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Well-distributed points on the sphere

C is a point configuration (code) C := {x1, . . . ,xN} ⊂ S2:

S2 = {(x , y , z) : x2 + y2 + z2 = 1}

How do we distribute well the points of C?

2D problem - simple

Answer: Equaly spaced points

Reason: direction and order.



Peter Dragnev and Oleg Musin

Well-distributed points on the sphere

In 3D - no direction or order exists. Other methods and
criteria are needed. To well-distribute means to minimize
potential energy.

We distinguish:

Best packing points;

Fekete (Coulomb) points;

Logarithmic points;

Riesz points.
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Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) -
(“plum pudding” model of an atom)

Find the (most) stable (ground state) energy
configuration (code) of N classical electrons
(Coulomb law) constrained to move on the
sphere S2.

Generalized Thomson Problem (1/r s potentials and log(1/r))

A code C := {x1, . . . ,xN} ⊂ S2 that minimizes Riesz s-energy

Es(C) :=
∑
j 6=k

1
|xj − xk |s

, s > 0, Elog(ωN) :=
∑
j 6=k

log
1

|xj − xk |

is called an optimal s-energy code.
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Electrostatics and Electrons in Equilibrium

32 Electrons 122 Electrons
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Why Minimize Potential Energy? Coding Theory:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the
distribution of the orifices in pollen grain
asked the following.

Tammes Problem (Best-Packing, s =∞)

Place N points on the unit sphere so as to
maximize the minimum distance between
any pair of points.

Definition
Codes that maximize the minimum distance are called optimal
(maximal) codes. Hence our choice of terms.
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More “Maximal Codes” from Biology
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Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley,
Heath, and O’Brian discovered C60
(Chemistry 1996 Nobel prize)

Nanotechnology - Nanowire (R. Smalley)

A giant fullerene molecule few nanometers in
diameter, but hundreds of microns (and
ultimately meters) in length, with electrical
conductivity similar to copper’s, thermal
conductivity as high as diamond and tensile
strength about 100 times higher than steel.
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Fulerenes and Nanotechnology

The Discovery of the Buckyball C60 (1985)
• Kroto (Sussex) - studies chains of carbon atoms in intergalactic

space;
• Smalley, Curl (Rice) - study clusters when vaporizing metal

discs using laser-supersonic cluster beam apparatus;
• Kroto visits Rice, Sept 1, 1985, experiments start (graphite

discs);
• Two graduate students, Heath, O’Brien, also involved;
• Mass spectrometer shows a large molecule, 720 amu,

suggesting 60 carbon atoms;
• Paper submitted to NATURE on Sept 13, 1985;
• Accepted October 18, 1985;
• Published Nov. 14, 1985.



Peter Dragnev and Oleg Musin

Richard Buckminster “Bucky” Fuller, 1895-1983

Montreal biosphere
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Florida "Fullerene"

Epcot Center
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Ancient "Fullerene"

Under the lion paw
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The "Mastodon" Fullerene Tzar
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"Mastodon" Fullerene – C100 isolated

C100 and Steven Stevenson
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Duality: 32/122 Electrons vs. C60/C240 Buckyballs
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Optimal s-energy codes on S2

Known optimal s-energy codes on S2

• s = log, Smale’s problem, logarithmic points (known for
N = 2− 6, 12);

• s = 1, Thomson Problem (known for N = 2− 6, 12)
• s = −1, Fejes-Toth Problem (known for N = 2− 6, 12)
• s →∞, Tammes Problem (known for N = 1− 12, 13,14, 24)

Limiting case - Best packing

For fixed N, any limit as s →∞ of optimal s-energy codes is an
optimal (maximal) code.

Universally optimal codes

The codes with cardinality N = 2,3,4,6,12 are special (sharp codes)
and minimize large class of potential energies. First "non-sharp" is
N = 5 and very little is rigorously proven.
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Optimal five point log and Riesz s-energy code on S2

(a) (b) (c)

Figure: ‘Optimal’ 5-point codes on S2: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1) , (c) ‘optimal’ SBP (s = 16).

• s = 0: P. Dragnev, D. Legg, and D. Townsend, (2002)
(referred to by Ed Saff as “Mastodon” theorem);

• s = −1: X. Hou, J. Shao, (2011), computer-aided proof;
• s = 1, 2: R. E. Schwartz (2013), computer-aided proof;
• Bondarenko-Hardin-Saff (2014), As s →∞, any optimal s-energy codes

of 5 limit is a square pyramid with base in the Equator;
• 0 < s < 15.04..: R. E. Schwartz (2018).
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Optimal five point log and Riesz s-energy code on S2

(a) (b) (c)

Figure: ‘Optimal’ 5-point code on S2: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1) , (c) ‘optimal’ SBP (s = 16).

Melnik et.el. 1977 s∗ = 15.04 . . . ?

Figure: 5 points energy ratio
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“Mastodon” Theorem on S3 and S4 (Dragnev - 2016)

Definition
Two vertices xi and xj are called mirror related (we write xi ∼ xj ), if
|xi − xk | = |xj − xk |, for every k 6= i , j .

Theorem (Characterization of (d + 3) Log-stationary configurations)

A log-stationary configuration is either (a) degenerate; (b) there exists
a vertex with all edges stemming out being equal; or (c) every vertex
is mirror related to another vertex.

Remark
Mirror relation is equivalence relation and an equivalence class forms
a regular simplex in the spanning affine hyperspace.

Theorem (Dragnev - 2016)

The (d + 3)-Log-optimal configuration in S1, S2, S3, S4, is two
orthogonal simplexes of type {2,2}, {2,3}, {3,3}, {3,4} respectively.
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“Mastodon” Theorem on Sd−1 (Musin, D. - 2018)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic
energy Elog(X ) of d + 2 points on Sd−1 consists of two regular
simplexes of cardinality m ≥ n > 1, m + n = d + 2, such that these
simplexes are orthogonal to each other. The global minimum occurs
when m = n if d is even and m = n + 1 otherwise.
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Stationary Configurations of d + 2 points on Sd−1

Theorem (Main Theorem 2)

Let N = d + 2 and X = {x1, . . . , xN} be a non-degenerate stationary
logarithmic configuration on Sd−1. Suppose there is no point x ∈ X
that is equidistant to all other points in X. Then X can be split into two
sets such that these sets are vertices of two regular orthogonal
simplexes with the centers of mass in the center of Sd−1.

Remark
Strengthens 2016 Characterization theorem significantly.
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Stationary Configurations of d + 2 points on Sd−1

Given potential interaction function h : [−1,1]→ R h-energy is

Eh(X ) :=
∑

1≤i 6=j≤N

h(xi · xj).

Theorem (Degenerate Case)

Let X be a degenerate configuration, N ≥ d + 2, and h : [−1,1]→ R
be a strictly convex potential function. Then there exists a continuous
perturbation that decreases the h-energy Eh(X ).

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type
{1,1, . . . , k , l}, where 1 + 1 + · · ·+ k + l = d + 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k , l} part of the configuration to either
{k + 1, l} or {k , l + 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Radon’s theorem

Theorem

Let N = d + 2 and X = {x1, . . . , xN} be a set of points in Rd . Then X
can be partitioned into two disjoint sets whose convex hulls intersect.

Proof.
There exists a set of multipliers a1, ...,ad+2, not all of which are zero,
solving the system of linear equations

d+2∑
i=1

aixi = 0,
d+2∑
i=1

ai = 0.

Let I := {i |ai ≥ 0} and J := {i |ai < 0}. Then

p =
∑
i∈I

ai

A
xi =

∑
i∈J

−ai

A
xi , A =

∑
i∈I

ai = −
∑
i∈J

ai .
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Auxiliary Results

Using Lagrange Multipliers method to logarithmic energy

ELog(X ) := −1
2

∑
1≤i 6=j≤N

log(xi · xi − 2xi · xj + xj · xj),

and differentiating yields∑
j 6=i

xi − xj

ri,j
= λixi i = 1, . . . ,N, where rij := 1− xi · xj .

Taking inner product of both sides with xi one obtains λi = N − 1, or∑
j 6=i

xi − xj

ri,j
= (N − 1) xi , i = 1, . . . ,N. (1)

Summing (1) implies that the centroid lies at the origin, and hence∑
j

rij = N, i = 1, . . . ,N. (2)
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Auxiliary Results - Rank Lemma

Let
B = (bij) , bij :=

1
rij
, bii := N − 1−

∑
j 6=i

bij ,

A = (aij) , where aij := c − bij , c :=
N − 1

N
.

Lemma

Let X = {x1, . . . , xN} be a stationary logarithmic configuration on Sd−1

that is non-degenerate (span(X ) = Rd ). Then

rank(A) ≤ N − d − 1,
N∑

j=1

aij = 0, i = 1, . . . ,N.

If N = d + 2, then rank(A) = 1.
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Proof of the Rank Lemma

Let X := [x1, . . . , xN ]
T . The force equations (1) and (2) imply that

N∑
j=1

bijxj = 0,
N∑

j=1

bij = N − 1.

In other words, BX = 0 and B1 = (N − 1)1, where 1 denotes the
N-dimensional column-vector of ones. As X is non-degenerate, we
have rank X = d . Therefore, the column-vectors of X are linearly
independent. As 1 is eigenvector of B with an eigenvalue of N − 1 it is
linearly independent to the columns of X (eigenvectors with
eigenvalue 0). The lemma follows from the rank-nullity theorem
applied to A[X,1] = 0.
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Auxiliary Results - N = d + 2

The following lemma elaborates on the case when N = d + 2.

Lemma

Let N = d + 2 and X = {x1, . . . , xN} be a non-degenerate stationary
logarithmic configuration on Sd−1. Without loss of generality we may
assume that a1i ≥ 0 for i = 1, . . . k and a1i < 0 for i = k + 1, . . .N. Let

ai =
√

aii , i = 1, . . . k ; ai = −
√

aii , i = k + 1, . . .N.

Then
aij = ai aj , a1 + . . .+ aN = 0,

c − aiaj ≥
1
2
, for all i 6= j ,∑

j 6=i

1
c − aiaj

= N, i = 1, . . . ,N. (3)
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Auxiliary Results - Supplemental Theorem

If ai = 0 then the i-th row and i-th column in A are zero xi is
equidistant to all other points xj . So, ai 6= 0 for all i = 1, . . . ,N.

Theorem (Supplemental)

Let a1, . . . ,aN be real numbers that satisfy the following assumptions

a1 ≥ . . . ≥ ak > 0 > ak+1 ≥ . . . ≥ aN , a1 + . . . ,+aN = 0,∑
j 6=i

1
c − aiaj

= N, i = 1, . . . ,N, c − aiaj > 0, for all i 6= j ,

where c := N−1
N . Then

a1 = ... = ak , ak+1 = ... = aN .
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Auxiliary Results - Technical Lemma

Lemma (Technical)

Suppose a1, . . . ,aN are as in Supplemental Theorem. Then for all
i = 1, . . . ,N we have

Ti :=
N∑

j=1

c − a2
j

c − aiaj
= N − 1. (4)

and
|ai | <

√
c, i = 1, ...,N. (5)
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Proof of Supplemental Theorem

Let

F (t) :=
N∑

j=1

c − a2
j

c − taj
.

Then Technical Lemma implies that for all i = 1, . . . ,N

F (ai) = N − 1. (6)

Since

F ′′(t) = 2
∑

j

(
c − a2

j

)
a2

j

(c − taj)3 ,

by Technical Lemma again we have F ′′(t) > 0 for t ∈ (−
√

c,
√

c).
Hence F (t) is a convex function in this interval. Therefore, the
equation F (t) = N − 1 has at most two solutions. By assumptions we
have ai > 0 for i = 1, . . . , k and ai < 0, for i = k + 1, . . . ,N. Thus, (6)
yields that all positive ai are equal and all negative ai are equal too. �
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Inequality 1

Lemma (H1)

Let A = (aij) be an m ×m matrix, m ≥ 3, such that
(a) aii = 0, i = 1, . . . ,m;
(b)
∑m

j=1 aij = 0.
Then the following inequality holds

∑
1≤i<j≤m

(aij + aji)
2 ≥ 1

m − 2

m∑
j=1

x2
j , where xj :=

m∑
i=1

aij . (7)
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Proof of Inequality 1: part 1

For all i , j = 1, . . . ,m define

βij :=
1

m2 − 2m
xi +

m − 1
m2 − 2m

xj , i 6= j , and βii = 0.

Since
∑m

j=1 xj = 0, we have
∑m

j=1 βij = 0 and
∑m

i=1 βij = xj , i.e.

m∑
j=1

βij =
m∑

j=1

aij and
m∑

i=1

βij =
m∑

i=1

aij .

Let ãij := aij − βij . Then ∑
i

ãij =
∑

j

ãij = 0.
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Proof of Inequality 1: part 2

Consider tij := aij + aji = wij + βij + βji , where wij = ãij + ãji . Then
tij = wij +

xi
m−2 +

xj
m−2 , i 6= j , where

∑
i wij =

∑
j wij = 0 (observe that

tii = 0). Then

∑
i<j

t2
ij =

∑
i<j

(
wij +

xi

m − 2
+

xj

m − 2

)2

=
∑
i<j

w2
ij +

1
m − 2

m∑
i=1

x2
i ,

which implies (7).
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Inequality 2

Lemma (H2)

Given an m × n matrix F = (fij) and an n ×m matrix G = (gij) such
that

∑n
j=1 fij = 0 for all i = 1, . . . ,m and

∑m
j=1 gij = 0 for all

i = 1, . . . ,n. Then we have

n∑
i=1

m∑
j=1

(fij + gji)
2 ≥ 1

m

n∑
j=1

y2
j +

1
n

m∑
i=1

z2
i ,

yj :=
m∑

i=1

fij , zi :=
n∑

j=1

gji .
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Proof of Inequality 2

Let
f̃ij := fij −

yj

m
and g̃ij := gij −

zi

n
.

Since
∑

j yj =
∑

i zi = 0, we have
∑

i,j (̃fij + g̃ji) = 0. Let tij := f̃ij + g̃ji .
Observe that

m∑
i=1

tij =
n∑

j=1

tij = 0.

From
fij + gji =

yj

m
+

zi

n
+ tij .

one derives that

m∑
i=1

n∑
j=1

(fij+gji)
2 =

m∑
i=1

n∑
j=1

( yj

m
+

zi

n
+ tij

)2
=

m∑
i=1

n∑
j=1

t2
ij +

1
m

n∑
j=1

y2
j +

1
n

m∑
i=1

z2
i ,

which completes the proof.
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Proofs of Degenerate, Equidistant, and Relative
Minima cases

Even more complex and involved :-(
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Degenerate case

Theorem (Degenerate Case)

Let X be a degenerate configuration, N ≥ d + 2, and h : [−1,1]→ R
be a strictly convex potential function. Then there exists a continuous
perturbation that decreases the h-energy Eh(X ).

Proof.

x1 = (r ,
√

1− r2,0, . . . ,0), x2 = (r ,−
√

1− r2,0, . . . ,0)

xj = (cj1, cj2, cj3, . . . ,0), j = 3, . . . ,N,

where c32 6= 0. Preturb to X̃

x̃1 = (r ,
√

1− r2 cos θ,0, . . . ,
√

1− r2 sin θ),

x̃2 = (r ,−
√

1− r2 cos θ,0, . . . ,−
√

1− r2 sin θ).

Then Eh(X ) > Eh(X̃ )
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Equidistant case

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type
{1,1, . . . , k , l}, where 1 + 1 + · · ·+ k + l = d + 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k , l} part of the configuration to either
{k + 1, l} or {k , l + 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Equidistant case proof

Proof.

Let X = {1, k , `} with xN · xi = −1/(N − 1). Denote xi = (yi ,
−1

N−1 ),
zi := (N − 1)yi/

√
N(N − 2), zi ∈ Sd−2 satisfies force equation.

Y := {(
√

1− 1/(k + m)2 yi ,0m−1,−1/(k + m))},

Z := {(0k−1,
√

1− 1/(k + m)2 zj ,−1/(k + m))}

Perturb to

Ỹt =

{(√
1− (mt + 1/(k + m))2 yi ,0m−1,−1/(k + m)−mt

)}k

i=1

Z̃t =

{(
0k−1,

√
1− (kt − 1/(k + m))2 zj ,−1/(k + m) + kt

)}m

j=1
.

Then Eh(X̃t) has local max at t = 0 and decreases to {k , `+ 1} or
{k + 1, `}.
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Relative minima case

Theorem (Equidistant case)

Let X = {k , `} a configuration of two orthogonal simplexes Xk and X`.
Any perturbation will increase the energy locally.
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THANK YOU!
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