Integrating in a ball Br(x0) ⊂ Ω, we have
(3.46)

j

ˆ
Σj∩Br(x0)

ϕ2ρj+1dµj ≤
ˆ

Σj∩Br(x0)

(
|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1

)
dµj+r

ˆ
∂(Σj∩Br(x0))

ϕ2ρj+1dµj−1.

By the coarea formula,ˆ
∂(Σj∩Br(x0))

ϕ2ρj+1dµj−1 ≤
d

dr

ˆ
Σj∩Br(x0)

ϕ2ρj+1dµj .

For a small number ε to be chosen later, take a finite covering S ⊂ ∪α∈ABα, Bα = Brα(xα),
such that

∑
α⊂A r

n−1
α < ε. Take V = ∪α∈ABα.

Denote

Lα(r) =

ˆ
Br(xα)

ϕ2ρj+1dµj , Mα(r) =

ˆ
Br(xα)

(
|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1

)
dµj .

Applying 3.46 to each Brα(xα), we get

(3.47) jLα(r) ≤ rMα(r) + r
d

dr
(Lα(r)).

Let δ, ε0 be small constants to be chosen later. Roughly speaking, δ is much larger than ε. All
the small constants δ, ε, ε0 depend only on η and j.

Divide the index set A into two subsets A1, A2 defined by the following.

A1 = {α ∈ A : there exists r′α ∈ [rα, δ/5] such that ε0Lα(5r′α) ≤ r′αMα(r′α)},
A2 = A \A1.

Also let V1 = ∪α∈A1Bα, V2 = ∪α∈A2Bα. We apply the 5-times covering lemma to V1, V2.

Lemma 3.20. There exists A′1 ⊂ A1 with {B′α = Br′α(xα) : α ∈ A′1} pairwise disjoint, and⋃
α∈A1

B′α ⊂
⋃
α∈A′1

5B′α.

For α ∈ A1, we have

ε0Lα(5r′α) ≤ r′αMα(r′α) ≤ δ

5
Mα(r′α).

Summing over the indices in A′1, we get∑
α∈A′1

ε0Lα(5r′α) ≤ δ

5
Mα(r′α).

Using the fact that V1 ⊂ 5B′α and that B′α are disjoint, we conclude

(3.48) ε0

ˆ
V1

ϕ2ρj+1dµj ≤ δ
ˆ

Σj∩Ω

(
|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1

)
dµj .
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Or

(3.49)

ˆ
V1

ϕ2ρj+1dµj ≤ δε−1
0

ˆ
Σj∩Ω

(
|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1

)
dµj .

We next treat α ∈ A2. By definition, for every r ∈ [rα, δ/5], we have

(3.50) jLα(r) ≤ ε0Lα(5r) + r
d

dr
(Lα(r)).

Denote σk = 5krα, k = 0, 1, 2, · · · . Then there exists some integer p such that σp−1 ≤ δ/5 < σp.
Define Λk = Lα(σk), k = 0, · · · , p. Observe that for r ∈ [σk, σk+1],

Λk ≤ Lα(r) ≤ Lα(5r) ≤ Λ(k + 2).

By 3.50 we therefore have

jLα(r) ≤ ε0Λk+2Λ−1
k Lα(r) + r

d

dr
(Lα(r)).

Integrate for r from σk to σk+1, we obtain that

5j−ε0Λk+2Λ−1
k ≤ Λk+1Λ−1

k .

Denote Rk = Λk+1Λ−1
k . Then above tells us that

Rk ≥ 5j−ε0Rk+1Rk .

Choose ε0 = 5−2j+2. The above implies that whenever Rk ≤ 5j−1, we would have that

5j−1 ≥ Rk ≥ 5j−ε0Rk+1Rk ,

and thus, ε0RkRk+1 ≥ 1, or RkRk+1 ≥ 52j−2. As a conclusion, for each k we have either

Rk ≥ 5j−1 or RkRk+1 ≥ 52j−2.

As a consequence we have either

ΛpΛ
−1
0 = Rp−1 · · ·R0 ≥ 5p(j−1) or Λp−1Λ−1

0 = Rp−2 · · ·R0 ≥ 5(p−1)(j−1).

In any case, this implies that

Lα(rα) = Λ0

≤ 5j
rj−1
α

δj−1
max{Λp,Λp−1}

≤ 5j
rj−1
α

δj−1

ˆ
Σj∩Ω

ϕ2ρj+1dµj .

(3.51)

Summing over α ∈ A2 and using the fact that
∑

α∈A r
n−1
α < ε, we obtain that

(3.52)

ˆ
V2

ϕ2ρj+1dµj ≤ 5j−1εδ1−j
ˆ

Σj∩Ω
ϕ2ρj+1dµj .

Finally we choose the constants in such a way that

ε0 = 5−2j+2, δ < ηε0, ε < η51−jδj−1,

and combine 3.49 and 3.52 to conclude thatˆ
V
ϕ2ρj+1dµj ≤ η

(ˆ
Σj∩Ω

(|∇j(ϕ2ρj+1)|+ |Hj |ϕ2ρj+1)dµj +

ˆ
Σj∩Ω

ϕ2ρj+1dµj

)
.

�
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4. Homogeneous minimal slicings

In this section we develop a partial regularity theory of minimal slicings. Parallel to the regu-
larity theory of area minimizing hypersurfaces, we use the Federer’s dimension reduction technique.
Assume we have a minimal k-slicing

Σk ⊂ · · · ⊂ Σn ⊂ RN ,
and a point x ∈ Σk ∩ Sk in the singular set. Inductively assume that the Hausdorff dimension of
the singular set Sk+1 of Σk+1 is at most k − 2. We need to prove that dim(Sk) ≤ k − 3. Note that
the inductive assumption implies that dim(Sk) ≤ k− 2. Like the usual regularity theory where the
tangent cone plays an essential role, we rescale the minimal slicing at x and study a homogeneous
minimal slicings. To do so we will need to prove that the rescaled slicings converges in suitable
sense, and that the limit is scaling invariant. We develop a monotonicity formula to guarantee such
scaling invariance of the limit.

For a small radius σ and j ≥ k, rescale Bσ(x) to the unit ball in RN , and denote

Σj,σ = σ−1(Σj − x).

On each Σj there exists a positive eigenfunction uj of the quadratic form Qj . We rescale it to
be a function on Σj,σ inductively. Assume that uj+1,σ, · · · , un−1,σ have been defined, and that we
have the corresponding weight function ρj+1,σ = uj+1,σ · · ·un−1,σ. Then define uj,σ by letting

uj,σ(y) = ajuj(x+ σy),

where aj is properly chosen such thatˆ
Σj,σ∩B1(0)

u2
j,σρj+1,σdµj = 1.

To extract a converging subsequence of the pair (Σj,σ, uj,σ) we need bounds on several quantities.

Proposition 4.1. There exists a constant Λ that depends only on the minimal slicing but not
on σ, such that

• The first eigenvalue bound λj,σ ≤ Λ.
• The weighted volume bound Volρj+1,σ(Σj,σ ∩B 1

2
(0)) ≤ Λ.

• The quantity P defined as in 3.35 has an integral bound
ˆ

Σj,σ∩B 1
2

(0)
(1 + |Aj |2 +

n−1∑
p=j+1

|∇j,σ log up,σ|2)u2
j,σρj+1,σdµj ≤ Λ.

Proof. The first eigenvalue bound is straightforward. Under the rescaling, the eigenvalue
changes by

λj,σ = σ2λj ,

and therefore is bounded.
For the weighted volume bound and the integral bound, we prove a stronger estimate inductively.

In fact, we prove that for some δ > 0 independent of σ the corresponding estimates hold on
Σj,σ ∩ B 1

2
+δ. Assume by induction that the same statement holds for Σj+1,σ. From the integral

bound and the weighted volume bound we have thatˆ
Σj+1,σ∩BN1

2+δ
(0)
u2
j+1ρj+2dµj+1 ≤ Λ,

ˆ
Σj+1,σ∩BN1

2+δ
(0)
ρj+2dµj+1 ≤ Λ.

Then by the Hölder’s inequalityˆ
Σj+1,σ∩BN1

2+δ
(0)
ρj+1dµj+1 ≤ Λ.
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By the coarea formula,ˆ
Σj+1,σ∩BN1

2+δ
(0)
ρj+1dµj+1 =

ˆ 1
2

+δ

0

(ˆ
Σj+1,σ∩∂BNr (0)

ρj+1

|∇r|
dµj

)
dr

≥
ˆ 1

2
+δ

0
Volρj+1(Σj+1,σ ∩ ∂BN

r (0))dr.

Therefore there exists some δ′ ∈ (0, δ/2) such that

Volρj+1(Σj+1 ∩ ∂BN
1
2

+δ′
(0)) ≤ 2Λ/δ.

Since Σj ⊂ Σj+1 minimizes the weighted volume Vρj+1 , its weighted volume inside ball BN
1
2

+δ′
(0) is

less than or equal to the portion of the sphere ∂BN
1
2

+δ′
(0) with the same boundary. Therefore

Volρj+1(Σj ∩BN
1
2

+δ′
(0)) ≤ 1

2
Volρj+1(Σj+1 ∩ ∂BN

1
2

+δ′
(0)) ≤ Λ/δ,

the desired bound for possibly different constants Λ and δ.
The integral bound is a localization of the coercivity estimate Proposition 3.17. Let Qj,σ be

the quadratic form for the rescaled slicing. By proposition 3.17, for any function ϕ compactly
supported on the regular part of Σj,σ,

‖ϕ‖21,j ≤ c(Qj(ϕ,ϕ) + ‖ϕ‖20,j).
Note that the rescaled surfaces Σj,σ have uniformly bounded geometry hence the constant c in

the above inequality can be chosen independently of σ. Take a cutoff function ζ which is identically
1 on BN

1
2

+δ′
(0) and is 0 near ∂BN

1 (0). Since Qj,σ is a symmetric quadratic form, we have that, for

any function v ∈ Hj,0,

Qj,σ(ζv, ζv) = Qj,σ(ζ2v, v) +

ˆ
Σj,σ

v2|∇j,σζ|2ρj+1,σdµj .

Take v = uj,σ first Dirichlet eigenfunction in the above inequality. We have that

Qj,σ(ζ2uj,σ, uj,σ) = λj,σ

ˆ
Σj,σ

ζ2u2
j,σρj+1dµj ≤ λj,σ ≤ c

by the scaling of uj,σ. Alsoˆ
Σj,σ

u2
j,σ|∇j,σζ|2ρj+1,σdµj ≤ 16

ˆ
Σj,σ

u2
j,σρj+1dµj ≤ 16.

We then have Qj,σ(uj,σ, uj,σ) ≤ c. By Proposition 3.17 we conclude that

ˆ
Σj,σ∩B 1

2+δ′ (0)
(1 + |Aj |2 +

n−1∑
p=j+1

|∇j,σ log up,σ|2)u2
j,σρj+1,σdµj ≤ Qj,σ(ζuj,σ, ζuj,σ) ≤ c.

�

With these bounds, we wish to extract a subsequence σi → 0 such that the slicings (Σj,σi , uj,σi)
converges. Moreover, we want the limit slicing to be invariant under such rescaling. This brings
the following definition.

Definition 4.2. A minimal k-slicing

Σk ⊂ · · ·Σn ⊂ RN

is called a homogeneous minimal k-slicing if for each j ≥ k, Σj is a cone, and uj is homogeneous of

some degree. That is, uj(λx) = λdjuj(x), for every x and λ > 0.
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We will derive two important monotonicity formulas that guarantee the existence of a homo-
geneous minimal slicing after rescaling.

4.1. Frequency function and monotonicity for eigenfunctions. Let Ck be a cone in the
unit ball of RN , S ⊂ C be a closed set of singular points with Hausdorff dimension less or equal
than k − 3. On Ck consider a quadratic form

Q(ϕ,ϕ) =

ˆ
C

(
|∇ϕ|2 − q(x)ϕ2

)
ρdµ.

We assume that q(x) is a potential function that is in the form

q = q̄ + div(X),

such that

|q̄|+ |X|2 ≤ P.
We further assume that the density function ρ is homogeneous of degree p and the potential q is
homogeneous of degree −2:

ρ(λx) = λpρ(x), q(λx) = λ−2q(x).

Note that these assumptions are satisfied by the quadratic form Q on a homogeneous minimal
slicing.

Let u be a critical point of Q with respect to
´
C ϕ

2ρdµ, and u > 0 on the regular part of C.
Define the quantities

(4.1) Qσ(u) =

ˆ
C∩Bσ(0)

(|∇u|2 − qu2)ρdµ,

(4.2) Iσ(u) =

ˆ
C∩∂Bσ(0)

u2ρdµ.

The frequency function N(σ) is defined by

(4.3) N(σ) =
σQσ(u)

Iσ(u)
.

The importance of the frequency function is the following

Theorem 4.3. N(σ) is a monotone increasing function of σ. In fact,

N ′(σ) =
2σ

Iσ(u)2

[
Iσ(ur)Iσ(u)−

(ˆ
C∩∂Bσ

uru

)2
]
,

where ur denotes the radial derivative of u. As σ approaches to 0 the limit N(σ) exists and is finite.
Moreover N(σ) is constant if and only if u is homogeneous of degree N(0).

Proof. We first derive two formulas by taking variations with respect to two deformations.
The advantage of this variational approach is that it works even in presence of singularities. Let ζ(r)
be a nonnegative decreasing function supported in [0, σ]. The precise choice of ζ will be specified
later. We describe the first deformation. Let X = ζ(|x|)x be a vector field in RN where x is the
position vector. The flow Ft of X then preserves the cone C, and hence the function ut = u ◦ Ft is
a valid function in the variational characterization for Q. Since u is a critical point, we have

0 =
d

dt

∣∣∣∣
t=0

Qσ(ut) =
d

dt

∣∣∣∣
t=0

ˆ
C∩Bσ(0)

(
|∇tu|2 − (q ◦ Ft)u2

)
ρ ◦ Ftdµt.
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Note that here we have used a change of variable. ∇t and µt denotes the gradient operator and
the volume measure with respect to the pull back metric F ∗t (g) where g is the induced metric on
C. Differentiating each term with respect to t and evaluating each derivative at t = 0, we have

d

dt
|∇tu|2 = −〈LXg, du⊗ du〉

= −
〈
2rζ ′(r)(dr ⊗ dr) + 2ζg, du⊗ du

〉
= −2rζ ′(r)(ur)

2 − 2ζ|∇u|2.

For a homogeneous function f of degree d, d
dt(f ◦ Ft) = X(f) = dζf. We therefore have that

d

dt
(q ◦ Ft) = −2ζq,

d

dt
(ρ ◦ Ft) = pζρ.

For the volume form we have

d

dt

∣∣∣∣
t=0

dµt = divC(X)dµ = (rζ ′(r) + kζ)dµ.

Collecting all the terms we conclude that

0 =

ˆ
C∩Bσ(0)

[(p+ k − 2)ζ(|∇u|2 − qu2) + rζ ′(|∇u|2 − 2u2
r − qu2)]ρdµ.

We now choose ζ to be a function which is 1 in C ∩ Bσ−ε(0) and is 0 outside C ∩ Bσ(0), and let
ε→ 0. Then the above implies that

(p+ k − 2)Qσ(u) = σ

ˆ
C∩∂Bσ(0)

(|∇u|2 − 2u2
r − qu2)ρdµk−1

= σ
dQσ(u)

dσ
− 2σ

ˆ
C∩∂Bσ(0)

urρdµk−1.

(4.4)

Now we describe the second deformation. Let ut = (1 + tζ(r))u. Then

0 =
d

dt

∣∣∣∣
t=0

Qσ(ut) = 2

ˆ
C∩Bσ(0)

(
〈∇u,∇(ζu)〉 − qζu2

)
ρdµ.

Like before let ζ approach the characteristic function of Bσ(0) we conclude

(4.5) Qσ(u) =

ˆ
C∩∂Bσ(0)

uurρdµk−1.

Next we directly calculate the derivative d
dσ Iσ(u). Note that u ∈ Hk(C ∩ B1(0)), and that the

cone structure guarantees that on each sphere C ∩ ∂Bσ(0) the singular set is of codimension two.
Therefore the function Iσ(u) is a C1 function of σ. Taking derivative directly, we have

(4.6) σ
d

dσ
Iσ(u) = 2σ

ˆ
C∩∂Bσ

uurρdµk−1 + (p+ k − 1)

ˆ
C∩∂Bσ

u2ρdµk−1.

We are ready to prove the theorem by combining 4.4, 4.5 and 4.6. First we have

N ′(σ) = Iσ(u)−2[(Qσ + σQ′σ)Iσ − σQσI ′σ].

Substituting in the expression involving derivatives,

N ′(σ) = I−2
σ [(Qσ + (p+ k − 2)Qσ)Iσ −Qσ(p+ k − 1)Iσ]

+ 2σI−2
σ

(ˆ
C∩∂Bσ(0)

u2
rρdµk−1 −Q2

σIσ

)
.
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The first term on the right is 0, and we use 4.5 in the second term and conclude

N ′(σ) = 2Iσ(u)−1

(
Iσ(u)Iσ(ur)−

ˆ
C∩∂Bσ(0)

urudµk−1

)
,

as desired.
To prove that limσ→0 > −∞ we look at the expression

Īσ(u) =

´
C∩∂Bσ(0) u

2ρdµk−1´
C∩∂Bσ(0) ρdµk−1

.

Set t = log σ. By direct calculation we have

N(σ) =
1

2

d

dt
log Īσ(u).

Therefore log Īσ(u) is a convex function of t = log σ.
On the other hand, since

´
C∩B1(0) u

2ρdµk < c, by the coarea formula, for each σ1 ∈ [0, 1
2 ] there

exists some σ ∈ [σ1, 2σ1] such that
´
C∩∂Bσ(0) u

2ρdµk−1 < c/σ. We then have that

Īσ(u) <
cσ−1

σp+k−1
´
C∩∂B1(0) ρ(ξ)dµk−1(ξ)

< cσ−K ,

for some K large enough. Hence there exists a sequence of σi converging to 0 such that

Īσi(u) < cσ−Ki ,

or

log Īσi(u) < −cti.
The function log Īσ(u) is then a convex function of t which lies below a linear function −ct, hence
its derivative is bounded from below by some negative constant −c0. That is, N(σ) ≥ −c0 for all
σ > 0.

Finally if N(σ) = N(0) is a constant then we have equality in the Schwartz inequality for each
σ. Denote ξ = x

|x| and view the function u as a function of (|x|, ξ). Equality in the Schwartz

inequality then implies that

ur(σ, ξ) = f(σ)u(σ, ξ)

for some function f(σ). This implies that

σf(σ) =
σ
´
C∩∂Bσ(0) uurρdµk−1´
C∩Bσ(0) u

2ρdµk−1
= N(0).

It then follows that ur = r−1N(0)u. Therefore u is a homogeneous function of degree N(0).
�

4.2. Monotonicity formula for weighted minimal surfaces. Consider the first slice Σk

where a point p is singular. In other words, p ∈ Sk but p ∈ Rk+1. By the monotonicity formula
for the first eigenfunction we know the rescaled surfaces Σk,σ converges to a minimal cone with the
weight function ρk+1 converging to a homogeneous function. To study the regularity of the limit
surface around the point p we need to extend the usual monotonicity formula for minimal surfaces
to surfaces minimizing weighted volume. Let C be a k+ 1 dimensional cone in RN with a singular
set S of Hausdorff dimension at most k − 2. Let ρ be a positive homogeneous function on C of
degree p. Assume ρ is positive and smooth on the regular set of C.



5. TOP DIMENSIONAL SINGULARITIES 43

Theorem 4.4. Assume Σ ⊂ C is a hypersurface that minimizes the weighted volume Vρ. Then
we have the monotonicity formula

d

dσ

(
σ−k−p Volρ(Σ ∩Bσ(0))

)
=

ˆ
Σ∩∂Bσ(0)

r−p−k−2|x⊥|2dµk−1,

where x⊥ is the component of the position vector x othogonal to Σ. In particular, the function
σ−k−p Volρ(Σ ∩Bσ(0)) is increasing, and is constant only if Σ is a cone.

Proof. For a vector field X in RN , let Ft be the one parameter diffeomorphism generated by
X. The first variation formula for the weighted volume reads

d

dt

∣∣∣∣
t=0

ˆ
Σ

(ρ ◦ Ft)dµk = 0,

where µt is the volume with respect to the pull back metric F ∗t (g), and g is the induced metric on
Σ in RN . Differentiating and evaluating at t = 0 implies thatˆ

Σ
(X(ρ) + divΣ(X))dµk = 0.

Choose a function ζ(r)which is decreasing, nonnegative, and equal to 0 for r > σ. Define X =
ζ(|x|)x, where x is the position vector field. Since ρ is homogeneous of degree p we have that
X(ρ) = pζρ. And divΣ(X) = kζ + r−1ζ ′|xT |2, where xT denotes the component of x tangential to
Σ. Therefore ˆ

Σ
[(p+ k)ζ + r−1ζ ′|xT |2]ρdµk = 0.

For a small ε > 0, take ζ to be 1 in Bσ−ε(0) and 0 outside Bσ into the above equality. Letting
ε→ 0, we have

(p+ k) Volρ(Σ ∩Bσ(0)) =

ˆ
Σ∩∂Bσ(0)

r−1|xT |2ρdµk−1

= σ
d

dσ

ˆ
Σ∩∂Bσ(0)

ρdµk−1 −
ˆ

Σ∩∂Bσ(0)
r−1|x⊥|2ρdµk−1

= σ
d

dσ
Volρ(Σ ∩Bσ(0))−

ˆ
Σ∩∂Bσ(0)

r−1|x⊥|2ρdµk−1.

Note that we have used the fact that |x|2 = |xT |2 + |x⊥|2, and that x is tangential to C since C is
a cone. The monotonicity formula is then obtained by rearranging terms properly. �

5. Top dimensional singularities

Given a minimal slicing, let p be a point in the singular set. Assume that Σm is the first singular
slice at p. In other words, p ∈ Sm and p ∈ Rm+1. From the previous section we know that after
rescaling at p a limit homogeneous minimal cone exists. Since Σj is regular at p for j > m, the
homogeneous minimal slicing is given by

Cm ⊂ Rm+1 ⊂ · · · ⊂ Rn,
where Cm is a volume minimizing cone. Note that for this minimal slicing all the weight functions
uj = 1, for j > m, and that the density function ρm+1 = 1. We first need a technical proposition
that will be used several times.

Theorem 5.1. Assume Cm ⊂ Rm+1 is a volume minimizing cone which is not a hyperplane,
um is a positive minimizer for the quadratic form Qm:

Qm(ϕ,ϕ) =

ˆ
C∩B1(0)

Sm(ϕ,ϕ) +
3

8

ˆ
C∩B1(0)

|AC |2ϕ2dµm,
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where Sm is the stability operator. Assume um is homogeneous of degree d. Then there exists a
constant c = c(m) > 0 that only depends on the dimension such that d < −c.

The proof of the theorem is divided into several steps. First we prove the following lemma.

Lemma 5.2. Under the same assumption as in Theorem 5.1, the homogeneity degree d is neg-
ative.

Proof. Suppose um = rdv(ξ), v is a function defined on the cross section Σ = C∩Sm(1). Note
that since ρm+1 = 1 the function um is in the usual Sobolev space W 1,2(C), and v is in W 1,2(Σ).
The fact that C is an area minizing hypercone implies that the singular set of C is of Hausdorff
dimension at most m−7, and that the singular set of Σ ⊂ Sm is of dimension at most m−8. Since
um is a minimizer of the functional

Q(ϕ,ϕ) =

ˆ
C∩B1(0)

Sm(ϕ,ϕ) +
3

8

ˆ
C∩B1(0)

|AC |2ϕ2dµm

=

ˆ
C∩B1(0)

(
|∇ϕ|2 − 5

8
|AC |2ϕ2

)
dµm,

u weakly solves the equation

∆Cum +
5

8
|AC |2um = 0.

By separation of variables v weakly solves the equation on Σ:

∆Σv + d(d+m− 1)v +
5

8
|AC |2(ξ)v = 0.

In other words, for any ψ ∈W 1,2(Σ),ˆ
Σ

(
∇v · ∇ψ − 5

8
|AC |2vψ

)
dµk−1 = d(d+m− 1)

ˆ
Σ
vψdµk−1.

Let µ = d(d + m − 1). Since the singular set of Σ ⊂ Sm(1) is of dimension at most m − 8, the
constant function 1 is in W 1,2(Σ). Substitute ψ = 1 in the equation above, we have that

µ

ˆ
Σ
vdµk−1 = −5

8

ˆ
Σ
|AC |2v < 0,

since v > 0 and C is not a hyperplane. This proves µ = d(d+m− 1) < 0. Therefore d < 0. �

To prove that d can be uniformly bounded from above by some negative constant, we use a
compactness argument.

Lemma 5.3. The space

M = {Area minimizing cones Cm ⊂ Rm+1 which is not a hyperplane}

is compact in flat norm.

Proof. To see this, we first note that the volume density Vol(Σ∩B1(0)) is uniformly bounded
by comparision with the unit sphere. Hence by the compactness theorem of volume minimizing
currents any sequence Ci of minimizing cones must have a converging subsequence. Now if each
Ci is not a hyperplane and Ci → C in flat norm, then C is not a hyperplane. Otherwise for any
ε0 > 0 and i large |Vol(Ci ∩ B1(0)) − ωm| < ε0, hence by the Allard theorem Ci must be regular,
that is, Ci must be a hyperplane, contradiction. �

The next step is to prove that the quadratic form Qi converges as the minimizing cones Ci
converge to C. In fact, we prove a more general result that will be used for later purposes.
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Proposition 5.4. Assume {Σi} is a sequence of area minimizing hypersurfaces of a Riemann-
ian manifold M such that Σi converges to Σ. Let Qi, Q denote the quadratic forms defined on Σi,
Σ, respectively, and ui be the first eigenfunctions of Qi. Let U be an open subset of M . Then

• Σi converges to in C2 norm to Σ locally in Ū on the complement of the singular set of Σ
• limi→∞Vol(Σi ∩ Ui) = Vol(Σ ∩ U)
• limi→∞ ‖ui‖W 1,2(Ui) = ‖u‖W 1,2(U)

• For any smooth compactly supported function ϕ on M ,

lim
i→∞

Qi(ϕui, ϕui) = Q(ϕu, ϕu).

where Ui is a sequence of compact subdomains of U with Ui ⊂ Ui+1 ⊂ U and ∪Ui = U .

Note that this combined with the previous two lemmas conclude the proof of Theorem 5.1: If
ui on Ci is the minimizer of Qi, normalized ‖ui‖L2(Ci∩B1(0)) = 1, then by the fourth item in the
above proposition the limit function u is the minimizer of Q on C. In particular, the homogeneity
degree is continuous under the flat norm convergence. Since it is negative for every non-planar area
minimizing cone, it is uniformly bounded from above by some negative number depending only on
m.

To prove this proposition, we will implement an important idea that will be used to handle
the general compactness theorem. The difficult part is the fourth statement, the convergence of
the quadratic form in presence of singular set. One needs to prove that the eigenfunction ui do
not concentrate on the singular set. Recall that by Proposition 3.19 we do have an weighted L2

nonconcentration result for functions in the weighted Sobolev space. The remaining question is
then to control the Dirichlet integral ‖∇ui‖L2 . The proof is carried out with the help of cut off
functions that isolate the singular sets, as will be illustrated below.

Proof. The first and second statements follow from standard theory of area minimizing sur-
faces. We focus on the proof of the convergence of W 1,2 norm and the quadratic forms. First we
prove the L2 convergence. To do so, observe that the singular set Si of Σi convergence to S in the
sense that for any ε > 0, Si is contained in an ε neighborhood of S as i approaches to infinity, by
the Allard theorem. Therefore ui converges uniformly to u on compact subsets of Σi \ Si, where
we write Σi locally as a normal graph over Σ and compare corresponding values of ui to u. In
particular, if W is a compact subdomain of U ∩ Ri we have convergence of L2 norms of ui to the
corresponding L2 norm of u. Now apply Proposition 3.19 with S = S(C), where the Hausdorff
dimension of S is at most m − 7. We may find an open neighborhood V of S ∩ Ū such that for a
fixed small number η and sufficiently large i, Si ∩ Ū ⊂ V , and

ˆ
Σi∩V

u2
i dµm ≤ η

ˆ
Σi∩U

[|∇ui|2 + (1 + Pi)u
2
i ]dµm

≤ ηC0,

here C0 is an upper bound of the W 1,2 norms of ui.
Choosing η arbitrarily small, we have a uniform control of the L2 norm of ui over a small open

neighborhood of S. Combine this with the L2 convergence of ui to u on compact subsets of U −S
we have the L2 convergence, namely

‖ui‖L2(Ui) → ‖u‖L2(U).

We next deal with the Dirichlet integral. Recall that the singular set S of Σ is of codimension
at least 7. We first construct a Lipschitz function ψ that isolates the singular set S. For any given
constants ε, δ > 0 and a ∈ (0, 7), cover S by finitely balls {Bri(xi)}Ki=1 with

∑
rm−7
i < ε and
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ε ≥ r1 ≥ r2 ≥ · · · rK such that
M∑
j=1

rm−7
j < δ.

Let

βj(x) =


1, if x ∈ Bj
2− r−1

j |x− xj |, if x ∈ 2Bj −Bj
0 if x ∈M \ 2Bj .

And denote ψ1(x) = β1(x),

ψj(x) = max{βj −max{β1, β2, · · · , βj−1}, 0}, 2 ≤ j ≤ K.
Then ψj is supported in 2Bj and define

ψ(x) =
K∑
j=1

ψj(x) = max
j
ψj(x).

We then have that ψ = 1 in a neighborhood of S, ψ = 0 for points that are of 2ε away from S,
and ˆ

Σ
|∇ψ|adµm <

M∑
j=1

rm−aj < δε7−a.

We prove this implies that

(5.1)

ˆ
Σ
|∇ψ|2u2dµm ≤ cε5/16.

To do so, observe that u satisfies an equation in the form

∆u+
5

8
|A|2u+ qu = 0,

where q is a bounded function. On the other hand stability inequality implies thatˆ
Σ
|A|2ϕ2dµm ≤

ˆ
Σ

(|∇ϕ|2 + cϕ2)dµm.

Replace ϕ by u8/5ϕ and use the equation to obtainˆ
Σ
|∇(u8/5ϕ)|2dµm ≤ c

ˆ
Σ
u16/5(|∇ϕ|2 + ϕ2)dµm.

By the Michael-Simon Sobolev inequality, we obtain(ˆ
Σ
u16m/5(m−2)ϕm/(m−2)dµm

)m−2/m

≤ c
ˆ

Σ
u16/5(|∇ϕ|2 + ϕ2)dµm.

Since dim(S) ≤ m − 7 we may choose ϕ properly approximating the constant function 1, and
combine with the fact that ‖u‖L2(Σ) ≤ c to concludeˆ

Σ
u

16m
5(m−2)dµm ≤ c.

We then apply the Hölder inequality to obtainˆ
Σ
|∇ψ|2u2dµm ≤ ‖∇ψ‖2 16m

3m+10)

‖u‖2 16m
5(m−2)

.

Setting a = 16m
3m+10 < 7, we have thatˆ

Σ
|∇ψ|2u2dµm ≤ cε5/16.
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Now we are ready to prove the convergence of the Dirichlet integral. On each Σi choose a
function ψi satisfying 5.1. We prove that for any smooth function ϕ compactly supported in U ,

lim
i→∞

Qi(ϕui, ϕui) = Q(ϕu, ϕu).

Denote ϕi = ψiϕ.
We have

Qi(ϕui, ϕui) = Qi(ϕiui, ϕiui)

+ 2Qi(ϕiui, (1− ψi)ϕui) +Qi((1− ψi)ϕui, (1− ψi)ϕui).

The last two terms involve the function 1−ψi, hence is compactly supported in the regular set Ri.
Thus the last two terms converges to the corresponding terms of the limit Q. It remains to prove
that

lim
i→∞

Qi(ϕiui, ϕiui) = Q(ψϕu, ψϕu).

Since ui is an eigenfunction of the quadratic form Qi, by the general variational principle we
have

Qi(ϕiui, ϕiui) = Qi(ϕ
2
iui, ui) +

ˆ
Σi

|∇ϕi|2u2
i dµm

= λi

ˆ
Σi

ϕ2
iu

2
i dµm +

ˆ
Σi

|∇ϕi|2u2
i dµm

The first term on the right side converges to zero as ε → 0. The first eigenvalues λi is bounded.
The integrand ϕi is abounded function supported in an ε neighborhood of the singular set, and
by the L2 nonconcentration result the integral converges to 0 as ε→ 0. Now the second term can
further split into ˆ

Σi

|∇ϕi|2u2
i dµm ≤

ˆ
Σi

|∇(ψi)|2ϕ2u2
i dµm +

ˆ
Σi

ψ2
i |∇ϕ|2u2

i dµm.

We deal with these two terms separately. The first term converges to 0 because of 5.1. The second
term converges to 0 because of the fact that ψi is supported in an ε neighborhood of Si and the L2

nonconcentration result.
The convergence is then established by letting η → 0 and ε→ 0.

�

6. Compactness of minimal slicings

We now establish the general compactness result of minimal slicings. We have seen from the
previous section that an essential issue of this is to prevent the concentration of the eigenfunctions
ui of Qi on the singular set. The argument we use here is a generalization of the one we used to
establish the convergence of Qi for area minimizing hypersurfaces. The main technical tool we use
is the existence of a proper function ψk on Σk that isolates the singular set Sk. Let us elaborate
this point.

Assume Σk ⊂ · · · ⊂ Σn ⊂ RN is a minimal k-slicing. Inductively we assume that dim(Sk) ≤
k − 2. Take an open subset U ⊂ RN .

Proposition 6.1. There exists a function Ψk ≥ 1 locally Lipschitz on Rk∩U , proper on R∩ Ū
and ˆ

Σk

u2
k|∇ψk|2ρk+1dµk < Λ,

where Λ is the upper bound appeared in Proposition 4.1.
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Proof. For x ∈ Rk define

Ψk(x) = max{1, log uk(x), · · · , log un−1(x)}.

Then

u2
k|∇kΨk|2 ≤ u2

k

n−1∑
p=k

|∇k log up|2
 .

Consequently ˆ
Σk∩U

u2
k|∇kΨk|2ρk+1dµk

≤
ˆ

Σk∩U
u2
k

n−1∑
p=k

|∇k log up|2
 ρk+1dµk

≤ Λ.

The difficulty is to prove the properness of the function Ψk, that is, at any sequence of points
xi converging to x0 ∈ Sk, Ψk(xi) → ∞. For x0 ∈ Sk there exists an integer m such that Σj is
regular at x0 for j ≥ m + 1, and Σm is singular at x0. We prove um(xi) → ∞. It can be implied
by the following

Lemma 6.2. There exists α ∈ (0, 1) that only depends on the minimal slicing, such that if σ > 0
is a small radius then

inf
Bασ(x0)∩Σm+1

um > 2 inf
Bσ(x0)∩Σm+1

um.

To prove the lemma, we first need a result by Bombieri-Giusti:

Theorem 6.3 ([BG72]). Assume Tm is an area minimizing surface in Rm+1, and a function
u satisfies ∆u ≤ 0, u > 0 almost everywhere. Then there exists a constant c > 0 that only depends
on the dimension, such that for every point y ∈ T

u(y) ≥ c

rm

ˆ
T∩Br(y)

udµm.

In particular, if u is a function on an area minimizing cone Cm ⊂ Rm+1 that satisfies

∆u+
5

8
|AC |2u = 0, u > 0,

then infBσ(x0)∩Cm > 0.
The proof of lemma relies on a blow-up argument. Let us suppose the contrary, that there

exists a sequence σi → 0 and α = α0
2 such that

inf
Bασi (x0)∩Σm+1

um < 2 inf
Bσi (x0)∩Σm+1

um,

where α0 is chosen later.
Rescale σi to 1 and consider

Σm,σi = σ−1
i (Σm − x0).

By the monotonicity formula and the compactness result for area minimizing cones, Σm,σi converges
to a cone Cm ⊂ Rm+1 along with um,σi converging to a homoegenous uCm minimizing QC . Moreover,
the assumption implies that

inf
Bα(0)

uCm ≤ 2 inf
B1(0)

uCm.
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On the other hand, the mean value inequality implies that infBr(0)uCm > 0. By Theorem 5.1 the
function uCm is homogeneous of degree less than −c(m), hence there exists a real number α0 such
that

inf
Bα0 (0)∩Cm

uCm > 2 inf
B1(0)∩Cm

uCm,

contradiction. �

We can state the compactness for minimal slicings satisfying the assumptions in Proposition

4.1. Assume that Σ
(i)
k converge to Σk in Ck topology on compact subsets of regular sets. By

induction, the singular set Sk of Σk has Hausdorff dimension less than or equal to k − 2.
The proper functions Ψk can be used to study the convergence in two aspects.

Proposition 6.4. Let ϕ be a smooth function of compact support in U . Then

lim
i→∞

Q
(i)
k (ϕu

(i)
k , ϕu

(i)
k ) = Qk(ϕuk, ϕuk).

In other words, the quadratic forms Q
(i)
k converges to Qk.

Proof. Observe first that the L2 convergence is given by the nonconcentration Proposition
3.19. The rest of the proof here closely resembles that of Theorem 5.1. For R large, we take a cut

off function γ(t) which is 0 for t < R, is 1 for t > 2R, and |γ′| < 2
R . Then the function ψ

(i)
k = γ(Ψ

(i)
k )

plays the same role as the function ψi in the proof of Proposition 5.4. Write ϕi = γ(Ψ
(i)
k )ϕ, and

split

Q
(i)
k (ϕu

(i)
k , ϕu

(i)
k ) = Q

(i)
k (ϕiu

(i)
k , ϕiu

(i)
k )

+ 2Q
(i)
k (ϕiu

(i)
k , (1− γ(Ψ

(i)
k ))ϕu

(i)
k ) +Q

(i)
k ((1− γ(Ψ

(i)
k ))ϕu

(i)
k , (1− γ(Ψ

(i)
k ))ϕu

(i)
k ).

The last two terms involves functions that are compactly supported on the regular set, hence
converges to the corresponding terms of Qk. The first term can be dealt with similar by

Q
(i)
k (ϕiu

(i)
k , ϕiu

(i)
k ) = λ

(i)
1

ˆ
Σ

(i)
k

ϕ2
i (u

(i)
k )2ρ

(i)
k+1dµk +

ˆ
Σ

(i)
k

|∇ϕi|2(u
(i)
k )2ρ

(i)
k+1dµk.

The first term on the right hand side converges to 0, since λ1 is uniformly bounded and the weighted
L2 norm does not concentrate near the singular set. The second term on the right hand side can
be further split into two partsˆ

Σ
(i)
k

|∇(γ(Ψ
(i)
k ))|2ϕ2(u

(i)
k )2ρ

(i)
k+1dµk +

ˆ
Σ

(i)
k

γ(Ψ
(i)
k )2|∇ϕ|2(u

(i)
k )2ρ

(i)
k+1dµk.

The second term in the above expression can be estimated by the L2 nonconcentration and the fact

that ψ
(i)
k = γ(Ψ

(i)
k ) is supported in a small neighborhood of Si. For the first term, we have thatˆ

Σ
(i)
k

|∇(γ(Ψ
(i)
k ))|2ϕ2(u

(i)
k )2ρ

(i)
k+1dµk =

ˆ
Σ

(i)
k

|γ′|2|∇Ψ
(i)
k |

2ϕ2(u
(i)
k )2ρ

(i)
k+1dµk

≤ cR−2

ˆ
Σ

(i)
k

|Ψ(i)
k |

2(u
(i)
k )2ρ

(i)
k+1dµk

By the construction of Ψ
(i)
k this term converges to 0 as R→∞. Therefore the convergence of Q

(i)
k

is established as we choose ε→ 0 and R→∞. �

Proposition 6.5. Assume that x0 ∈ Sk+1, B2r0(x0) ⊂ U . Then for any ε > 0 there exists an
open subset U1 ⊂ B2r0(x0) and Sk+1 ∩Br0(x0) ⊂ U1, such that

Vρk(∂U1) < ε.
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Proof. Take a function ζ which is 1 on Br0(x0), 0 outside B2r0(x0). Then by the Schwartz
inequality ˆ

B2r0 (x0)
uk|∇k(ζψk)|ρk+1 ≤ C,

for some constant C that only depends on the minimal slicing.
By the coarea formula this implies thatˆ ∞

0
dt

ˆ
ζψk=t

ukρk+1dµk−1 <∞.

Since ρk = ukρk+1 this means that ˆ ∞
0

Vρk(ζψk = t)dt <∞.

Therefore Vρk(ζψk = t) < ε for some t. Define U1 = {x : ζψk > t}. �

Remark 6.6. Previously we conclude that the rescaled minimal slicing Σk,σ converges together
with the quadratic form uk,σ. This volume non-collapsing result implies that the limit Σk,∞ of Σk,σ,
as σ tends to infinity, does not collapse to the singular set Sk+1. In fact, for a fixed σ > 0, take
ε < 1

2θσ
k+d, where θ > 0 is the weighted volume density of the homoegeneous minimal slicing Σk,∞

at p, and d is the degree of homogeneity of the weight function ρk,∞ on Σk,∞. Then there exists
an open subset U , compactly supported in B2σ(p), such that Sk+1 ∩Bσ(p) ⊂ U , and Vρk(∂U) < ε.
Since Σk minimizes the weighted volume Vρk , we conclude that

Vρk(Σk ∩ Sk+1 ∩Bσ(p)) < Vρk(∂U ∩Bσ(p)) <
1

2
εσk+d.

Letting σ → 0, we conclude that in Σk,∞,

Vol(Σk,∞ ∩Rk+1 ∩B1(0)) >
1

2
θ > 0.

In particular, the limit homogeneous minimal slicing is a k-dimensional slicing.

7. Dimension reduction

We conclude the regularity theory of minimal slicings in this section. Assume Σk ⊂ · · · ⊂ Σn ⊂
RN is a minimal k-slicing and p ∈ Sk. The rescaled minimal slicings at p

Σk,σ ⊂ · · · ⊂ Σn,σ

converge subsequencially, as σ → 0, to a nontrivial homogeneous minimal slicing in the unit ball of
RN . We analze the singular set Sk by Federer’s dimension reduction argument. Roughly speaking,
taking homogeneous minimal slicing at a singular point does reduce the Hausdorff dimension of
singular set. On the other hand, a homogeneous minimal slicing has a cone structure and hence
its singular set splits off an Euclidean factor Rd. By repeating this process finitely many times the
dimension d of the Euclidean factor in the singular set is maximized. We then arrive at a minimal
slicing

Ck × Rd ⊂ · · · ⊂ Cn × Rd ⊂ RN

such that Ck is a nontrivial minimal cone which is only singular at the origin. The next proposition
rules out such a phenomenon for low dimension minimal slicings.

Proposition 7.1. There is no nontrivial homogeneous minimal 2-slicings with C2 regular away
from 0:

C2 ⊂ C3 ⊂ · · · ⊂ Cn−1 ⊂ Rn.
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Proof. Using the unweighted eigenvalue inequality 3.30 we have that

ˆ
C2

3

4

n−1∑
j=3

|∇2 log uj |2 −R2

ϕ2dµ2 ≤ 4

ˆ
C2

|∇2ϕ|2dµ2,

for any function ϕ ∈ C∞0 (C \ {0}).
First notice that a two dimension cone is always flat, that is, R2 = 0. Therefore

ˆ
C2

3

4

n−1∑
j=3

|∇2 log uj |2ϕ2dµ2 ≤ 4

ˆ
C2

|∇2ϕ|2dµ2.

We apply the logarithmic cut-off trick and send the right hand side to 0. Precisely, define a Lipschitz
function on C2

ϕε,R(r) =



0 r < ε2

log ε−2r
log ε−1 ε2 ≤ r ≤ ε

1 ε ≤ r ≤ R
logR2r−1

logR R ≤ r ≤ R2

0 R2 ≤ r.

Since C2 has quadratic area growth, namely Vol(C2∩Br(0))
πr2

< C, using the coarea formula we
conclude that ˆ

C2

|∇2ϕε,R|2 ≤
C

| log ε|
+

C

logR
→ 0,

as ε→ 0, R→∞. Therefore ∇2uj = 0 for j = 3, · · · , n− 1. That is, each uj should be a constant
function.

Choose an integer m ≥ 3 such that Cm is the maximal dimensional singular cone. That is, for
every integer j > m, Cj = Rj , but Cm is singular. By Proposition 5.4 we conclude that um is a
homogeneous function with negative degree of homogeneity. Contradiction. �

Now we describe the dimension reduction argument.

Theorem 7.2. Assume that Σk+1 is partially regular, that is, dim(Sk+1) ≤ k − 2. Then Σk is
partially regular.

Proof. Since dim(Sk+1) ≤ k−2, we have that dim(Sk) ≤ k−2. We prove that dim(Sk) ≤ k−3.
Suppose, for the sake of contradiction, that dim(Sk) > k−3. Pick a real number d ∈ (k−3, dim(Sk)).
Recall that for any compact set A, its outer infinity measure is defined as

Hd∞(A) = {
∑
i

rdi : A ⊂
⋃
Bri(xi).}

The important property we will use is that

Hd∞(A) > 0⇔ dimA ≥ d.

For a sequence of recaled surfaces Σ
(i)
k → Σk, their singular sets also converges. Precisely, for

any ε > 0, there exists an integer i such that

S(Σ
(i)
k ) ⊂ Nε(S(Σk)).

Therefore

Hd∞(S(Σk)) ≥ lim sup
i
Hd∞(S(Σ

(i)
k )).
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We then conclude that for Hd∞ almost every x0 in S(Σk) there exists a constant c = c(d, n) > 0
such that

lim sup
σ→0

Hd∞(S(Σk) ∩Bσ(x0))

σd
≥ c.

Choose a point x0 with the above lower density bound. Rescaling the surface at x0 produces a
homogeneous minimal slicing

Ck ⊂ · · · ⊂ Cn−1

that satisfies

Hd∞(S(Ck) ∩B1(0)) ≥ c.
In particular, if d > 0 then S(Ck)∩∂B1(0) 6= ∅. Then pick x1 ∈ Ck∩∂B1(0) of Hd∞ density positive
and rescale the minimal slicing at x1. We then obtain a homogeneous minimal slicing in the form

Ĉk−1 × R ⊂ Ĉk × R ⊂ · · ·

Repeat the argument k − j times until we get

C̃j × Rk−j ⊂ C̃j+1 × Rk−j−1 ⊂ · · ·

with each C̃j has an isolated singularity at the origin.
Since there is no minimal 2-slicing with C2 regular away from the origin, we conclude that

j ≥ 3. However, the Hausdorff dimension of S(Cj)×Rk−j = k − j. Since the Hausdorff dimension
does decrease as we perform dimension reduction, k − j ≥ d. Therefore d ≤ k − j ≤ k − 3,
contradiction. �

8. Existence and proof of the main theorem

In this section we develop the existence theory for minimial slicings. It is based on the partial
regularity theory in the previous sections. Assume that (Mn, g) is a closed oriented Riemannian
manifold which admits a smooth degree 1 map F to the n dimension torus Tn = S1×· · ·×S1. Take
x1, · · · , xn to be the coordinates on each S1 component. Scale the coordinate functions x1, · · · , xn
if necessary, we assume without loss of generality thatˆ

S1

dxj = 1,

on the j−th component S1. Let F j be the composition of F and the projection from Tn to the
j-th component, j = 1, · · · , n:

Fj : Mn → Tn → S1.

Let ωj = F ∗(dxj) = F ∗j (dxj). Since degF = 1,ˆ
M
ω1 ∧ · · · ∧ ωn = 1.

We first describe the construction of the first hypersurface Σn−1 ⊂Mn in the minimal slicing.
To do so let us consider the class of (n− 1) currents

Cn−1 = {Σ is an integral (n− 1) current in M :

ˆ
Σ
ω1 ∧ · · · ∧ ωn−1 = 1.}

Then Cn−1 is not empty. In fact, at every regular point p of Fn, since F is of degree 1 by the
area, ˆ

F−1
n (p)

ω1 ∧ · · · ∧ ωn−1 =

ˆ
F (F−1

n (p))
dx1 ∧ · · · ∧ dxn−1 =

ˆ
Tn−1

dx1 ∧ · · · ∧ dxn−1 = 1.

Hence by the Sard theorem for almost every p ∈ S1, F−1
n (p) ∈ Cn−1.
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We next minimize mass in the class Cn−1, namely consider the variational problem

inf{Mn−1(Σ) : Σ ∈ Cn−1.}
The by the compactness theorem for currents with locally uniformly bounded mass the infimum is
achieved by some integral (n− 1) current Σn−1. Moreover, since the conditionˆ

Σ
ω1 ∧ · · · ∧ ωn−1 = 1

is preserved under the convergence of currents Σn−1 ∈ Cn−1. Therefore Σn−1 is an area minimizing
current and by the usual regularity theory it is regular away from a set of codimension 7.

Assume for the sake of induction that we have constructed

Σk+1 ⊂ · · · ⊂ Σn−1 ⊂M
with the corresponding first eigenfunctions uk+1, · · · , un−1 defined on them. To construct Σk the
most natural idea is to minimize the weighted volume

Vρk+1
(Σ) =

ˆ
Σ
ρk+1dµk,

in some class of integral currents. Here µk is the k dimensional Hausdorff measure. We require
that Σ is an integral current with no boundary on the regular set of Σk+1. To describe this class
of currents precisely, we first need the following

Lemma 8.1. Let U be an open subset of T k with Ū 6= T k, V is an open subset such that V̄ ⊂ U .
Then there exists a k-form θk defined on T k such that

θk = 0 in V , θk = dx1 ∧ · · · ∧ dxk on T k \ U,

and dx1 ∧ · · · ∧ dxk − θ = dη for some smooth (k − 1)-form η supported in U .

Proof. Since U is an open subset of T k which is not dense, there exists a smooth function f
which is identically 1 in U and

´
Tk fdx

1 · · · dxk = 0. Therefore the equation

∆u = f

has a solution u on T k. Define an (n− 1)-form η by

η = ζ(∗du),

where ζ is a cut off function which is 1 in V and 0 outside u. We then have

dη = d ∗ du

= (∆u)dx1 ∧ · · · ∧ dxk

= dx1 ∧ · · · ∧ dxk

in V . Finally, let θk = dx1 ∧ · · · ∧ dxk − dη. It’s straightforward to check that

θk = 0 in V , θk = dx1 ∧ · · · ∧ dxk in T k \ U,

and that dx1 ∧ · · · ∧ dxk − θk is an exact form supported in U . �

We use θk the replacement of the usual volume to construct Σk as follows. For each j = 1, · · · , n,
denote F j : M → T j the map onto the product of first j S1 components, and θk+1 = 0 is a form
defined as above on T k+1 which vanishes in a neighborhood of T k+1(Sk+2). Assume by induction
that ˆ

Σk+1

(F k+1)∗θk+1 = 1,

and Σk+1 minimizes the weighted volume Vρk+2
(·).
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Choose a k-form θk on T k which vanishes in an open neighborhood U of F k(Sk+1), and is
homologous to the usual volume form. We consider the collection of k-currents

Ck = {Σ locally integrable k-current in Rk+1:

ˆ
Σ

(F k)∗θk = 1.}

Notice that the collection Ck is non-empty. Consider the map Fk+1|Σk+1
: Σk+1 → S1. Since

Fk+1 is of degree 1, by the area formula, for almost every point p ∈ S1,ˆ
F−1
k+1(p)

(F k)∗θkdµk =

ˆ
F (F−1

k+1(p))
θk

=

ˆ
Tk

dx1 ∧ · · · ∧ dxk

= 1.

Since ρk+1 = uk+1ρk+2 and uk+1 ∈ L2
ρk+2

(Σk+1), we know that
´

Σk+1
ρk+1dµk+1 <∞. We therefore

conclude that

inf{Vρk+1
(Σ) : Σ ∈ Ck}

is finite. Take any minimizing sequence Σ(i) of this variational problem. By the choice of θk we
conclude that Σ(i) has uniformly bounded mass in M \U . On the other hand, by Proposition 6.5,
we may choose a small ε0 > 0 and some neighborhood U of Sk+1 such that for sufficiently large i,

Vρk+1
(Σ(i) ∩ U) < ε0.

Therefore we conclude that the sequence Σ(i) has uniformly bounded mass in any compact subset
of M . By the usual compactness theorem there is a subsequence converging to a limit Σk. Note
that Σk is also in the class Ck and it minimizes Vρk+1

(·) in its homology class. We may continue
this downward inductive construction until k = 1.

Next we describe the construction of the eigenfunction uk. By the regularity theory developed
earlier we know that dimSk ≤ k − 3. Recall that L2

j is the weighted L2 space with respect to
the weighted measure ρk+1dµk, and that the spaces Hk, Hk,0 denote the weighted Sobolev space
induced by the norm

‖ϕ‖1,k =

ˆ
Σk

ϕ2ρk+1dµk +

ˆ
Σk

|∇kϕ|2 + |Ak|2 +
n−1∑
p=k+1

|∇k log up|2
ϕ2ρk+1dµk,

and that we have the following coercivity lemma:

‖ϕ‖2k,0 ≤ ck(Qk(ϕ,ϕ) + ‖ϕ‖20,k).
Then we are able to prove

Theorem 8.2. There exists an orthonormal basis in Hk,0 of eigenfunctions for the quadratic
form Qk(·, ·). In particular, there exists a lowest eigenfunction uk > 0. Moreover, the first eigen-
value λk is of multiplicity 1.

Proof. Using the characterization

λk = inf{Qk(ϕ,ϕ) : ϕ ∈ Hk,0,
ˆ

Σk

ϕ2ρk+1dµk = 1, }

we see that the first eigenvalue λk is finite, since Rk is an open subset of Σk. In order to construct
the first eigenfunction it suffices to prove a Rellich type lemma. Namely, we prove that

Hk,0 ↪→ L2
k

is compact.
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For any bounded sequence {ϕi} in Hk,0, by the usual Rellich lemma there exists a subsequence
that we will also denote by {ϕi}, that converges in L2

loc(Rk) to a limit function ϕ locally in the
regular set Rk. To see that the convergence ϕi → ϕ is also in L2

k(Σk), we use the L2 non-
concentration Proposition 3.19. We see that for any η > 0 there exists an open neighborhood V of
Sk+1 such that

‖ϕi‖L2
k(V ) ≤ η‖ϕi‖k,0(Σ) < ηC.

Hence ϕi → ϕ in L2
k(Σk). The existence of an orthonormal basis of L2

k(Σk) by eigenfunctions of Qk
is then given by the min-max characterization of eigenvalues.

Since Sk is of Hausdorff dimension at most k − 3, the regular set Rk is connected. Therefore
the first eigenfunction is positive on Rk, and that λk is of multiplicity 1. �

Remark 8.3. With the help of the proper function ψk defined in the previous section it is easy
to check that in the definition of Hk,0, it is equivalent to take the closure of functions supported in
Rk, or restrict ambient Lipschitz functions on Σk. Once again, a similar argument as in the proof
of Proposition 5.4 shows that the capacity of the singular set Sk is zero.

We are now in the position to prove the main theorem.

Theorem 8.4. Suppose Mn is a smooth oriented closed manifold which admits a degree 1 map
onto the torus Tn. Then M does not admit any metric with positive scalar curvature.

Proof. Assume the contrary, that M has a metric g with positive scalar curvature. Take a
minimal 2-slicing

Σ2 ⊂ · · · ⊂ Σn−1 ⊂M.

Since dim(Sj) ≤ j − 3 for each j, we conclude that Σ2 has no singular set. That is, Σ2 is a smooth
oriented surface. Moreover, since R(g) > 0, Σ2 is Yamabe positive. Therefore each component of
Σ2 is a 2-sphere.

On the other hand, by construction ˆ
Σ2

(F 2)∗(θ2) = 1.

Since Σ2 has no singular set, θ2 = dx1 ∧ dx2. We then conclude thatˆ
Σ2

ω1 ∧ ω2 = 1

for some linearly independent closed 1-forms ω1 and ω2.
Therefore H1(Σ2,R) is at least 2 dimensional, and the genus of Σ2 is at least 1. Contradiction.

�
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