# Dubna 2018: lines on cubic surfaces 

Ivan Cheltsov

24th July 2018

Lecture 4: rational parametrizations of cubic surfaces


## Yuri Manin, Cubic Forms

## ПРЕДИСЛОВИЕ

## I

Любой математик, неравнодушный к теории чисел, испытал на себе очарование теоремы Ферма о сумме двух натуральных квадратов. Психолог юнговской школы нашел бы, вероятно, что такие диофантовы задачи в высшей степени архитипичны.

Замысел предлагаемой книги возник из попытки разобраться, что происходит с суммами трех рациональных кубов. Излишне говорить, что результат далек от простоты, фундаментальности и завершенности классических образцов. Автор обобщал задачу всеми способами, которые приходили ему на ум, и применял все технические средства, какие только умел. Получившееся в итоге нагромождение неассоциативных законов ком* позиции, моноидальных преобразований и когомологий Галуа составило эту книжку.

II
Задача о суммах трех кубов имеет почтенную историю. Вот основной результат, оставленный классиками (см. Диксон [1]).

Теорема. Любое рациональное число является суммой трех кубов рациональных чисел.

Первое доказательство (Райли, 1825; Ричмонд, 1930):
$a=\left(\frac{a^{3}-3^{6}}{3^{2} a^{7}+3^{4} a+3^{6}}\right)^{3}+\left(\frac{-a^{3}+3^{5} a+3^{6}}{3^{2} a^{2}+3^{4} a+3^{6}}\right)^{3}+\left(\frac{a^{2}+3^{4} a}{3^{2} a^{2}+3^{4} a+3^{6}}\right)^{3}$.

## Rational curves

## Example (Pythagoras)

Let $m, n, k$ be any integers. Then

$$
\left(k\left(m^{2}-n^{2}\right)\right)^{2}+(2 k m n)^{2}=\left(k\left(m^{2}+n^{2}\right)\right)^{2}
$$

which gives all integral solutions to $x^{2}+y^{2}=z^{2}$.

- Let $\mathcal{C}$ be a circle in $\mathbb{R}^{2}$ given by $x^{2}+y^{2}=1$.
- All points in $\mathcal{C} \backslash(1,0)$ with rational coordinates are given by

$$
\left(\frac{m^{2}-k^{2}}{m^{2}+k^{2}}, \frac{2 m k}{m^{2}+k^{2}}\right)
$$

for some integers $m$ and $k$ such that $(m, k) \neq(0,0)$.

- All points in $\mathcal{C} \backslash(1,0)$ with rational coordinates are given by

$$
\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)
$$

for some $t \in \mathbb{Q}$.

## Non-rational curves

Theorem
Let $x(t), y(t), z(t)$ be coprime polynomials in $\mathbb{C}[t]$ such that

$$
x^{3}(t)+y^{3}(t)=z^{3}(t)
$$

Then all $x(t), y(t), z(t)$ are constant.

- The proof of this theorem is easy and elementary.

Theorem
Let $x(t), y(t), z(t)$ be coprime polynomials in $\mathbb{C}[t]$ such that

$$
x^{n}(t)+y^{n}(t)=z^{n}(t)
$$

for some $n \geqslant 3$. Then $x(t), y(t), z(t)$ are constant.

- The proof of this theorem is also easy and elementary.


## Infinite descent

Let $x(t), y(t), z(t)$ be coprime non-zero polynomials in $\mathbb{C}[t]$ such that

$$
x^{3}(t)+y^{3}(t)=z^{3}(t)
$$

and $x(t), y(t), z(t)$ are coprime polynomials in $\mathbb{C}[t]$.
Then $x(t), y(t)$, and $z(t)$ are pairwise coprime in $\mathbb{C}[t]$.
Let $d_{x}, d_{y}, d_{z}$ be the degrees of $x(t), y(t), z(t)$, respectively.
Put $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Then

$$
(x(t)+y(t))(x(t)+\omega y(t))\left(x(t)+\omega^{2} y(t)\right)=z^{3}(t)
$$

and $x(t)+y(t), x(t)+\omega y(t), x(t)+\omega^{2} y(t)$ are pairwise coprime.
Then there are polynomials $\alpha(t), \beta(t)$, and $\gamma(t)$ such that
$x(t)+y(t)=\alpha^{3}(t), x(t)+\omega y(t)=\beta^{3}(t), x(t)+\omega^{2} y(t)=\gamma^{3}(t)$.
Then $-\omega \alpha^{3}(t)+(\omega+1) \beta^{3}(t)=\gamma^{3}(t)$. Then

$$
(\sqrt[3]{-\omega} \alpha(t))^{3}+(\sqrt[3]{\omega+1} \beta(t))^{3}=\gamma^{3}(t)
$$

and the degree of $\alpha$ is $\frac{d_{z}}{3}$. Now iterate.

## Fermat cubic is non-rational

Theorem
Let $x(t)$ and $y(t)$ be rational functions in $\mathbb{C}(t)$ such that

$$
x^{3}(t)+y^{3}(t)=1 \text {. }
$$

Then both $x(t)$ and $y(t)$ are constant.

## Proof.

We may assume that neither $x(t)=0$ nor $y(t)=0$.
There are coprime $a(t)$ and $b(t)$ in $\mathbb{C}[t]$ such that $x(t)=\frac{a(t)}{b(t)}$.
There are coprime $c(t)$ and $d(t)$ in $\mathbb{C}[t]$ such that $y(t)=\frac{c(t)}{d(t)}$.
Since $x^{3}(t)+y^{3}(t)=1$, we have

$$
a^{3}(t) d^{3}(t)+c^{3}(t) b^{3}(t)=b^{3}(t) d^{3}(t)
$$

Then $b^{3}(t)\left|d^{3}(t)\right| b^{3}(t)$. Then $b(t)=\lambda d(t)$ for some $\lambda \in \mathbb{C}^{*}$. This implies that $a(t), b(t), c(t)$ and $d(t)$ are constant.

## Rational parametrization of the unit sphere

Let $S_{2}$ be the quadric surface in $\mathbb{C}^{3}$ that is given by

$$
x^{2}+y^{2}+z^{2}=1
$$

Then $S_{2}$ has rational parametrization:

$$
\left(\frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}, \frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}\right) .
$$

When $(v, u)$ runs through $\mathbb{C}^{2}$, we obtain $S_{2} \backslash(-1,0,0)$.

## Question

What is a rational parametrization of the sphere $S_{2}$ ?
The sphere $S_{2}$ also has rational parametrization:

$$
\left(\frac{1-\left(u^{2}\right)^{2}-\left(v^{4}\right)^{2}}{1+\left(u^{2}\right)^{2}+\left(v^{4}\right)^{2}}, \frac{2\left(u^{2}\right)}{1+\left(u^{2}\right)^{2}+\left(v^{4}\right)^{2}}, \frac{2\left(v^{4}\right)}{1+\left(u^{2}\right)^{2}+\left(v^{4}\right)^{2}}\right)
$$

When $(v, u)$ runs through $\mathbb{C}^{2}$, we also obtain $S_{2} \backslash(-1,0,0)$.

## Rational parametrization of smooth quadrics

Let $S_{2}$ be the quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
x^{2}+y^{2}+z^{2}=t^{2}
$$

Then $S_{2}$ has rational parametrization:

$$
\left[w^{2}-u^{2}-v^{2}: 2 u w: 2 v w: w^{2}+u^{2}+v^{2}\right] .
$$

When $[v: u: w]$ runs through $\mathbb{P}_{\mathbb{C}}^{2}$ without $w=0$, we obtain

$$
S_{2} \backslash\left(L_{1} \cup L_{2}\right)
$$

where $L_{1}$ and $L_{2}$ are the lines $w=u+i v=0$ and $w=u-i v=0$.
Question
What is a rational parametrization of the surface $S_{2}$ ?

- A dominant rational map $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow S_{2}$.
- A birational map $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow S_{2}$.


## Rational and unirational varieties

Let $X$ be an irreducible projective variety of dimension $n$.
Definition
$X$ is rational if $\exists$ birational map $\mathbb{P}_{\mathbb{C}}^{n} \rightarrow X$.
Definition
$X$ is unirational if $\exists$ dominant rational map $\mathbb{P}_{\mathbb{C}}^{n} \rightarrow X$.

- If $X$ is rational, then $X$ is unirational.

Example
Irreducible conics in $\mathbb{P}_{\mathbb{C}}^{2}$ are rational.
Example
Smooth cubic curves in $\mathbb{P}_{\mathbb{C}}^{2}$ are not unirational.
Let $S_{d}$ be a smooth surface in $\mathbb{P}_{\mathbb{C}}^{3}$ of degree $d \geqslant 1$.
Theorem
If $d \geqslant 4$, then $S_{d}$ is not unirational.

- If $d=1$ or $d=2$, then $S_{d}$ is rational.


## Lüroth Problem

## Question

Are there unirational varieties of dimension $n$ that are not rational?
Theorem (Lüroth, 1876)
Every subfield of $\mathbb{C}(x)$ that contains $\mathbb{C}$ is isomorphic to $\mathbb{C}(x)$.

## Corollary

Every one-dimensional complex unirational variety is rational.
Theorem (Castelnuovo)
Every two-dimensional complex unirational variety is rational.
Theorem (Iskovskikh \& Manin, 1971)
Every smooth quartic hypersurface in $\mathbb{P}_{\mathbb{C}}^{4}$ is not rational.
Theorem (Clemens \& Griffiths, 1972)
Every smooth cubic hypersurface in $\mathbb{P}_{\mathbb{C}}^{4}$ is not rational.

- Some smooth quartic hypersurface in $\mathbb{P}_{\mathbb{C}}^{4}$ are unirational.
- All smooth cubic hypersurface in $\mathbb{P}_{\mathbb{C}}^{4}$ are unirational.


## Rationality of smooth cubic surfaces

Theorem
Let $S_{3}$ be a smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$. Then $S_{3}$ is rational.
Proof.
Define a map $\phi: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ by

$$
([\alpha: \beta]:[\gamma: \delta]) \rightarrow[\alpha \gamma: \alpha \delta: \beta \gamma: \beta \delta]
$$

The image of $\phi$ is the quadric $S_{2} \subset \mathbb{P}_{\mathbb{C}}^{3}$ given by $x t=y z$. Let $L_{1}$ and $L_{2}$ be two lines in $S_{3}$ such that $L_{1} \cap L_{2}=\varnothing$. Since $L_{1} \cong L_{2} \cong \mathbb{P}_{\mathbb{C}}^{1}$, we can identify $L_{1} \times L_{2}=S_{2}$ via $\phi$.
Define a map $\psi: S_{2} \rightarrow S_{3}$ as follows:

- Let $(P, Q)$ be a general point in $L_{1} \times L_{2}=S_{2}$.
- Let $\ell$ be the line in $\mathbb{P}_{\mathbb{C}}^{3}$ that contains $P$ and $Q$.
- Let $\phi((P, Q))$ be the third point in $\ell \cap S_{3}$.

Then $\phi: S_{2} \rightarrow S_{3}$ is a birational map.
Since $S_{2}$ is rational, the surface $S_{3}$ is also rational.

## Rational parametrization of $x^{3}+y^{3}+t+t^{3}=0$

Let $S_{3}$ be the surface in $\mathbb{C}^{3}$ that is given by $x^{3}+y^{3}+t+t^{3}=0$. Let $L_{1}$ and $L_{2}$ be the lines in $\mathbb{C}^{3}$ given by $x+y=t=0$ and

$$
\omega x+y=t-i=0
$$

respectively. Here $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then $L_{1} \subset S_{3}$ and $L_{2} \subset S_{3}$. Put $P=(a,-a, 0)$ and $Q=(b,-\omega b, i)$. Then $P \in L_{1}$ and $Q \in L_{2}$. Let $\ell$ be the line in $\mathbb{C}^{3}$ that contains $P$ and $Q$. Then $\ell$ is given by

$$
(a+\lambda(b-a),-a+\lambda(a-\omega b), \lambda i)
$$

where $\lambda \in \mathbb{C}$. Then $\ell \cap S_{3}$ consists of the points $P, Q$ and

$$
\begin{aligned}
& \left(\frac{(6 \omega+3) a^{2} b^{2}+2 i a-i b}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i}\right. \\
& \qquad \begin{array}{c}
\frac{(3 \omega-3) a^{2} b^{2}+i \omega b-2 i a}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i} \\
\left.\frac{i(3 \omega-3) a^{2} b+1}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i}\right)
\end{array} .
\end{aligned}
$$

## Rationality of $x^{3}+y^{3}+t+t^{3}=0$

Let $S_{3}$ be the surface in $\mathbb{C}^{3}$ that is given by $x^{3}+y^{3}+t+t^{3}=0$. Then there is a birational map $\mathbb{C}^{2} \longrightarrow S_{3}$ given by

$$
\begin{aligned}
& (a, b) \mapsto\left(\frac{(6 \omega+3) a^{2} b^{2}+2 i a-i b}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i}\right. \\
& \frac{(3 \omega-3) a^{2} b^{2}+i \omega b-2 i a}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i} \\
& \\
& \left.\frac{i(3 \omega-3) a^{2} b+1}{(3 \omega-3) a^{2} b+(3 \omega+6) a b^{2}+i}\right)
\end{aligned}
$$

Compose it with the map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by $(a, b) \mapsto\left(\frac{1}{a}, b\right)$. Then we obtain a birational map $\mathbb{C}^{2} \rightarrow S_{3}$ given by

$$
\begin{aligned}
& (a, b) \mapsto\left(\frac{(6 \omega+3) b^{2}+2 i a-i a^{2} b}{(3 \omega-3) b+(3 \omega+6) a b^{2}+i a^{2}}\right. \\
& \frac{(3 \omega-3) b^{2}+i \omega a^{2} b-2 i a}{(3 \omega-3) b+(3 \omega+6) a b^{2}+i a^{2}} \\
& \\
& \left.\frac{i(3 \omega-3) b+a^{2}}{(3 \omega-3) b+(3 \omega+6) a b^{2}+i a^{2}}\right)
\end{aligned}
$$

## Rationality of the surface $x^{3}+y^{3}+z^{2} t+t^{3}=0$

Let $S_{3}$ be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{3}+z^{2} t+t^{3}=0$. There is a birational map $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow S_{3}$ that maps $[a: b: c]$ to

$$
\begin{aligned}
& {\left[(6 \omega+3) b^{2} c+2 i a c^{2}-i a^{2} b:(3 \omega-3) b^{2} c+i \omega a^{2} b-2 i a c^{2}:\right.} \\
& \left.\quad:(3 \omega-3) b c^{2}+(3 \omega+6) a b^{2}+i a^{2} c: i(3 \omega-3) b c+a^{2} c\right] .
\end{aligned}
$$

This map is undefined in the points

$$
\left\{\begin{array}{l}
(6 \omega+3) b^{2} c+2 i a c^{2}-i a^{2} b=0 \\
(3 \omega-3) b^{2} c+i \omega a^{2} b-2 i a c^{2}=0 \\
(3 \omega-3) b c^{2}+(3 \omega+6) a b^{2}+i a^{2} c=0 \\
i(3 \omega-3) b c^{2}+a^{2} c=0
\end{array}\right.
$$

This system of equations gives us are exactly 6 points in $\mathbb{P}_{\mathbb{C}}^{2}$.

- The inverse map $S_{3} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ is well defined.
- It contracts 6 disjoint lines in $S_{3}$ to the points above.


## Serge's Theorem

Let $S_{3}$ be a smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$ that is defined over $\mathbb{Q}$.
Theorem
The surface $S_{3}$ is unirational over $\mathbb{Q} \Longleftrightarrow S_{3}$ has a rational point.
Suppose that $S_{3}$ contains a rational point $P$.

- Let $\Pi$ be the plane in $\mathbb{P}_{\mathbb{C}}^{3}$ that is tangent to $S_{3}$ in $P$.
- Put $C=S_{3} \cap \Pi$. Then $C$ is a singular cubic curve.
- Then $C$ is defined over $\mathbb{Q}$, since $P$ is defined over $\mathbb{Q}$.
- Suppose that $C$ is irreducible. Then $C$ is rational over $\mathbb{Q}$.
- This gives us a infinitely many rational points in $S_{3}$.
- Pick one of them $Q \neq P$ and repeat the construction.
- This gives singular cubic curve $Z \subset S_{3}$ defined over $\mathbb{Q}$.

Now we can construct a dominant rational map

$$
C \times Z \rightarrow S_{3}
$$

as in the proof of rationality of complex smooth cubic surfaces.

## Cubic Forms I

Theorem
Every rational number is a sum of three cubes of rational numbers.

## Proof.

Let $q$ be a rational number. Let us put

$$
\alpha=\frac{1}{36} \frac{512 q^{4}-1600 q^{3}+108440 q^{2}-173691 q-729}{128 q^{3}-416 q^{2}+8082 q-243} .
$$

Note that $128 q^{3}-416 q^{2}+8082 q-243 \neq 0$. Put

$$
\beta=-\frac{q\left(64 q^{2}-1648 q-7263\right)}{128 q^{3}-416 q^{2}+8082 q-243}
$$

Similarly, let us put

$$
\gamma=-\frac{1}{36} \frac{512 q^{4}-1600 q^{3}-15976 q^{2}+246213 q-729}{128 q^{3}-416 q^{2}+8082 q-243}
$$

Using Maple, one can check that $\alpha^{3}+\beta^{3}+\gamma^{3}=q$.

## Cubic Forms II

Let $S_{3}$ be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by

$$
x^{3}+y^{3}+z^{3}-q t^{3}=0
$$

where $q$ is a non-zero rational number. Then $S_{3}$ is smooth.
Then $S_{3}$ is unirational over $\mathbb{Q}$ by Segre's Theorem.
Let us show this. To do this, replace $S_{3}$ by its affine part $z \neq 0$. Thus, we may assume that $S_{3}$ is the surface in $\mathbb{Q}^{3}$ given by

$$
x^{3}+y^{3}+1-q t^{3}=0
$$

Let $\ell$ be the line in $\mathbb{Q}^{3}$ that is given by

$$
(-1+2 \lambda, \lambda, 0)
$$

where $\lambda \in \mathbb{Q}$. Then $\ell \cap S_{3}=(-1,0,0)$ over $\mathbb{Q}$.
Over $\mathbb{Q}(\sqrt{-2})$ the intersection $\ell \cap S_{3}$ contains two more points:

$$
\left(\frac{1 \pm 2 \sqrt{-2}}{3}, \frac{2 \pm \sqrt{-2}}{3}, 0\right)
$$

## Cubic Forms III

Put $\widehat{x}=x-\frac{1+2 \sqrt{-2}}{3}, \widehat{y}=y-\frac{2+\sqrt{-2}}{3}, \hat{t}=t$. Then $S_{3}$ is given by

$$
\begin{aligned}
& \left(-\frac{7}{3}+\frac{4}{3} \sqrt{-2}\right) \widehat{x}+\left(\frac{2}{3}+\frac{4}{3} \sqrt{-2}\right) \widehat{y}+ \\
& \quad+(1+2 \sqrt{-2}) \widehat{x}^{2}+(2+\sqrt{-2}) \widehat{y}^{2}+\widehat{y}^{3}+\widehat{x}^{3}-q \widehat{t}^{3}=0
\end{aligned}
$$

Let $\Pi$ be the tangent plane in $\mathbb{C}^{3}$ to $S_{3}$ at $P$. Then $\Pi$ is given by

$$
\widehat{y}=\frac{7-4 \sqrt{-2}}{4 \sqrt{-2}+2} \widehat{x} .
$$

Thus, the intersection $\Pi \cap S_{3}$ is given by

$$
(-10 \sqrt{-2}-31) \widehat{x}^{3}+(36-18 \sqrt{-2}) \widehat{x}^{2}+8 q \widehat{t}^{3}=0
$$

Intersecting this curve with the line $t=\lambda x$ in $\Pi$, we get the point

$$
\left(\frac{2-18 \sqrt{-2}}{31-8 q \lambda^{3}+10 \sqrt{-2}}, \frac{36 \lambda-18 \sqrt{-2}}{31-8 q \lambda^{3}+10 \sqrt{-2}}, \frac{-27 \sqrt{-2}-54}{31-8 q \lambda^{3}+10 \sqrt{-2}}\right)
$$

## Cubic Forms IV

We see that the surface $S_{3}$ contain the point
$\left(\frac{2-18 \sqrt{-2}}{31-8 q \lambda^{3}+10 \sqrt{-2}}, \frac{36 \lambda-18 \sqrt{-2}}{31-8 q \lambda^{3}+10 \sqrt{-2}}, \frac{-27 \sqrt{-2}-54}{31-8 q \lambda^{3}+10 \sqrt{-2}}\right)$
in coordinates $\widehat{x}=x-\frac{1+2 \sqrt{-2}}{3}, \widehat{y}=y-\frac{2+\sqrt{-2}}{3}, \widehat{t}=t$.
Rewriting this point in coordinated $x, y$ and $t$, we obtain the point

$$
\left.\begin{array}{rl}
\left(-\frac{2 \sqrt{-2}+1}{3} \cdot \frac{8 q \lambda^{3}+20 \sqrt{-2}-19}{31-8 q \lambda^{3}+10 \sqrt{-2}}\right. & , \\
\frac{2 \sqrt{-2}+4}{3} \cdot \frac{-4 q \lambda^{3}+5 \sqrt{-2}-25}{31-8 q \lambda^{3}+10 \sqrt{-2}} \\
& \frac{\lambda(36-18 \sqrt{-2})}{31-8 q \lambda^{3}+10 \sqrt{-2}}
\end{array}\right)
$$

contained in $S_{3}$ for any $\lambda \in \mathbb{C}$ such that $31-8 q \lambda^{3}+10 \sqrt{-2} \neq 0$.

- Main trick: put $\lambda=a+b \sqrt{-2}$.


## Cubic Forms V

Recall that $S_{3}$ is the surface in $\mathbb{Q}^{3}$ given by $x^{3}+y^{3}+1=q t^{3}$. Put

$$
\begin{gathered}
x_{1}=\frac{1}{3} \frac{(2 \sqrt{-2}+1)\left(-16 \sqrt{-2} b^{3} q-48 a b^{2} q+24 \sqrt{-2} a^{2} b q+8 a^{3} q+20 \sqrt{-2}-19\right)}{-16 \sqrt{-2} b^{3} q-48 a b^{2} q+24 \sqrt{-2} a^{2} b q+8 a^{3} q-10 \sqrt{-2}-31} \\
y_{1}=\frac{2}{3} \frac{(\sqrt{-2}+2)\left(-8 \sqrt{-2} b^{3} q-24 a b^{2} q+12 \sqrt{-2} a^{2} b q+4 a^{3} q-5 \sqrt{-2}+25\right)}{-16 \sqrt{-2} b^{3} q-48 a b^{2} q+24 \sqrt{-2} a^{2} b q+8 a^{3} q-10 \sqrt{-2}-31} \\
t_{1}=\frac{18(a+b \sqrt{-2})(\sqrt{-2}-2)}{-16 \sqrt{-2} b^{3} q-48 a b^{2} q+24 \sqrt{-2} a^{2} b q+8 a^{3} q-10 \sqrt{-2}-31} .
\end{gathered}
$$

Then $\left(x_{1}, y_{1}, t_{1}\right) \in S_{3}$ for every rational $a$ and $b$ such that

$$
-16 \sqrt{-2} b^{3} q-48 a b^{2} q+24 \sqrt{-2} a^{2} b q+8 a^{3} q-10 \sqrt{-2}-31 \neq 0
$$

The complex conjugate point ( $\bar{x}_{1}, \bar{y}_{1}, \bar{t}_{1}$ ) also lies in $S_{3}$. Put

$$
\begin{gathered}
x_{2}=\frac{1}{3} \frac{(-2 \sqrt{-2}+1)\left(16 \sqrt{-2} b^{3} q-48 a b^{2} q-24 \sqrt{-2} a^{2} b q+8 a^{3} q-20 \sqrt{-2}-19\right)}{16 \sqrt{-2} b^{3} q-48 a b^{2} q-24 \sqrt{-2} a^{2} b q+8 a^{3} q+10 \sqrt{-2}-31} \\
y_{2}=\frac{2}{3} \frac{(-\sqrt{-2}+2)\left(8 \sqrt{-2} b^{3} q-24 a b^{2} q-12 \sqrt{-2} a^{2} b q+4 a^{3} q+5 \sqrt{-2}+25\right)}{16 \sqrt{-2} b^{3} q-48 a b^{2} q-24 \sqrt{-2} a^{2} b q+8 a^{3} q+10 \sqrt{-2}-31} \\
t_{2}=\frac{18(a-b \sqrt{-2})(\sqrt{-2}-2)}{16 \sqrt{-2} b^{3} q-48 a b^{2} q-24 \sqrt{-2} a^{2} b q+8 a^{3} q+10 \sqrt{-2}-31} .
\end{gathered}
$$

Then $\left(x_{2}, y_{2}, t_{2}\right)=\left(\bar{x}_{1}, \bar{y}_{1}, \bar{t}_{1}\right)$ is contained in $S_{3}$.

## Cubic Forms VI

Let $L$ be the line that contains $\left(x_{1}, y_{1}, t_{1}\right)$ and $\left(x_{2}, y_{2}, t_{2}\right)$. Then $L$ is defined over $\mathbb{Q}$.
The intersection $L \cap S_{3}$ consists of $\left(x_{1}, y_{1}, t_{1}\right),\left(x_{2}, y_{2}, t_{2}\right)$ and $\left(\frac{\theta_{1}}{\epsilon}, \frac{\theta_{2}}{\epsilon}, \frac{\theta_{3}}{\epsilon}\right)$, where

$$
\begin{gathered}
\theta_{1}=-512 a^{12} q^{4}+6144 a^{10} b^{2} q^{4}+30720 a^{8} b^{4} q^{4}+81920 a^{6} b^{6} q^{4}+122880 a^{4} b^{8} q^{4}+98304 a^{2} b^{1} 0 q^{4}+ \\
+32768 b^{1} 2 q^{4}-1600 a^{9} q^{3}+1920 a^{8} b q^{3}+10240 a^{6} b^{3} q^{3}+38400 a^{5} b^{4} q^{3}+15360 a^{4} b^{5} q^{3}+102400 a^{3} b^{6} q^{3}+ \\
+76800 a b^{8} q^{3}-10240 b^{9} q^{3}+108440 a^{6} q^{2}+30048 a^{5} b q^{2}-317760 a^{4} b^{2} q^{2}-760192 a^{3} b^{3} q^{2}+1192800 a^{2} b^{4} q^{2}+ \\
+120192 a b^{5} q^{2}-496000 b^{6} q^{2}-173691 a^{3} q+63358 a^{2} b q-729324 a b^{2} q+286200 b^{3} q-729 .
\end{gathered}
$$

$$
\theta_{2}=2304 a^{9} q^{3}+34560 a^{8} b q^{3}+184320 a^{6} b^{3} q^{3}-55296 a^{5} b^{4} q^{3}+276480 a^{4} b^{5} q^{3}-
$$

$$
-147456 a^{3} b^{6} q^{3}-110592 a b^{8} q^{3}-184320 b^{9} q^{3}-59328 a^{6} q^{2}-146880 a^{5} b q^{2}+100224 a^{4} b^{2} q^{2}+419328 a^{3} b^{3} q^{2}-
$$

$$
-200448 a^{2} b^{4} q^{2}-587520 a b^{5} q^{2}+474624 b^{6} q^{2}-261468 a^{3} q+801900 a^{2} b q-793152 a b^{2} q+252720 b^{3} q
$$

$$
\theta_{3}=-4608 a^{10} q^{3}-4608 a^{9} b q^{3}-27648 a^{8} b^{2} q^{3}-36864 a^{7} b^{3} q^{3}-36864 a^{6} b^{4} q^{3}-
$$

$$
-110592 a^{5} b^{5} q^{3}+73728 a^{4} b^{6} q^{3}-147456 a^{3} b^{7} q^{3}+221184 a^{2} b^{8} q^{3}-73728 a b^{9} q^{3}+147456 b^{10} q^{3}+
$$

$$
+14976 a^{7} q^{2}-19584 a^{6} b q^{2}+165888 a^{5} b^{2} q^{2}-105984 a^{4} b^{3} q^{2}+281088 a^{3} b^{4} q^{2}-207360 a^{2} b^{5} q^{2}+18432 a b^{6} q^{2}-
$$

$$
-147456 b^{7} q^{2}-290952 a^{4} q+255960 a^{3} b q+820368 a^{2} b^{2} q-1402272 a b^{3} q+616896 b^{4} q+8748 a-8748 b
$$

$$
\begin{aligned}
& \quad \epsilon=512 a^{12} q^{4}+6144 a^{10} b^{2} q^{4}+30720 a^{8} b^{4} q^{4}+81920 a^{6} b^{6} q^{4}+122880 a^{4} b^{8} q^{4}+ \\
& \\
& +98304 a^{2} b^{1} 0 q^{4}+32768 b^{1} 2 q^{4}-1600 a^{9} q^{3}+1920 a^{8} b q^{3}+10240 a^{6} b^{3} q^{3}+38400 a^{5} b^{4} q^{3}+15360 a^{4} b^{5} q^{3}+ \\
& + \\
& +102400 a^{3} b^{6} q^{3}+76800 a b^{8} q^{3}-10240 b^{9} q^{3}-15976 a^{6} q^{2}-343200 a^{5} b q^{2}+55488 a^{4} b^{2} q^{2}+608384 a^{3} b^{3} q^{2}+ \\
& +446304 a^{2} b^{4} q^{2}-1372800 a b^{5} q^{2}+499328 b^{6} q^{2}+246213 a^{3} q-626130 a^{2} b q+530388 a b^{2} q-133704 b^{3} q-729 .
\end{aligned}
$$

## Cubic Forms VII

For every rational $a$ and $b$ such that $\epsilon \neq 0$, we have

$$
\left(\frac{\theta_{1}}{\epsilon}\right)^{3}+\left(\frac{\theta_{2}}{\epsilon}\right)^{3}+1=q\left(\frac{\theta_{3}}{\epsilon}\right)^{3} .
$$

Thus, for every rational $a$ and $b$ such that $\theta_{3} \neq 0$, we have

$$
q=\left(\frac{\theta_{1}}{\theta_{3}}\right)^{3}+\left(\frac{\theta_{2}}{\theta_{3}}\right)^{3}+\left(\frac{\epsilon}{\theta_{3}}\right)^{3} .
$$

For example, put $a=1$ and $b=0$. Then

$$
\begin{gathered}
\frac{\theta_{1}}{\theta_{3}}=\frac{1}{36} \frac{512 q^{4}-1600 q^{3}+108440 q^{2}-173691 q-729}{128 q^{3}-416 q^{2}+8082 q-243} \\
\frac{\theta_{2}}{\theta_{3}}=-\frac{q\left(64 q^{2}-1648 q-7263\right)}{128 q^{3}-416 q^{2}+8082 q-243} \\
\frac{\epsilon}{\theta_{3}}=-\frac{1}{36} \frac{512 q^{4}-1600 q^{3}-15976 q^{2}+246213 q-729}{128 q^{3}-416 q^{2}+8082 q-243}
\end{gathered}
$$

## Non-rational unirational cubic surfaces

Let $S_{3}$ be a smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$ that is defined over $\mathbb{Q}$.
Theorem (Segre, 1943)
Suppose that for every curve $C \subset S_{3}$ defined over $\mathbb{Q}$ one has

$$
C=S_{3} \cap F
$$

for some surface $F$ in $\mathbb{P}_{\mathbb{C}}^{3}$. Then $S_{3}$ is not rational over $\mathbb{Q}$.
Example
Let $S_{3}$ be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
2 x^{3}+3 y^{3}+5 z^{3}+7 t^{3}=0
$$

Then for every curve $C \subset S_{3}$ defined over $\mathbb{Q}$ one has

$$
C=S_{3} \cap F
$$

for some surface $F \subset \mathbb{P}_{\mathbb{C}}^{3}$. But $[1: 1:-1: 0] \in S_{3}$.
Thus, the surface $S_{3}$ is unirational and non-rational over $\mathbb{Q}$.

