Обыкновенные дифференциальные уравнения 2022, листок 4 (5 октября)

- Задача 1. Приведите пример автономного векторного поля на прямой, решения которого не продолжаются ни вперед ни назад неограниченно.
- $3a\partial a$ ча 2. Пусть решение φ уравнения $\dot{x} = v(x,t)$, определено на интервале, содержащем отрезок [a,b]. Верно ли, что решения с близкими начальными условиями определены на [a,b] (т.е. найдется такое положительное ε , что при любом $t_0 \in [a,b]$ найдется решение $\psi(t)$, определенное на всем [a,b], такое что $|\varphi(t_0) \psi(t_0)| < \varepsilon$)?
- $3a\partial a$ ча 3. Для уравнения маятника $\ddot{x} = -\sin(x)$ пусть T(a) наименьший период решения с начальным условием $x(0) = a, \dot{x}(0) = 0$. Найдите предел T(a) при $a \to 0$.
- $3a\partial a ua$ 4. Какие из следующих векторных полей переводятся друг в друга диффеоморфизмами прямой? Векторные поля $-\sin(x)\frac{\partial}{\partial x}$, $2\sin(x)\frac{\partial}{\partial x}$, $\sin^2(x)\frac{\partial}{\partial x}$.
- $3a\partial a$ ча 5. Докажите, что гладкое векторное поле $v(x)\frac{\partial}{\partial x}$ на прямой, растущее на бесконечности не быстрее линейного (т.е. |v(x)| < a + b|x| при подходящих a и b и всех x), определяет фазовый поток на прямой.
- $3a\partial a$ ча 6. Докажите, что решения линейного неавтономного уравнения $\dot{x} = A(t)x$ ($x \in \mathbb{R}^n$, $t \in \mathbb{R}$ A(t) гладко зависящий от параметра t линейный оператор) продолжаются вперед и назад неограниченно.