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Rational curves

Example (Pythagoras)

Let m, n, k be any integers. Then(
k(m2 − n2)

)2
+
(

2kmn
)2

=
(
k(m2 + n2)

)2
,

which gives all integral solutions to x2 + y2 = z2.

I Let C be a circle in R2 given by x2 + y2 = 1.
I All points in C \ (1, 0) with rational coordinates are given by(

m2 − k2

m2 + k2
,

2mk

m2 + k2

)
for some integers m and k such that (m, k) 6= (0, 0).

I All points in C \ (1, 0) with rational coordinates are given by(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
for some t ∈ Q.



Non-rational curves

Theorem
Let x(t), y(t), z(t) be coprime polynomials in C[t] such that

x3(t) + y3(t) = z3(t).

Then all x(t), y(t), z(t) are constant.

I The proof of this theorem is easy and elementary.

Theorem
Let x(t), y(t), z(t) be coprime polynomials in C[t] such that

xn(t) + yn(t) = zn(t)

for some n > 3. Then x(t), y(t), z(t) are constant.

I The proof of this theorem is also easy and elementary.



Infinite descent
Let x(t), y(t), z(t) be coprime non-zero polynomials in C[t] such that

x3(t) + y3(t) = z3(t)

and x(t), y(t), z(t) are coprime polynomials in C[t].
Then x(t), y(t), and z(t) are pairwise coprime in C[t].
Let dx , dy , dz be the degrees of x(t), y(t), z(t), respectively.

Put ω = −1
2 +

√
3

2 i . Then(
x(t) + y(t)

)(
x(t) + ωy(t)

)(
x(t) + ω2y(t)

)
= z3(t),

and x(t) + y(t), x(t) + ωy(t), x(t) + ω2y(t) are pairwise coprime.
Then there are polynomials α(t), β(t), and γ(t) such that

x(t) + y(t) = α3(t) , x(t) + ωy(t) = β3(t) , x(t) + ω2y(t) = γ3(t) .

Then −ωα3(t) + (ω + 1)β3(t) = γ3(t). Then(
3
√
−ωα(t)

)3
+
(

3
√
ω + 1β(t)

)3
= γ3(t)

and the degree of α is dz
3 . Now iterate.



Fermat cubic is non-rational

Theorem
Let x(t) and y(t) be rational functions in C(t) such that

x3(t) + y3(t) = 1 .

Then both x(t) and y(t) are constant.

Proof.
We may assume that neither x(t) = 0 nor y(t) = 0.

There are coprime a(t) and b(t) in C[t] such that x(t) = a(t)
b(t) .

There are coprime c(t) and d(t) in C[t] such that y(t) = c(t)
d(t) .

Since x3(t) + y3(t) = 1, we have

a3(t)d3(t) + c3(t)b3(t) = b3(t)d3(t).

Then b3(t)|d3(t)|b3(t). Then b(t) = λd(t) for some λ ∈ C∗.
This implies that a(t), b(t), c(t) and d(t) are constant.



Rational parametrization of the unit sphere
Let S2 be the quadric surface in C3 that is given by

x2 + y2 + z2 = 1.

Then S2 has rational parametrization:(
1− u2 − v2

1 + u2 + v2
,

2u

1 + u2 + v2
,

2v

1 + u2 + v2

)
.

When (v , u) runs through C2, we obtain S2 \ (−1, 0, 0).

Question
What is a rational parametrization of the sphere S2?

The sphere S2 also has rational parametrization:(
1− (u2)2 − (v4)2

1 + (u2)2 + (v4)2
,

2(u2)

1 + (u2)2 + (v4)2
,

2(v4)

1 + (u2)2 + (v4)2

)
.

When (v , u) runs through C2, we also obtain S2 \ (−1, 0, 0).



Rational parametrization of smooth quadrics
Let S2 be the quadric surface in P3

C that is given by

x2 + y2 + z2 = t2.

Then S2 has rational parametrization:[
w2 − u2 − v2 : 2uw : 2vw : w2 + u2 + v2

]
.

When [v : u : w ] runs through P2
C without w = 0, we obtain

S2 \
(
L1 ∪ L2

)
,

where L1 and L2 are the lines w = u + iv = 0 and w = u − iv = 0.

Question
What is a rational parametrization of the surface S2?

I A dominant rational map P2
C 99K S2.

I A birational map P2
C 99K S2.



Rational and unirational varieties
Let X be an irreducible projective variety of dimension n.

Definition
X is rational if ∃ birational map Pn

C 99K X .

Definition
X is unirational if ∃ dominant rational map Pn

C 99K X .

I If X is rational, then X is unirational.

Example

Irreducible conics in P2
C are rational.

Example

Smooth cubic curves in P2
C are not unirational.

Let Sd be a smooth surface in P3
C of degree d > 1.

Theorem
If d > 4, then Sd is not unirational.

I If d = 1 or d = 2, then Sd is rational.



Lüroth Problem

Question
Are there unirational varieties of dimension n that are not rational?

Theorem (Lüroth, 1876)

Every subfield of C(x) that contains C is isomorphic to C(x).

Corollary

Every one-dimensional complex unirational variety is rational.

Theorem (Castelnuovo)

Every two-dimensional complex unirational variety is rational.

Theorem (Iskovskikh & Manin, 1971)

Every smooth quartic hypersurface in P4
C is not rational.

Theorem (Clemens & Griffiths, 1972)

Every smooth cubic hypersurface in P4
C is not rational.

I Some smooth quartic hypersurface in P4
C are unirational.

I All smooth cubic hypersurface in P4
C are unirational.



Rationality of smooth cubic surfaces

Theorem
Let S3 be a smooth cubic surface in P3

C. Then S3 is rational.

Proof.
Define a map φ : P1

C × P1
C → P3

C by([
α : β

]
:
[
γ : δ

])
→
[
αγ : αδ : βγ : βδ

]
.

The image of φ is the quadric S2 ⊂ P3
C given by xt = yz .

Let L1 and L2 be two lines in S3 such that L1 ∩ L2 = ∅.
Since L1

∼= L2
∼= P1

C, we can identify L1 × L2 = S2 via φ.
Define a map ψ : S2 99K S3 as follows:

I Let (P,Q) be a general point in L1 × L2 = S2.

I Let ` be the line in P3
C that contains P and Q.

I Let φ
(
(P,Q)

)
be the third point in ` ∩ S3.

Then φ : S2 99K S3 is a birational map.
Since S2 is rational, the surface S3 is also rational.



Rational parametrization of x3 + y 3 + t + t3 = 0
Let S3 be the surface in C3 that is given by x3 + y3 + t + t3 = 0.
Let L1 and L2 be the lines in C3 given by x + y = t = 0 and

ωx + y = t − i = 0,

respectively. Here ω = −1
2 + i

√
3

2 . Then L1 ⊂ S3 and L2 ⊂ S3.
Put P = (a,−a, 0) and Q = (b,−ωb, i). Then P ∈ L1 and Q ∈ L2.
Let ` be the line in C3 that contains P and Q. Then ` is given by(

a + λ(b − a),−a + λ(a− ωb), λi
)
,

where λ ∈ C. Then ` ∩ S3 consists of the points P, Q and(
(6ω + 3)a2b2 + 2ia− ib

(3ω − 3)a2b + (3ω + 6)ab2 + i
,

(3ω − 3)a2b2 + iωb − 2ia

(3ω − 3)a2b + (3ω + 6)ab2 + i
,

i(3ω − 3)a2b + 1

(3ω − 3)a2b + (3ω + 6)ab2 + i

)
.



Rationality of x3 + y 3 + t + t3 = 0
Let S3 be the surface in C3 that is given by x3 + y3 + t + t3 = 0.
Then there is a birational map C2 99K S3 given by

(a, b) 7→

(
(6ω + 3)a2b2 + 2ia− ib

(3ω − 3)a2b + (3ω + 6)ab2 + i
,

(3ω − 3)a2b2 + iωb − 2ia

(3ω − 3)a2b + (3ω + 6)ab2 + i
,

i(3ω − 3)a2b + 1

(3ω − 3)a2b + (3ω + 6)ab2 + i

)
.

Compose it with the map C2 99K C2 given by (a, b) 7→
(

1
a , b
)
.

Then we obtain a birational map C2 99K S3 given by

(a, b) 7→

(
(6ω + 3)b2 + 2ia− ia2b

(3ω − 3)b + (3ω + 6)ab2 + ia2
,

(3ω − 3)b2 + iωa2b − 2ia

(3ω − 3)b + (3ω + 6)ab2 + ia2
,

i(3ω − 3)b + a2

(3ω − 3)b + (3ω + 6)ab2 + ia2

)
.



Rationality of the surface x3 + y 3 + z2t + t3 = 0
Let S3 be the surface in P3

C given by x3 + y3 + z2t + t3 = 0.
There is a birational map P2

C 99K S3 that maps [a : b : c] to[
(6ω + 3)b2c + 2iac2 − ia2b : (3ω − 3)b2c + iωa2b − 2iac2 :

: (3ω − 3)bc2 + (3ω + 6)ab2 + ia2c : i(3ω − 3)bc + a2c

]
.

This map is undefined in the points
(6ω + 3)b2c + 2iac2 − ia2b = 0,

(3ω − 3)b2c + iωa2b − 2iac2 = 0,

(3ω − 3)bc2 + (3ω + 6)ab2 + ia2c = 0,

i(3ω − 3)bc2 + a2c = 0.

This system of equations gives us are exactly 6 points in P2
C.

I The inverse map S3 99K P2
C is well defined.

I It contracts 6 disjoint lines in S3 to the points above.



Serge’s Theorem
Let S3 be a smooth cubic surface in P3

C that is defined over Q.

Theorem
The surface S3 is unirational over Q ⇐⇒ S3 has a rational point.

Suppose that S3 contains a rational point P.

I Let Π be the plane in P3
C that is tangent to S3 in P.

I Put C = S3 ∩ Π. Then C is a singular cubic curve.

I Then C is defined over Q, since P is defined over Q.

I Suppose that C is irreducible. Then C is rational over Q.

I This gives us a infinitely many rational points in S3.

I Pick one of them Q 6= P and repeat the construction.

I This gives singular cubic curve Z ⊂ S3 defined over Q.

Now we can construct a dominant rational map

C × Z 99K S3

as in the proof of rationality of complex smooth cubic surfaces.



Cubic Forms I

Theorem
Every rational number is a sum of three cubes of rational numbers.

Proof.
Let q be a rational number. Let us put

α =
1

36

512q4 − 1600q3 + 108440q2 − 173691q − 729

128q3 − 416q2 + 8082q − 243
.

Note that 128q3 − 416q2 + 8082q − 243 6= 0. Put

β = − q(64q2 − 1648q − 7263)

128q3 − 416q2 + 8082q − 243
.

Similarly, let us put

γ = − 1

36

512q4 − 1600q3 − 15976q2 + 246213q − 729

128q3 − 416q2 + 8082q − 243
.

Using Maple, one can check that α3 + β3 + γ3 = q.



Cubic Forms II
Let S3 be the surface in P3

C given by

x3 + y3 + z3 − qt3 = 0,

where q is a non-zero rational number. Then S3 is smooth.
Then S3 is unirational over Q by Segre’s Theorem.
Let us show this. To do this, replace S3 by its affine part z 6= 0.
Thus, we may assume that S3 is the surface in Q3 given by

x3 + y3 + 1− qt3 = 0.

Let ` be the line in Q3 that is given by(
− 1 + 2λ, λ, 0

)
,

where λ ∈ Q. Then ` ∩ S3 = (−1, 0, 0) over Q.
Over Q(

√
−2) the intersection ` ∩ S3 contains two more points:(

1± 2
√
−2

3
,

2±
√
−2

3
, 0

)
.



Cubic Forms III
Put x̂ = x − 1+2

√
−2

3 , ŷ = y − 2+
√
−2

3 , t̂ = t. Then S3 is given by(
− 7

3
+

4

3

√
−2
)
x̂ +

(2

3
+

4

3

√
−2
)
ŷ+

+
(
1 + 2

√
−2
)
x̂2 +

(
2 +
√
−2
)
ŷ2 + ŷ3 + x̂3 − qt̂3 = 0.

Let Π be the tangent plane in C3 to S3 at P. Then Π is given by

ŷ =
7− 4

√
−2

4
√
−2 + 2

x̂ .

Thus, the intersection Π ∩ S3 is given by(
− 10
√
−2− 31

)
x̂3 +

(
36− 18

√
−2
)
x̂2 + 8qt̂3 = 0.

Intersecting this curve with the line t = λx in Π, we get the point(
2− 18

√
−2

31− 8qλ3 + 10
√
−2

,
36λ− 18

√
−2

31− 8qλ3 + 10
√
−2

,
−27
√
−2− 54

31− 8qλ3 + 10
√
−2

)
.



Cubic Forms IV
We see that the surface S3 contain the point(

2− 18
√
−2

31− 8qλ3 + 10
√
−2

,
36λ− 18

√
−2

31− 8qλ3 + 10
√
−2

,
−27
√
−2− 54

31− 8qλ3 + 10
√
−2

)

in coordinates x̂ = x − 1+2
√
−2

3 , ŷ = y − 2+
√
−2

3 , t̂ = t.
Rewriting this point in coordinated x , y and t, we obtain the point(
− 2
√
−2 + 1

3
· 8qλ3 + 20

√
−2− 19

31− 8qλ3 + 10
√
−2

,

2
√
−2 + 4

3
· −4qλ3 + 5

√
−2− 25

31− 8qλ3 + 10
√
−2

,

λ(36− 18
√
−2)

31− 8qλ3 + 10
√
−2

)
contained in S3 for any λ ∈ C such that 31− 8qλ3 + 10

√
−2 6= 0.

I Main trick: put λ = a + b
√
−2 .



Cubic Forms V
Recall that S3 is the surface in Q3 given by x3 + y 3 + 1 = qt3. Put

x1 =
1

3

(2
√
−2 + 1)(−16

√
−2b3q − 48ab2q + 24

√
−2a2bq + 8a3q + 20

√
−2− 19)

−16
√
−2b3q − 48ab2q + 24

√
−2a2bq + 8a3q − 10

√
−2− 31

,

y1 =
2

3

(
√
−2 + 2)(−8

√
−2b3q − 24ab2q + 12

√
−2a2bq + 4a3q − 5

√
−2 + 25)

−16
√
−2b3q − 48ab2q + 24

√
−2a2bq + 8a3q − 10

√
−2− 31

,

t1 =
18(a+ b

√
−2)(

√
−2− 2)

−16
√
−2b3q − 48ab2q + 24

√
−2a2bq + 8a3q − 10

√
−2− 31

.

Then (x1, y1, t1) ∈ S3 for every rational a and b such that

−16
√
−2b3q − 48ab2q + 24

√
−2a2bq + 8a3q − 10

√
−2− 31 6= 0.

The complex conjugate point (x1, y 1, t1) also lies in S3. Put

x2 =
1

3

(−2
√
−2 + 1)(16

√
−2b3q − 48ab2q − 24

√
−2a2bq + 8a3q − 20

√
−2− 19)

16
√
−2b3q − 48ab2q − 24

√
−2a2bq + 8a3q + 10

√
−2− 31

,

y2 =
2

3

(−
√
−2 + 2)(8

√
−2b3q − 24ab2q − 12

√
−2a2bq + 4a3q + 5

√
−2 + 25)

16
√
−2b3q − 48ab2q − 24

√
−2a2bq + 8a3q + 10

√
−2− 31

,

t2 =
18(a− b

√
−2)(

√
−2− 2)

16
√
−2b3q − 48ab2q − 24

√
−2a2bq + 8a3q + 10

√
−2− 31

.

Then (x2, y2, t2) = (x1, y 1, t1) is contained in S3.



Cubic Forms VI
Let L be the line that contains (x1, y1, t1) and (x2, y2, t2). Then L is defined over Q.

The intersection L ∩ S3 consists of (x1, y1, t1), (x2, y2, t2) and
(

θ1
ε
,
θ2
ε
,
θ3
ε

)
, where

θ1 = −512a12q4 + 6144a10b2q4 + 30720a8b4q4 + 81920a6b6q4 + 122880a4b8q4 + 98304a2b10q4+

+ 32768b12q4 − 1600a9q3 + 1920a8bq3 + 10240a6b3q3 + 38400a5b4q3 + 15360a4b5q3 + 102400a3b6q3+

+ 76800ab8q3 − 10240b9q3 + 108440a6q2 + 30048a5bq2 − 317760a4b2q2 − 760192a3b3q2 + 1192800a2b4q2+

+ 120192ab5q2 − 496000b6q2 − 173691a3q + 633582a2bq − 729324ab2q + 286200b3q − 729.

θ2 = 2304a9q3 + 34560a8bq3 + 184320a6b3q3 − 55296a5b4q3 + 276480a4b5q3−

− 147456a3b6q3− 110592ab8q3− 184320b9q3− 59328a6q2− 146880a5bq2 + 100224a4b2q2 + 419328a3b3q2−

− 200448a2b4q2 − 587520ab5q2 + 474624b6q2 − 261468a3q + 801900a2bq − 793152ab2q + 252720b3q.

θ3 = −4608a10q3 − 4608a9bq3 − 27648a8b2q3 − 36864a7b3q3 − 36864a6b4q3−

− 110592a5b5q3 + 73728a4b6q3 − 147456a3b7q3 + 221184a2b8q3 − 73728ab9q3 + 147456b10q3+

+ 14976a7q2− 19584a6bq2 + 165888a5b2q2− 105984a4b3q2 + 281088a3b4q2− 207360a2b5q2 + 18432ab6q2−

− 147456b7q2 − 290952a4q + 255960a3bq + 820368a2b2q − 1402272ab3q + 616896b4q + 8748a− 8748b.

ε = 512a12q4 + 6144a10b2q4 + 30720a8b4q4 + 81920a6b6q4 + 122880a4b8q4+

+ 98304a2b10q4 + 32768b12q4 − 1600a9q3 + 1920a8bq3 + 10240a6b3q3 + 38400a5b4q3 + 15360a4b5q3+

+ 102400a3b6q3 + 76800ab8q3 − 10240b9q3 − 15976a6q2 − 343200a5bq2 + 55488a4b2q2 + 608384a3b3q2+

+446304a2b4q2−1372800ab5q2 +499328b6q2 +246213a3q−626130a2bq+530388ab2q−133704b3q−729.



Cubic Forms VII
For every rational a and b such that ε 6= 0, we have(

θ1

ε

)3

+

(
θ2

ε

)3

+ 1 = q

(
θ3

ε

)3

.

Thus, for every rational a and b such that θ3 6= 0, we have

q =

(
θ1

θ3

)3

+

(
θ2

θ3

)3

+

(
ε

θ3

)3

.

For example, put a = 1 and b = 0. Then

θ1

θ3
=

1

36

512q4 − 1600q3 + 108440q2 − 173691q − 729

128q3 − 416q2 + 8082q − 243
,

θ2

θ3
= − q(64q2 − 1648q − 7263)

128q3 − 416q2 + 8082q − 243
,

ε

θ3
= − 1

36

512q4 − 1600q3 − 15976q2 + 246213q − 729

128q3 − 416q2 + 8082q − 243
.



Non-rational unirational cubic surfaces
Let S3 be a smooth cubic surface in P3

C that is defined over Q.

Theorem (Segre, 1943)

Suppose that for every curve C ⊂ S3 defined over Q one has

C = S3 ∩ F

for some surface F in P3
C. Then S3 is not rational over Q.

Example

Let S3 be the surface in P3
C that is given by

2x3 + 3y3 + 5z3 + 7t3 = 0.

Then for every curve C ⊂ S3 defined over Q one has

C = S3 ∩ F

for some surface F ⊂ P3
C. But [1 : 1 : −1 : 0] ∈ S3.

Thus, the surface S3 is unirational and non-rational over Q.


