Dubna 2018: lines on cubic surfaces

Ivan Cheltsov

23rd July 2018

Lecture 3: twenty seven lines on smooth cubic surface

Every smooth cubic surface contains twenty seven lines Let S_3 be a smooth cubic surface in $\mathbb{P}^3_{\mathbb{C}}$. Theorem (Cayley, Salmon) The surface S_3 contains exactly 27 lines.

Lines on the Fermat cubic surface I

► Let
$$S_3$$
 be the surface in $\mathbb{P}^3_{\mathbb{C}}$ given by $x^3 + y^3 + z^3 + t^3 = 0$.
► Then S_3 is irreducible and smooth.
Put $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then S_3 contains lines
 $x + t = y + z = 0, x + t = y + \omega z = 0, x + t = y + \omega^2 z = 0,$
 $x + \omega t = y + z = 0, x + \omega t = y + \omega z = 0, x + \omega t = y + \omega^2 z = 0,$
 $x + \omega^2 t = y + z = 0, x + \omega^2 t = y + \omega z = 0, x + \omega^2 t = y + \omega^2 z = 0,$
 $y + \omega^2 t = x + z = 0, y + t = x + \omega z = 0, y + t = x + \omega^2 z = 0,$
 $y + \omega t = x + z = 0, y + \omega t = x + \omega z = 0, y + \omega t = x + \omega^2 z = 0,$
 $y + \omega^2 t = x + z = 0, y + \omega^2 t = x + \omega z = 0, y + \omega t = x + \omega^2 z = 0,$
 $z + \omega t = x + y = 0, z + t = x + \omega y = 0, z + t = x + \omega^2 y = 0,$
 $z + \omega t = x + y = 0, z + \omega t = x + \omega y = 0, z + \omega t = x + \omega^2 y = 0,$
 $z + \omega^2 t = x + y = 0, z + \omega t = x + \omega y = 0, z + \omega t = x + \omega^2 y = 0,$

Lines on the Fermat cubic surface II

Let S_3 be the surface in $\mathbb{P}^3_{\mathbb{C}}$ given by $x^3 + y^3 + z^3 + t^3 = 0$.

- Let *L* be a line in $\mathbb{P}^3_{\mathbb{C}}$ such that $L \subset S_3$.
- Let P = [a : b : 0 : c] be the intersection of L with z = 0.
- Let $Q = [\alpha : \beta : \gamma : 0]$ be the intersection of L with t = 0.

We may assume that $P \neq Q$. Then L is given by

$$\lambda [\mathbf{a}:\mathbf{b}:\mathbf{0}:\mathbf{c}] + \mu [\alpha:\beta:\gamma:\mathbf{0}],$$

where $[\lambda : \mu]$ runs through all points in $\mathbb{P}^1_{\mathbb{C}}$. Then

$$\left(\lambda \mathbf{a} + \mu \alpha\right)^3 + \left(\lambda \mathbf{b} + \mu \beta\right)^3 + \lambda^3 c^3 + \mu^3 \gamma^3 = 0$$

for every $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. This gives $\lambda^3(a^3+b^3+c^3)+3\lambda^2\mu(a^2\alpha+b^2\beta)+3\lambda\mu^2(a\alpha^2+b\beta^2)+\mu^3(\alpha^3+\beta^3+\gamma^3)=0$

for every $[\lambda:\mu]\in\mathbb{P}^1_{\mathbb{C}}.$ This gives

$$a^{3} + b^{3} + c^{3} = a^{2}\alpha + b^{2}\beta = a\alpha^{2} + b\beta^{2} = \alpha^{3} + \beta^{3} + \gamma^{3} = 0.$$

Let us use these equations to show that L is one of our 27 lines.

Lines on the Fermat cubic surface III

We have the line L that consists of the points

$$\left[\lambda \mathbf{a} + \mu \alpha : \lambda \mathbf{b} + \mu \beta : \mu \gamma : \lambda \mathbf{c}\right]$$

where $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. We also have

$$a^3+b^3+c^3=a^2lpha+b^2eta=alpha^2+beta^2=lpha^3+eta^3+\gamma^3=0.$$

Suppose that a = 0. Then

$$b^{3} + c^{3} = b^{2}\beta = \alpha^{3} + \beta^{3} + \gamma^{3} = 0.$$

This gives $\beta=0,\ b^3+c^3=0$ and $\alpha^3+\gamma^3=0.$ Then $P=\left[0:\omega^i:0:1
ight]$

and $Q = [\omega^{j} : 0 : 1 : 0]$ for some *i* and *j*. Then *L* is one of the lines $y + t = x + z = 0, y + t = x + \omega z = 0, y + t = x + \omega^{2} z = 0,$ $y + \omega t = x + z = 0, y + \omega t = x + \omega z = 0, y + \omega t = x + \omega^{2} z = 0,$ $y + \omega^{2} t = x + z = 0, y + \omega^{2} t = x + \omega z = 0, y + \omega^{2} t = x + \omega^{2} z = 0.$

Lines on the Fermat cubic surface IV

We may assume that $a \neq 0$. Then

$$P = \left[a:b:0:c\right] = \left[1:\frac{b}{a}:0:\frac{c}{a}\right],$$

so that we may assume that a = 1. Then L consists of the points

$$\left[\lambda + \mu\alpha : \lambda b + \mu\beta : \mu\gamma : \lambda c\right]$$

where $[\lambda:\mu]\in \mathbb{P}^1_{\mathbb{C}}.$ We also have

$$1 + b^{3} + c^{3} = \alpha + b^{2}\beta = \alpha^{2} + b\beta^{2} = \alpha^{3} + \beta^{3} + \gamma^{3} = 0$$

Suppose that b = 0. Then $1 + c^3 = \beta = \alpha^3 + \beta^3 + \gamma^3 = 0$. This gives $\beta = 0$, $1 + c^3 = 0$ and $\alpha^3 + \gamma^3 = 0$. Then

$$P = \left[1:0:0:\omega^{i}\right]$$

and $Q = [\omega^j: 0: 0: 1]$ for some i and j. Then L is one of the lines

$$x + t = y + z = 0, x + t = y + \omega z = 0, x + t = y + \omega^2 z = 0,$$

$$\begin{aligned} x + \omega t &= y + z = 0, \\ x + \omega t &= y + \omega z = 0, \\ x + \omega^2 t &= y + z = 0, \\ x + \omega^2 t &= y + \omega z = 0, \\ x + \omega^2 t &= y + \omega^2 z = 0. \end{aligned}$$

Lines on the Fermat cubic surface V

Thus, we may assume that $b \neq 0$. Recall that

$$1 + b^{3} + c^{3} = \alpha + b^{2}\beta = \alpha^{2} + b\beta^{2} = \alpha^{3} + \beta^{3} + \gamma^{3} = 0$$

This implies that $\beta \neq 0$ and $\alpha \neq 0$, since $(\alpha, \beta, \gamma) \neq (0, 0, 0)$. Then we may assume that $\beta = 1$, since

$$Q = \left[\alpha : \beta : \gamma : \mathbf{0}\right] = \left[\frac{\alpha}{\beta} : \mathbf{1} : \frac{\gamma}{\beta} : \mathbf{0}\right].$$

Then $1 + b^3 + c^3 = \alpha + b^2 = \alpha^2 + b = \alpha^3 + 1 + \gamma^3 = 0$. Now using $\alpha + b^2 = \alpha^2 + b = 0$, we get $b^3 = \alpha^3 = -1$. Then $c = \gamma = 0$, since $1 + b^3 + c^3 = \alpha^3 + 1 + \gamma^3 = 0$. Then $P = [1 : \omega^i : 0 : 0]$

and $Q = [\omega^{j} : 1 : 0 : 1]$ for some *i* and *j*. Then *L* is one of the lines $z + t = x + y = 0, z + t = x + \omega y = 0, z + t = x + \omega^{2} y = 0,$ $z + \omega t = x + y = 0, z + \omega t = x + \omega y = 0, z + \omega t = x + \omega^{2} y = 0,$ $z + \omega^{2} t = x + y = 0, z + \omega^{2} t = x + \omega y = 0, z + \omega^{2} t = x + \omega^{2} y = 0.$

Twenty seven lines on smooth cubic surface

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using brute force I Let S_3 be the surface in $\mathbb{P}^3_{\mathbb{C}}$ given by $x^3 + y^3 + z^2t + t^3 = 0$.

- Let *L* be a line in $\mathbb{P}^3_{\mathbb{C}}$ such that $L \subset S_3$.
- Let P = [0 : a : b : c] be the intersection of L with x = 0.
- Let $Q = [\alpha : 0 : \beta : \gamma]$ be the intersection of L with y = 0.

Suppose that P = Q. Then P = Q is one of the three points

$$[0:0:1:0], [0:0:1:i], [0:0:1:-i].$$

Let Π be the tangent plane to S_3 at P. Then $L \subseteq \Pi \cap S_3$.

- If P = [0:0:1:0], then Π is given by t = 0.
- If P = [0:0:1:i], then Π is given by z + it = 0.
- If P = [0:0:1:-i], then Π is given by z it = 0.

Put $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. This gives us 9 lines on S_3 given by

$$x + y = t = 0, x + \omega y = t = 0, x + \omega^2 y = t = 0,$$

 $x + y = z + it = 0, x + \omega y = z + it = 0, x + \omega^2 y = z + it = 0,$ $x + y = z - it = 0, x + \omega y = z - it = 0, x + \omega^2 y = z - it = 0.$ Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using brute force II

Now we assume that $P \neq Q$, and neither P nor Q is among

$$[0:0:1:0], [0:0:1:i], [0:0:1:-i].$$

Then the line L is given by

$$\lambda \big[\mathbf{0} : \mathbf{a} : \mathbf{b} : \mathbf{c} \big] + \mu \big[\alpha : \mathbf{0} : \beta : \gamma \big],$$

where $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$ and $a \neq 0$ and $\alpha \neq 0$. Then

$$\mu^{3}\alpha^{3} + \lambda^{3}a^{3} + \left(\lambda c + \mu\gamma\right)\left(\lambda b + \mu\beta\right)^{2} + \left(\lambda c + \mu\gamma\right)^{3} = 0$$

for every $[\lambda:\mu]\in \mathbb{P}^1_{\mathbb{C}}.$ This gives

 $a^3+b^2c+c^3=2\beta bc+\gamma b^2+3\gamma c^2=c\beta^2+2bc\beta+3c\gamma^2=\alpha^3+\beta^2\gamma+\gamma^3=0.$

Let us use these equations to find the remaining lines on S_3 .

Lines on $x^3 + v^3 + z^2t + t^3 = 0$ using brute force III The line *L* in $\mathbb{P}^3_{\mathbb{C}}$ consists of the points $[\mu\alpha:\lambda a:\lambda b+\mu\beta:\lambda c+\mu\gamma],$ where $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$ and $a \neq 0$ and $\alpha \neq 0$ and $a^{3}+b^{2}c+c^{3}=2\beta bc+\gamma b^{2}+3\gamma c^{2}=c\beta^{2}+2bc\beta+3c\gamma^{2}=\alpha^{3}+\beta^{2}\gamma+\gamma^{3}=0.$ Then $c \neq 0$ and $\gamma \neq 0$. Thus, we can put $c = \gamma = 1$. Then $a^{3} + b^{2} + 1 = 2\beta b + b^{2} + 3 = \beta^{2} + 2b\beta + 3 = \alpha^{3} + \beta^{2} + 1 = 0.$ Then $b \neq 0$ and $\beta \neq 0$. Then $\beta = -\frac{3+b^2}{2b}$, so that $\left(-\frac{3+b^2}{2b}\right)^2 + 2b\left(-\frac{3+b^2}{2b}\right)^2 + 3 = \beta^2 + 2b\beta + 3 = 0,$ which gives $b^4 - 2b^2 - 3 = 0$. Then either $b = \pm \sqrt{3}$ or $b = \pm i$.

If $b = \pm i$, then a = 0. By assumption, this is not the case.

• We have
$$b = \pm \sqrt{3}$$
, $\beta = \mp \sqrt{3}$, $a^3 = -4$ and $\alpha^3 = -4$.

Lines on
$$x^{3} + y^{3} + z^{2}t + t^{3} = 0$$
 using brute force IV
Put $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then S_{3} contains 9 lines
 $x + y = t = 0, x + \omega y = t = 0, x + \omega^{2}y = t = 0,$
 $x + y = z + it = 0, x + \omega y = z + it = 0, x + \omega^{2}y = z + it = 0,$
 $x + y = z - it = 0, x + \omega y = z - it = 0, x + \omega^{2}y = z - it = 0.$

For every *i* and *j* in $\{0, 1, 2\}$, the surface S_3 contains the line

$$\Big[-\mu\sqrt[3]{4}\omega^{i}:-\lambda\sqrt[3]{4}\omega^{j}:\pm\sqrt{3}(\lambda-\mu):\lambda+\mu\Big],$$

where $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. This gives us 18 lines

$$6y - \sqrt{3}\sqrt[3]{4}\omega^{i}z - 3\sqrt[3]{4}\omega^{i}t = 3\omega^{i}x + 3y\omega^{j} - \sqrt{3}\sqrt[3]{4}\omega^{j+i}z = 0,$$

$$6y + \sqrt{3}\sqrt[3]{4}\omega^{i}z - 3\sqrt[3]{4}\omega^{i}t = 3\omega^{i}x + 3y\omega^{j} + \sqrt{3}\sqrt[3]{4}\omega^{j+i}z = 0.$$

Thus, we proved that S_3 does not contain other lines.

This approach is not easy to apply in general.

Twenty seven lines on Clebsch cubic surface

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics I Let S_3 be the surface in $\mathbb{P}^3_{\mathbb{C}}$ given by $x^3 + y^3 + z^2t + t^3 = 0$.

• The surface S_3 contains the line L given by t = x + y = 0. Let Π be a plane in $\mathbb{P}^3_{\mathbb{C}}$ that contains the line L. Then

```
S_3 \cap \Pi = L \cup C,
```

where C is a conic in Π . The plane Π is given by

$$\lambda(x+y)+\mu t=0$$

for some $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. Put $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

• If $[\lambda : \mu] = [0 : 1]$, then C splits as a union of the line

$$x + \omega y = t = 0$$

and the line $x + \omega^2 y = t = 0$.

• If $[\lambda : \mu] = [1 : 0]$, then C splits as a union of the line

$$x + y = z + it = 0$$

and the line x + y = z - it = 0.

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics II Let Π be a plane in $\mathbb{P}^3_{\mathbb{C}}$ given by $t = \lambda(x+y)$ for $\lambda \in \mathbb{C}$. Then $\Pi \cap S_3 = L \cup C$,

where *L* is the line t = x + y = 0 and *C* is a conic in Π . Then

$$\begin{cases} t = \lambda(x+y) \\ x^3 + y^3 + \lambda z^2(x+y) + \lambda^3(x+y)^3 = 0 \end{cases}$$

defines the intersection $\Pi \cap S_3$. Then C is given by

$$\begin{cases} t = \lambda(x+y) \\ x^2 - xy + y^2 + \lambda z^2 + \lambda^3 (x+y)^2 = 0 \end{cases}$$

The conic *C* is isomorphic to the conic in $\mathbb{P}^2_{\mathbb{C}}$ given by

$$(1 + \lambda^3)x^2 + (2\lambda^3 - 1)xy + (1 + \lambda^3)y^2 + \lambda z^2 = 0$$

Then C splits as a union of two lines if and only if

$$\begin{vmatrix} 1+\lambda^3 & \frac{2\lambda^3-1}{2} & 0\\ \frac{2\lambda^3-1}{2} & 1+\lambda^3 & 0\\ 0 & 0 & \lambda \end{vmatrix} = \lambda \left(3\lambda^3 + \frac{3}{4} \right) = 0$$

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics III

- Let Π be a plane in $\mathbb{P}^3_{\mathbb{C}}$ given by $t = \lambda(x + y)$ for $\lambda \in \mathbb{C}$.
- Then $\Pi \cap S_3$ is a union of the line t = x + y = 0 and conic

$$x^{2} - xy + y^{2} + \lambda z^{2} + \lambda^{3}(x + y)^{2} = t - \lambda(x + y) = 0.$$

• This conic is reducible $\iff \lambda = \infty$, 0, $-\frac{1}{\sqrt[3]{4}}$, $-\frac{1}{\sqrt[3]{4}\omega}$, $-\frac{1}{\sqrt[3]{4}\omega^2}$.

Thus, the line t = x + y = 0 gives us 10 more lines

1.
$$x + y = z + it = 0$$
,
2. $x + y = z - it = 0$,
3. $x + \omega y = t = 0$,
4. $x + \omega^2 y = t = 0$,
5. $\sqrt{3}x - \sqrt{3}y - z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + y) = 0$,
6. $\sqrt{3}x - \sqrt{3}y + z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + y) = 0$,
7. $\sqrt{3}x - \sqrt{3}y - z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + y) = 0$,
8. $\sqrt{3}x - \sqrt{3}y + z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + y) = 0$,
9. $\sqrt{3}x - \sqrt{3}y - z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + y) = 0$,
10. $\sqrt{3}x - \sqrt{3}y + z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + y) = 0$.

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics IV

- Let Π be a plane in $\mathbb{P}^3_{\mathbb{C}}$ given by $t = \lambda(x + \omega y)$ for $\lambda \in \mathbb{C}$.
- ▶ Then $\Pi \cap S_3$ is a union of the line $t = x + \omega y = 0$ and conic

$$x^2 - \omega xy + \omega^2 y^2 + \lambda z^2 + \lambda^3 (x + \omega y)^2 = t - \lambda (x + \omega y) = 0.$$

► This conic is reducible $\iff \lambda = \infty$, 0, $-\frac{1}{\sqrt[3]{4}}$, $-\frac{1}{\sqrt[3]{4}\omega}$, $-\frac{1}{\sqrt[3]{4}\omega^2}$.

Thus, the line $t = x + \omega y = 0$ gives us 10 more lines

1.
$$x + \omega y = z + it = 0$$
,
2. $x + \omega y = z - it = 0$,
3. $x + \omega^2 y = t = 0$,
4. $x + y = t = 0$,
5. $\sqrt{3}x - \sqrt{3}\omega y - z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + \omega y) = 0$,
6. $\sqrt{3}x - \sqrt{3}\omega y + z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + \omega y) = 0$,
7. $\sqrt{3}x - \sqrt{3}\omega y - z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + \omega y) = 0$,
8. $\sqrt{3}x - \sqrt{3}\omega y - z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + \omega y) = 0$,
9. $\sqrt{3}x - \sqrt{3}\omega y - z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + \omega y) = 0$,
10. $\sqrt{3}x - \sqrt{3}\omega y + z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + \omega y) = 0$.

Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics V

- Let Π be a plane in $\mathbb{P}^3_{\mathbb{C}}$ given by $t = \lambda(x + \omega^2 y)$ for $\lambda \in \mathbb{C}$.
- ► Then $\Pi \cap S_3$ is a union of the line $t = x + \omega^2 y = 0$ and conic $x^2 - \omega^2 xy + \omega y^2 + \lambda z^2 + \lambda^3 (x + \omega^2 y)^2 = t - \lambda (x + \omega^2 y) = 0.$
- ► This conic is reducible $\iff \lambda = \infty$, 0, $-\frac{1}{\sqrt[3]{4}}$, $-\frac{1}{\sqrt[3]{4}\omega}$, $-\frac{1}{\sqrt[3]{4}\omega^2}$.

Thus, the line $t = x + \omega^2 y = 0$ gives us 10 more lines

1. $x + \omega^2 v = z + it = 0$. 2. $x + \omega^2 y = z - it = 0$. 3. $x + \omega y = t = 0$, 4. x + y = t = 0, 5. $\sqrt{3}x - \sqrt{3}\omega^2 y - z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + \omega^2 y) = 0$, 6. $\sqrt{3}x - \sqrt{3}\omega^2 y + z\sqrt[3]{4} = t + \frac{1}{\sqrt[3]{4}}(x + \omega^2 y) = 0$, 7. $\sqrt{3}x - \sqrt{3}\omega^2 y - z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + \omega^2 y) = 0$, 8. $\sqrt{3}x - \sqrt{3}\omega^2 y + z\sqrt[3]{4}\omega = t + \frac{1}{\sqrt[3]{4}\omega}(x + \omega^2 y) = 0$, 9. $\sqrt{3}x - \sqrt{3}\omega^2 y - z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + \omega^2 y) = 0$, 10. $\sqrt{3}x - \sqrt{3}\omega^2 y + z\sqrt[3]{4}\omega^2 = t + \frac{1}{\sqrt[3]{4}\omega^2}(x + \omega^2 y) = 0.$ Lines on $x^3 + y^3 + z^2t + t^3 = 0$ using conics VI

Let Π be the plane t = 0. Then $\Pi \cap S_3$ is a union of 3 lines

$$t = x + y = 0$$
, $t = x + \omega y = 0$, $t = x + \omega^2 y = 0$.

- We found 10 lines in S_3 that intersect t = x + y = 0.
- We found 10 lines in S_3 that intersect $t = x + \omega y = 0$.
- We found 10 lines in S_3 that intersect $t = x + \omega^2 y = 0$.
- This gives us 27 lines.

Let ℓ be a line in $\mathbb{P}^3_{\mathbb{C}}$ that is contained in S_3 .

Lemma

 ℓ intersects t = x + y = 0, $t = x + \omega y = 0$ or $t = x + \omega^2 y = 0$.

Proof.

Either $\ell \subset \Pi$ or $\ell \cap \Pi$ consists of one point.

• Thus, the 27 lines we found are all lines on the surface S_3 .

Twenty seven lines on smooth cubic surface Let S_3 be any smooth cubic surface in $\mathbb{P}^3_{\mathbb{C}}$. Theorem (Cayley, Salmon) The surface S_3 contains exactly 27 lines. Proof.

- Show that S_3 contains a line L_1 .
- Find a plane $\Pi \subset \mathbb{P}^3_{\mathbb{C}}$ such that

$$\Pi \cap S_3 = L_1 \cup L_2 \cup L_3$$

for two more lines L_3 and L_3 .

- Find all lines in S_3 that intersect L_1 .
- Find all lines in S_3 that intersect L_2 .
- Find all lines in S_3 that intersect L_3 .
- This gives us all lines that are contained in S_3 .
- Since S_3 is smooth, this gives 27 lines.

mooth cubic surfaces as blow ups of the plane
Let
$$\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
. Let

$$\begin{cases}
A(x, y, z) = (6\omega + 3)y^2z + 2ixz^2 - ix^2y, \\
B(x, y, z) = (3\omega - 3)y^2z + i\omega x^2y - 2ixz^2, \\
C(x, y, z) = (3\omega - 3)yz^2 + (3\omega + 6)xy^2 + ix^2z, \\
D(x, y, z) = i(3\omega - 3)yz^2 + x^2z.
\end{cases}$$
Let $\phi: \mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^3_{\mathbb{C}}$ be a map that it given by
 $[x: y: z] \mapsto [A(x, y, z): B(x, y, z): C(x, y, z): D(x, y, z)].$

Then ϕ is not defined at 6 points. There is a commutative diagram

where f blows up these 6 points, and g is well defined.

• The image of g is the surface given by $x^3 + y^3 + z^2t + t^3 = 0$.