Dubna 2018: lines on cubic surfaces

Ivan Cheltsov

23rd July 2018

Lecture 3: twenty seven lines on smooth cubic surface

Every smooth cubic surface contains twenty seven lines
Let S_{3} be a smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$.
Theorem (Cayley, Salmon)
The surface S_{3} contains exactly 27 lines.

Lines on the Fermat cubic surface I

- Let S_{3} be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{3}+z^{3}+t^{3}=0$.
- Then S_{3} is irreducible and smooth.

Put $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then S_{3} contains lines

$$
\begin{gathered}
x+t=y+z=0, x+t=y+\omega z=0, x+t=y+\omega^{2} z=0 \\
x+\omega t=y+z=0, x+\omega t=y+\omega z=0, x+\omega t=y+\omega^{2} z=0 \\
x+\omega^{2} t=y+z=0, x+\omega^{2} t=y+\omega z=0, x+\omega^{2} t=y+\omega^{2} z=0 \\
y+t=x+z=0, y+t=x+\omega z=0, y+t=x+\omega^{2} z=0 \\
y+\omega t=x+z=0, y+\omega t=x+\omega z=0, y+\omega t=x+\omega^{2} z=0 \\
y+\omega^{2} t=x+z=0, y+\omega^{2} t=x+\omega z=0, y+\omega^{2} t=x+\omega^{2} z=0 \\
z+t=x+y=0, z+t=x+\omega y=0, z+t=x+\omega^{2} y=0 \\
z+\omega t=x+y=0, z+\omega t=x+\omega y=0, z+\omega t=x+\omega^{2} y=0 \\
z+\omega^{2} t=x+y=0, z+\omega^{2} t=x+\omega y=0, z+\omega^{2} t=x+\omega^{2} y=0
\end{gathered}
$$

Lines on the Fermat cubic surface II

Let S_{3} be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{3}+z^{3}+t^{3}=0$.

- Let L be a line in $\mathbb{P}_{\mathbb{C}}^{3}$ such that $L \subset S_{3}$.
- Let $P=[a: b: 0: c]$ be the intersection of L with $z=0$.
- Let $Q=[\alpha: \beta: \gamma: 0]$ be the intersection of L with $t=0$.

We may assume that $P \neq Q$. Then L is given by

$$
\lambda[a: b: 0: c]+\mu[\alpha: \beta: \gamma: 0]
$$

where $[\lambda: \mu]$ runs through all points in $\mathbb{P}_{\mathbb{C}}^{1}$. Then

$$
(\lambda a+\mu \alpha)^{3}+(\lambda b+\mu \beta)^{3}+\lambda^{3} c^{3}+\mu^{3} \gamma^{3}=0
$$

for every $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives

$$
\lambda^{3}\left(a^{3}+b^{3}+c^{3}\right)+3 \lambda^{2} \mu\left(a^{2} \alpha+b^{2} \beta\right)+3 \lambda \mu^{2}\left(a \alpha^{2}+b \beta^{2}\right)+\mu^{3}\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)=0
$$

for every $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives

$$
a^{3}+b^{3}+c^{3}=a^{2} \alpha+b^{2} \beta=a \alpha^{2}+b \beta^{2}=\alpha^{3}+\beta^{3}+\gamma^{3}=0
$$

Let us use these equations to show that L is one of our 27 lines.

Lines on the Fermat cubic surface III

We have the line L that consists of the points

$$
[\lambda a+\mu \alpha: \lambda b+\mu \beta: \mu \gamma: \lambda c]
$$

where $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. We also have

$$
a^{3}+b^{3}+c^{3}=a^{2} \alpha+b^{2} \beta=a \alpha^{2}+b \beta^{2}=\alpha^{3}+\beta^{3}+\gamma^{3}=0
$$

Suppose that $a=0$. Then

$$
b^{3}+c^{3}=b^{2} \beta=\alpha^{3}+\beta^{3}+\gamma^{3}=0 .
$$

This gives $\beta=0, b^{3}+c^{3}=0$ and $\alpha^{3}+\gamma^{3}=0$. Then

$$
P=\left[0: \omega^{i}: 0: 1\right]
$$

and $Q=\left[\omega^{j}: 0: 1: 0\right]$ for some i and j. Then L is one of the lines

$$
\begin{gathered}
y+t=x+z=0, y+t=x+\omega z=0, y+t=x+\omega^{2} z=0 \\
y+\omega t=x+z=0, y+\omega t=x+\omega z=0, y+\omega t=x+\omega^{2} z=0 \\
y+\omega^{2} t=x+z=0, y+\omega^{2} t=x+\omega z=0, y+\omega^{2} t=x+\omega^{2} z=0
\end{gathered}
$$

Lines on the Fermat cubic surface IV

We may assume that $a \neq 0$. Then

$$
P=[a: b: 0: c]=\left[1: \frac{b}{a}: 0: \frac{c}{a}\right],
$$

so that we may assume that $a=1$. Then L consists of the points

$$
[\lambda+\mu \alpha: \lambda b+\mu \beta: \mu \gamma: \lambda c]
$$

where $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. We also have

$$
1+b^{3}+c^{3}=\alpha+b^{2} \beta=\alpha^{2}+b \beta^{2}=\alpha^{3}+\beta^{3}+\gamma^{3}=0
$$

Suppose that $b=0$. Then $1+c^{3}=\beta=\alpha^{3}+\beta^{3}+\gamma^{3}=0$. This gives $\beta=0,1+c^{3}=0$ and $\alpha^{3}+\gamma^{3}=0$. Then

$$
P=\left[1: 0: 0: \omega^{i}\right]
$$

and $Q=\left[\omega^{j}: 0: 0: 1\right]$ for some i and j. Then L is one of the lines

$$
\begin{gathered}
x+t=y+z=0, x+t=y+\omega z=0, x+t=y+\omega^{2} z=0 \\
x+\omega t=y+z=0, x+\omega t=y+\omega z=0, x+\omega t=y+\omega^{2} z=0 \\
x+\omega^{2} t=y+z=0, x+\omega^{2} t=y+\omega z=0, x+\omega^{2} t=y+\omega^{2} z=0
\end{gathered}
$$

Lines on the Fermat cubic surface V

Thus, we may assume that $b \neq 0$. Recall that

$$
1+b^{3}+c^{3}=\alpha+b^{2} \beta=\alpha^{2}+b \beta^{2}=\alpha^{3}+\beta^{3}+\gamma^{3}=0
$$

This implies that $\beta \neq 0$ and $\alpha \neq 0$, since $(\alpha, \beta, \gamma) \neq(0,0,0)$.
Then we may assume that $\beta=1$, since

$$
Q=[\alpha: \beta: \gamma: 0]=\left[\frac{\alpha}{\beta}: 1: \frac{\gamma}{\beta}: 0\right] .
$$

Then $1+b^{3}+c^{3}=\alpha+b^{2}=\alpha^{2}+b=\alpha^{3}+1+\gamma^{3}=0$.
Now using $\alpha+b^{2}=\alpha^{2}+b=0$, we get $b^{3}=\alpha^{3}=-1$.
Then $c=\gamma=0$, since $1+b^{3}+c^{3}=\alpha^{3}+1+\gamma^{3}=0$. Then

$$
P=\left[1: \omega^{i}: 0: 0\right]
$$

and $Q=\left[\omega^{j}: 1: 0: 1\right]$ for some i and j. Then L is one of the lines

$$
\begin{gathered}
z+t=x+y=0, z+t=x+\omega y=0, z+t=x+\omega^{2} y=0 \\
z+\omega t=x+y=0, z+\omega t=x+\omega y=0, z+\omega t=x+\omega^{2} y=0 \\
z+\omega^{2} t=x+y=0, z+\omega^{2} t=x+\omega y=0, z+\omega^{2} t=x+\omega^{2} y=0
\end{gathered}
$$

Twenty seven lines on smooth cubic surface

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using brute force I Let S_{3} be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{3}+z^{2} t+t^{3}=0$.

- Let L be a line in $\mathbb{P}_{\mathbb{C}}^{3}$ such that $L \subset S_{3}$.
- Let $P=[0: a: b: c]$ be the intersection of L with $x=0$.
- Let $Q=[\alpha: 0: \beta: \gamma]$ be the intersection of L with $y=0$.

Suppose that $P=Q$. Then $P=Q$ is one of the three points

$$
[0: 0: 1: 0],[0: 0: 1: i],[0: 0: 1:-i] .
$$

Let Π be the tangent plane to S_{3} at P. Then $L \subseteq \Pi \cap S_{3}$.

- If $P=[0: 0: 1: 0]$, then Π is given by $t=0$.
- If $P=[0: 0: 1: i]$, then Π is given by $z+i t=0$.
- If $P=[0: 0: 1:-i]$, then Π is given by $z-i t=0$.

Put $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. This gives us 9 lines on S_{3} given by

$$
x+y=t=0, x+\omega y=t=0, x+\omega^{2} y=t=0
$$

$$
x+y=z+i t=0, x+\omega y=z+i t=0, x+\omega^{2} y=z+i t=0
$$

$$
x+y=z-i t=0, x+\omega y=z-i t=0, x+\omega^{2} y=z-i t=0 .
$$

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using brute force II
Now we assume that $P \neq Q$, and neither P nor Q is among

$$
[0: 0: 1: 0],[0: 0: 1: i],[0: 0: 1:-i] .
$$

Then the line L is given by

$$
\lambda[0: a: b: c]+\mu[\alpha: 0: \beta: \gamma],
$$

where $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$ and $a \neq 0$ and $\alpha \neq 0$. Then

$$
\mu^{3} \alpha^{3}+\lambda^{3} a^{3}+(\lambda c+\mu \gamma)(\lambda b+\mu \beta)^{2}+(\lambda c+\mu \gamma)^{3}=0
$$

for every $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives

$$
a^{3}+b^{2} c+c^{3}=2 \beta b c+\gamma b^{2}+3 \gamma c^{2}=c \beta^{2}+2 b c \beta+3 c \gamma^{2}=\alpha^{3}+\beta^{2} \gamma+\gamma^{3}=0 .
$$

Let us use these equations to find the remaining lines on S_{3}.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using brute force III
The line L in $\mathbb{P}_{\mathbb{C}}^{3}$ consists of the points

$$
[\mu \alpha: \lambda a: \lambda b+\mu \beta: \lambda c+\mu \gamma]
$$

where $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$ and $a \neq 0$ and $\alpha \neq 0$ and
$a^{3}+b^{2} c+c^{3}=2 \beta b c+\gamma b^{2}+3 \gamma c^{2}=c \beta^{2}+2 b c \beta+3 c \gamma^{2}=\alpha^{3}+\beta^{2} \gamma+\gamma^{3}=0$.
Then $c \neq 0$ and $\gamma \neq 0$. Thus, we can put $c=\gamma=1$. Then

$$
a^{3}+b^{2}+1=2 \beta b+b^{2}+3=\beta^{2}+2 b \beta+3=\alpha^{3}+\beta^{2}+1=0 .
$$

Then $b \neq 0$ and $\beta \neq 0$. Then $\beta=-\frac{3+b^{2}}{2 b}$, so that

$$
\left(-\frac{3+b^{2}}{2 b}\right)^{2}+2 b\left(-\frac{3+b^{2}}{2 b}\right)^{2}+3=\beta^{2}+2 b \beta+3=0
$$

which gives $b^{4}-2 b^{2}-3=0$. Then either $b= \pm \sqrt{3}$ or $b= \pm i$.
If $b= \pm i$, then $a=0$. By assumption, this is not the case.

- We have $b= \pm \sqrt{3}, \beta=\mp \sqrt{3}, a^{3}=-4$ and $\alpha^{3}=-4$.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using brute force IV
Put $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then S_{3} contains 9 lines

$$
\begin{gathered}
x+y=t=0, x+\omega y=t=0, x+\omega^{2} y=t=0 \\
x+y=z+i t=0, x+\omega y=z+i t=0, x+\omega^{2} y=z+i t=0 \\
x+y=z-i t=0, x+\omega y=z-i t=0, x+\omega^{2} y=z-i t=0
\end{gathered}
$$

For every i and j in $\{0,1,2\}$, the surface S_{3} contains the line

$$
\left[-\mu \sqrt[3]{4} \omega^{i}:-\lambda \sqrt[3]{4} \omega^{j}: \pm \sqrt{3}(\lambda-\mu): \lambda+\mu\right]
$$

where $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives us 18 lines

$$
6 y-\sqrt{3} \sqrt[3]{4} \omega^{i} z-3 \sqrt[3]{4} \omega^{i} t=3 \omega^{i} x+3 y \omega^{j}-\sqrt{3} \sqrt[3]{4} \omega^{j+i} z=0
$$

$$
6 y+\sqrt{3} \sqrt[3]{4} \omega^{i} z-3 \sqrt[3]{4} \omega^{i} t=3 \omega^{i} x+3 y \omega^{j}+\sqrt{3} \sqrt[3]{4} \omega^{j+i} z=0
$$

Thus, we proved that S_{3} does not contain other lines.

- This approach is not easy to apply in general.

Twenty seven lines on Clebsch cubic surface

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics I

Let S_{3} be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{3}+z^{2} t+t^{3}=0$.

- The surface S_{3} contains the line L given by $t=x+y=0$. Let Π be a plane in $\mathbb{P}_{\mathbb{C}}^{3}$ that contains the line L. Then

$$
S_{3} \cap \Pi=L \cup C,
$$

where C is a conic in Π. The plane Π is given by

$$
\lambda(x+y)+\mu t=0
$$

for some $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. Put $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$.

- If $[\lambda: \mu]=[0: 1]$, then C splits as a union of the line

$$
x+\omega y=t=0
$$

and the line $x+\omega^{2} y=t=0$.

- If $[\lambda: \mu]=[1: 0]$, then C splits as a union of the line

$$
x+y=z+i t=0
$$

and the line $x+y=z-i t=0$.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics II

Let Π be a plane in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $t=\lambda(x+y)$ for $\lambda \in \mathbb{C}$. Then

$$
\Pi \cap S_{3}=L \cup C
$$

where L is the line $t=x+y=0$ and C is a conic in Π. Then

$$
\left\{\begin{array}{l}
t=\lambda(x+y) \\
x^{3}+y^{3}+\lambda z^{2}(x+y)+\lambda^{3}(x+y)^{3}=0
\end{array}\right.
$$

defines the intersection $\Pi \cap S_{3}$. Then C is given by

$$
\left\{\begin{array}{l}
t=\lambda(x+y) \\
x^{2}-x y+y^{2}+\lambda z^{2}+\lambda^{3}(x+y)^{2}=0
\end{array}\right.
$$

The conic C is isomorphic to the conic in $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\left(1+\lambda^{3}\right) x^{2}+\left(2 \lambda^{3}-1\right) x y+\left(1+\lambda^{3}\right) y^{2}+\lambda z^{2}=0
$$

Then C splits as a union of two lines if and only if

$$
\left.\begin{array}{ccc}
1+\lambda^{3} & \frac{2 \lambda^{3}-1}{2} & 0 \\
\frac{2 \lambda^{3}-1}{2} & 1+\lambda^{3} & 0 \\
0 & 0 & \lambda
\end{array} \right\rvert\,=\lambda\left(3 \lambda^{3}+\frac{3}{4}\right)=0
$$

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics III

- Let Π be a plane in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $t=\lambda(x+y)$ for $\lambda \in \mathbb{C}$.
- Then $\Pi \cap S_{3}$ is a union of the line $t=x+y=0$ and conic

$$
x^{2}-x y+y^{2}+\lambda z^{2}+\lambda^{3}(x+y)^{2}=t-\lambda(x+y)=0 .
$$

- This conic is reducible $\Longleftrightarrow \lambda=\infty, 0,-\frac{1}{\sqrt[3]{4}},-\frac{1}{\sqrt[3]{4} \omega},-\frac{1}{\sqrt[3]{4} \omega^{2}}$.

Thus, the line $t=x+y=0$ gives us 10 more lines

1. $x+y=z+i t=0$,
2. $x+y=z-i t=0$,
3. $x+\omega y=t=0$,
4. $x+\omega^{2} y=t=0$,
5. $\sqrt{3} x-\sqrt{3} y-z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}(x+y)=0$,
6. $\sqrt{3} x-\sqrt{3} y+z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}(x+y)=0$,
7. $\sqrt{3} x-\sqrt{3} y-z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}(x+y)=0$,
8. $\sqrt{3} x-\sqrt{3} y+z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}(x+y)=0$,
9. $\sqrt{3} x-\sqrt{3} y-z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}(x+y)=0$,
10. $\sqrt{3} x-\sqrt{3} y+z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}(x+y)=0$.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics IV

- Let Π be a plane in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $t=\lambda(x+\omega y)$ for $\lambda \in \mathbb{C}$.
- Then $\Pi \cap S_{3}$ is a union of the line $t=x+\omega y=0$ and conic

$$
x^{2}-\omega x y+\omega^{2} y^{2}+\lambda z^{2}+\lambda^{3}(x+\omega y)^{2}=t-\lambda(x+\omega y)=0 .
$$

- This conic is reducible $\Longleftrightarrow \lambda=\infty, 0,-\frac{1}{\sqrt[3]{4}},-\frac{1}{\sqrt[3]{4} \omega},-\frac{1}{\sqrt[3]{4} \omega^{2}}$.

Thus, the line $t=x+\omega y=0$ gives us 10 more lines

1. $x+\omega y=z+i t=0$,
2. $x+\omega y=z-i t=0$,
3. $x+\omega^{2} y=t=0$,
4. $x+y=t=0$,
5. $\sqrt{3} x-\sqrt{3} \omega y-z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}(x+\omega y)=0$,
6. $\sqrt{3} x-\sqrt{3} \omega y+z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}(x+\omega y)=0$,
7. $\sqrt{3} x-\sqrt{3} \omega y-z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}(x+\omega y)=0$,
8. $\sqrt{3} x-\sqrt{3} \omega y+z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}(x+\omega y)=0$,
9. $\sqrt{3} x-\sqrt{3} \omega y-z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}(x+\omega y)=0$,
10. $\sqrt{3} x-\sqrt{3} \omega y+z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}(x+\omega y)=0$.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics \vee

- Let Π be a plane in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $t=\lambda\left(x+\omega^{2} y\right)$ for $\lambda \in \mathbb{C}$.
- Then $\Pi \cap S_{3}$ is a union of the line $t=x+\omega^{2} y=0$ and conic

$$
x^{2}-\omega^{2} x y+\omega y^{2}+\lambda z^{2}+\lambda^{3}\left(x+\omega^{2} y\right)^{2}=t-\lambda\left(x+\omega^{2} y\right)=0
$$

- This conic is reducible $\Longleftrightarrow \lambda=\infty, 0,-\frac{1}{\sqrt[3]{4}},-\frac{1}{\sqrt[3]{4} \omega},-\frac{1}{\sqrt[3]{4} \omega^{2}}$.

Thus, the line $t=x+\omega^{2} y=0$ gives us 10 more lines

1. $x+\omega^{2} y=z+i t=0$,
2. $x+\omega^{2} y=z-i t=0$,
3. $x+\omega y=t=0$,
4. $x+y=t=0$,
5. $\sqrt{3} x-\sqrt{3} \omega^{2} y-z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}\left(x+\omega^{2} y\right)=0$,
6. $\sqrt{3} x-\sqrt{3} \omega^{2} y+z \sqrt[3]{4}=t+\frac{1}{\sqrt[3]{4}}\left(x+\omega^{2} y\right)=0$,
7. $\sqrt{3} x-\sqrt{3} \omega^{2} y-z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}\left(x+\omega^{2} y\right)=0$,
8. $\sqrt{3} x-\sqrt{3} \omega^{2} y+z \sqrt[3]{4} \omega=t+\frac{1}{\sqrt[3]{4} \omega}\left(x+\omega^{2} y\right)=0$,
9. $\sqrt{3} x-\sqrt{3} \omega^{2} y-z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}\left(x+\omega^{2} y\right)=0$,
10. $\sqrt{3} x-\sqrt{3} \omega^{2} y+z \sqrt[3]{4} \omega^{2}=t+\frac{1}{\sqrt[3]{4} \omega^{2}}\left(x+\omega^{2} y\right)=0$.

Lines on $x^{3}+y^{3}+z^{2} t+t^{3}=0$ using conics VI

Let Π be the plane $t=0$. Then $\Pi \cap S_{3}$ is a union of 3 lines

$$
t=x+y=0, t=x+\omega y=0, t=x+\omega^{2} y=0
$$

- We found 10 lines in S_{3} that intersect $t=x+y=0$.
- We found 10 lines in S_{3} that intersect $t=x+\omega y=0$.
- We found 10 lines in S_{3} that intersect $t=x+\omega^{2} y=0$.
- This gives us 27 lines.

Let ℓ be a line in $\mathbb{P}_{\mathbb{C}}^{3}$ that is contained in S_{3}.
Lemma
ℓ intersects $t=x+y=0, t=x+\omega y=0$ or $t=x+\omega^{2} y=0$.
Proof.
Either $\ell \subset \Pi$ or $\ell \cap \Pi$ consists of one point.

- Thus, the 27 lines we found are all lines on the surface S_{3}.

Twenty seven lines on smooth cubic surface

Let S_{3} be any smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$.
Theorem (Cayley, Salmon)
The surface S_{3} contains exactly 27 lines.
Proof.

- Show that S_{3} contains a line L_{1}.
- Find a plane $\Pi \subset \mathbb{P}_{\mathbb{C}}^{3}$ such that

$$
\Pi \cap S_{3}=L_{1} \cup L_{2} \cup L_{3}
$$

for two more lines L_{3} and L_{3}.

- Find all lines in S_{3} that intersect L_{1}.
- Find all lines in S_{3} that intersect L_{2}.
- Find all lines in S_{3} that intersect L_{3}.
- This gives us all lines that are contained in S_{3}.
- Since S_{3} is smooth, this gives 27 lines.

Smooth cubic surfaces as blow ups of the plane

 Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Let$$
\left\{\begin{array}{l}
A(x, y, z)=(6 \omega+3) y^{2} z+2 i x z^{2}-i x^{2} y \\
B(x, y, z)=(3 \omega-3) y^{2} z+i \omega x^{2} y-2 i x z^{2} \\
C(x, y, z)=(3 \omega-3) y z^{2}+(3 \omega+6) x y^{2}+i x^{2} z \\
D(x, y, z)=i(3 \omega-3) y z^{2}+x^{2} z
\end{array}\right.
$$

Let $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ be a map that it given by

$$
[x: y: z] \mapsto[A(x, y, z): B(x, y, z): C(x, y, z): D(x, y, z)]
$$

Then ϕ is not defined at 6 points. There is a commutative diagram

where f blows up these 6 points, and g is well defined.

- The image of g is the surface given by $x^{3}+y^{3}+z^{2} t+t^{3}=0$.

