Dubna 2018: lines on cubic surfaces

Ivan Cheltsov

21st July 2018

Lecture 2: surfaces and lines on them

Surfaces in complex projective space

Let S_{d} be a projective variety in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{d}(x, y, z, t)=0
$$

where $f_{d}(x, y, z, t)$ is an irreducible form of degree d.
Definition
We say that S_{d} is a surface in $\mathbb{P}_{\mathbb{C}}^{3}$ of degree d.

- If $d=1$, then S_{1} is given by

$$
A x+B y+C z+D t=0
$$

for some $[A: B: C: D] \in \mathbb{P}_{\mathbb{C}}^{3}$ and we call S_{1} a plane.

- If $d=2$, then S_{2} is called a quadric surface and it is given by
$A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x+G x t+H y t+I z t+J t^{2}=0$
for some $[A: B: C: D: E: F: G: H: I: J] \in \mathbb{P}_{\mathbb{C}}^{9}$.
- If $d=3$, then S_{3} is called a cubic surface.
- If $d=4$, then S_{4} is called a quartic surface.
- If $d=5$, then S_{5} is called a quintic surface.

Singular and non-singular surfaces

Let S_{d} be a projective variety $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{d}(x, y, z, t)=0
$$

for an irreducible homogeneous $f_{d} \in \mathbb{C}[x, y, z, t]$ of degree d.

Definition

A point $[\alpha: \beta: \gamma: \delta] \in \mathbb{P}_{\mathbb{C}}^{3}$ is a singular point of S_{d} if

$$
\frac{\partial f(\alpha, \beta, \gamma, \delta)}{\partial x}=\frac{\partial f(\alpha, \beta, \gamma, \delta)}{\partial y}=\frac{\partial f(\alpha, \beta, \gamma, \delta)}{\partial z}=\frac{\partial f(\alpha, \beta, \gamma, \delta)}{\partial t}=0
$$

- Denote by $\operatorname{Sing}\left(S_{d}\right)$ the set of singular points of S_{d}.
- Non-singular points of S_{d} are called smooth or nonsingular.
- The surface S_{d} is smooth or nonsingular if $\operatorname{Sing}\left(S_{d}\right)=\varnothing$

Euler's formula for homogeneous polynomials gives

$$
d f_{d}=x \frac{\partial f_{d}(x, y, z, t)}{\partial x}+y \frac{\partial f_{d}(x, y, z, t)}{\partial y}+z \frac{\partial f_{d}(x, y, z, t)}{\partial z}+t \frac{\partial f_{d}(x, y, z, t)}{\partial t} .
$$

Tangent planes

Let S_{d} be a projective variety $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{d}(x, y, z, t)=0
$$

for an irreducible homogeneous $f_{d} \in \mathbb{C}[x, y, z, t]$ of degree d.
Remark
Almost all points of the surface S_{d} are smooth.

- Let $[\alpha: \beta: \gamma: \delta]$ be a smooth point of the surface S_{d}.

Definition

The plane in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
\frac{\partial f_{d}(\alpha, \beta, \gamma, \delta)}{\partial x} x+\frac{\partial f_{d}(\alpha, \beta, \gamma, \delta)}{\partial y} y+\frac{\partial f_{d}(\alpha, \beta, \gamma, \delta)}{\partial z} z+\frac{\partial f_{d}(\alpha, \beta, \gamma, \delta)}{\partial t} t=0
$$

is the tangent plane to S_{d} at the point $[\alpha: \beta: \gamma: \delta]$.

Projective transformations in three dimensions

Fix a matrix with complex entries and non-zero determinant

$$
\left(\begin{array}{llll}
a_{00} & a_{10} & a_{20} & a_{30} \\
a_{01} & a_{11} & a_{21} & a_{31} \\
a_{02} & a_{12} & a_{22} & a_{32} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

A projective transformation $\mathbb{P}_{\mathbb{C}}^{3} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ is a map given by

$$
\begin{aligned}
& {[x: y: z: t] \mapsto\left[a_{00} x+a_{01} y+a_{02} z+a_{03} t:\right.} \\
& : a_{10} x+a_{11} y+a_{12} z+a_{13} t: a_{20} x+a_{21} y+a_{22} z+a_{23} t: \\
& \left.: a_{30} x+a_{31} y+a_{32} z+a_{33} t\right] .
\end{aligned}
$$

Subsets X and Y in $\mathbb{P}_{\mathbb{C}}^{3}$ are said to be projectively equivalent if

$$
\phi(X)=Y
$$

for some projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{3} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$.

- Projectively equivalent surfaces in $\mathbb{P}_{\mathbb{C}}^{3}$ have the same degree.

Singular quadric surfaces

Let S_{2} be an irreducible quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$. Then it is given by

$$
\left(\begin{array}{llll}
x & y & z & t
\end{array}\right)\left(\begin{array}{cccc}
A & \frac{D}{2} & \frac{F}{2} & \frac{G}{2} \\
\frac{D}{2} & B & \frac{E}{2} & \frac{H}{2} \\
\frac{F}{2} & \frac{E}{2} & C & \frac{E}{2} \\
\frac{G}{2} & \frac{H}{2} & \frac{E}{2} & J
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=0
$$

for some $[A: B: C: D: E: F: G: H: I: J] \in \mathbb{P}_{\mathbb{C}}^{9}$.
Lemma
The determinant of this matrix is zero $\Longleftrightarrow S_{2}$ is singular.
Lemma
If S_{2} is singular, then it is projectively equivalent to $x y=z^{2}$.
Proof.
If S_{2} is singular at [0:0:0:1], then it is given by

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x=0
$$

for $[A: B: C: D: E: F] \in \mathbb{P}_{\mathbb{C}}^{5}$. Now use result for conics.

Nonsingular quadric surfaces

Let S_{2} be a nonsingular irreducible quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$.
Theorem
S_{2} is projectively equivalent to the surface given by $x y=z t$.
Proof.
The surface S_{2} is given by

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x+G x t+H y t+I z t+J t^{2}=0
$$

for some $[A: B: C: D: E: F: G: H: I: J] \in \mathbb{P}_{\mathbb{C}}^{9}$.
Apply projective transformation such that

- the surfaces S_{2} contains the point $[0: 0: 0: 1]$,
- the tangent plane to S_{2} at the point P is $z=0$.

Then $J=0, G=0, H=0, I \neq 0$. We may assume $I=-1$.
Apply $[x: y: z: t] \mapsto[x: y: z: t-E y-C z]$.
Now $E=C=0$, so that S_{2} is given by $A x^{2}+B y^{2}+D x y=z t . \quad \square$

Lines on smooth quadric surfaces

- Let S_{2} be the quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x y=z t$.
- Let $P=[\alpha: \beta: \gamma: \delta]$ be a point in S_{2}, so that $\alpha \beta=\gamma \gamma$.

Let L be a line in S_{2} such that $P \in L$. Then L can be given by

$$
\lambda[\alpha: \beta: \gamma: \delta]+\mu[a: b: c: d]
$$

where $Q=[a: b: c: d]$ is a point in L and $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$.
We may assume that P and L are not contained in the plane $t=0$.
Then we can let $\delta=1$ and $d=0$. Then

$$
(\alpha+\mu a)(\beta+\mu b)-(\gamma+\mu c)=0
$$

for every $\mu \in \mathbb{C}$. Then the polynomial

$$
a b \mu^{2}+(\alpha b+a \beta-c) \mu+\alpha \beta-\gamma
$$

must be a zero polynomial. Then $a b=0$ and $\alpha b+a \beta=c$.
Then either $a=0, b=1, c=\alpha$ or $a=1, b=0, c=\beta$.

Canton Tower Guangzhou

Lines on smooth quadric surfaces revisited

- Let S_{2} be a smooth quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$.
- Take any point $P \in S_{2}$.
- Then S_{2} contains contains 2 lines passing through P.

Applying projective transformations, we may assume that

- $P=[0: 0: 0: 1]$,
- the tangent plane to S_{2} at the point P is $t=0$.

Then the quadric surface S_{2} is given by

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x=z t
$$

for some complex numbers A, B, C, D, E and F.
Now we can make $A=B=C=E=F=0$ and $D=1$ fixing P. Let L be a line in S_{2} such that $P \in L$. Then L can be given by

$$
\lambda[0: 0: 0: 1]+\mu[a: b: c: 0],
$$

where $Q=[a: b: c: 0]$ is a point in L and $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. Then $a b \mu^{2}-\mu c=0$ for every $\mu \in \mathbb{C}$. Then $a b=0$ and $c=0$.

- Thus, either $Q=[0: 1: 0: 0:]$ or $Q=[1: 0: 0: 1]$.

Smooth quadric surfaces are $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$

- The product $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ consists of all possible pairs

$$
([\alpha: \beta]:[\gamma: \delta])
$$

with $[\alpha: \beta]$ and $[\gamma: \delta]$ in $\mathbb{P}_{\mathbb{C}}^{1}$.
Define a map $\phi: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ by

$$
([\alpha: \beta]:[\gamma: \delta]) \rightarrow[\alpha \gamma: \alpha \delta: \beta \gamma: \beta \delta] .
$$

- The map ϕ is everywhere defined.
- The image of the map ϕ is the quadric $S_{2} \subset \mathbb{P}_{\mathbb{C}}^{3}$ given by

$$
x t=y z
$$

- The induced map $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow S_{2}$ is a bijection.

For a point $P \in \mathbb{P}_{\mathbb{C}}^{1}$, both $\phi\left(P \times \mathbb{P}_{\mathbb{C}}^{1}\right)$ and $\phi\left(\mathbb{P}_{\mathbb{C}}^{1} \times P\right)$ are lines.

Counting lines on surfaces

- Let S_{d} be an irreducible surface in $\mathbb{P}_{\mathbb{C}}^{3}$ of degree d.
- Suppose that S_{d} does not have singular points.

Theorem (Segre, 1943)
If $d \geqslant 3$, then S_{d} contains at most $(d-2)(11 d-6)$ lines.

- If S_{d} is general enough and $d \geqslant 4$, it contains no lines!

Example (Shioda)

Suppose that d is prime and $d \geqslant 5$. Then the surface given by

$$
t^{d}+x y^{d-1}+y z^{d-1}+z x^{d-1}=0
$$

does not contain lines.
Theorem (Segre, 1943)
If $d=4$, then S_{4} contains at most 64 lines.

- The surface $x^{4}+y^{4}+z^{4}+t^{4}=0$ contains 64 lines.
- The surface $x y^{3}+y z^{3}+z x^{3}+t^{4}=0$ contain 0 lines.

Singular cubic surface containing one line

Let S_{3} be the surface in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x^{3}+y^{2} z+z^{2} t=0$.

- Let L be a line in $\mathbb{P}_{\mathbb{C}}^{3}$ such that $L \subset S_{3}$.
- Let $P=[0: a: b: c]$ be the intersection of L with $x=0$.
- Let $Q=[\alpha: \beta: 0: \gamma]$ be the intersection of L with $t=0$.

We may assume that $P \neq Q$. Then L is given by

$$
[\mu \alpha: \lambda a+\mu b: \lambda b: \lambda c+\mu \gamma]
$$

where $[\lambda: \mu]$ runs through all points in $\mathbb{P}_{\mathbb{C}}^{1}$. Then

$$
\mu^{3} \alpha^{3}+(\lambda a+\mu b)^{2} \lambda b+\lambda^{2} b^{2}(\lambda c+\mu \gamma)^{2}=0
$$

for every $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives

$$
\alpha^{3} \mu^{3}+\beta^{2} b \mu^{2} \lambda+\left(2 a \beta b+b^{2} \gamma\right) \mu \lambda^{2}+b^{2} c \lambda^{3}
$$

for every $[\lambda: \mu] \in \mathbb{P}_{\mathbb{C}}^{1}$. This gives

$$
\alpha^{3}=\beta^{2} b=2 a \beta b+b^{2} \gamma=b^{2} c=0
$$

Then $\alpha=b=0$, so that L is given by $x=z=0$.

Blowing up the plane

Consider the product $\mathbb{C}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$. It consists of all pairs

$$
((x, y),[\alpha: \beta])
$$

where $(x, y) \in \mathbb{C}^{2}$ and $[\alpha: \beta] \in \mathbb{P}_{\mathbb{C}}^{1}$.

- Let S be a subset in $\mathbb{C}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$ that is given by

$$
x \beta=\alpha y .
$$

- Let $\pi: S \rightarrow \mathbb{C}^{2}$ be the natural projection.
- Let E be the subset in S that is given by $x=y=0$.

Definition

We say that π is a blow up of \mathbb{C}^{2} at the point $(0,0)$.
We say that E is the exceptional curve of the blow up π. One has

$$
S \backslash E \cong \mathbb{C}^{2} \backslash(0,0)
$$

Note that π is birational and $E \cong \mathbb{P}_{\mathbb{C}}^{1}$.

Blowing up the projective plane

Consider the product $\mathbb{P}_{\mathbb{C}}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$. It consists of all pairs

$$
([x: y: z],[\alpha: \beta])
$$

where $[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}$ and $[\alpha: \beta] \in \mathbb{P}_{\mathbb{C}}^{1}$.

- Let S be a subset in $\mathbb{P}_{\mathbb{C}}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$ that is given by

$$
x \beta=\alpha y .
$$

- Let $\pi: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be the natural projection.
- Let E be the subset in S that is given by $x=y=0$.

Definition

We say that π is a blow up of $\mathbb{P}_{\mathbb{C}}^{2}$ at the point $[0: 0: 1]$.
We say that E is the exceptional curve of the blow up π. One has

$$
S \backslash E \cong \mathbb{C}^{2} \backslash[0: 0: 1]
$$

Note that π is birational and $E \cong \mathbb{P}_{\mathbb{C}}^{1}$.

Blow up and lines $\lambda x=\mu y$

Cuspidal cubic curve

Let C be the curve in \mathbb{C}^{2} that is given by $x^{3}=y^{2}$. Let

$$
\widehat{C}=\overline{\pi^{-1}(C \backslash(0,0))} \subset S
$$

Let U be the open subset in $\mathbb{C}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$ given by $\alpha \neq 0$. Let

$$
z=\frac{\beta}{\alpha}
$$

Identify $U=\mathbb{C}^{3}$ with coordinates x, y, z. Then $S \cap U$ is given by

$$
y=x z
$$

Outside of the curve $E \cap U$, the subset $\widehat{C} \cap U$ is given by

$$
\left\{\begin{array}{l}
y=x z \\
x^{3}=y^{2}
\end{array}\right.
$$

Identify $S \cap U=\mathbb{C}^{2}$ with coordinates x and z. Then

$$
x=z^{2}
$$

defines $\widehat{C} \cap U$. Then \widehat{C} is smooth and $|E \cap \widehat{C}|=1$.

Nodal cubic curve

Let C be the curve in \mathbb{C}^{2} that is given by $x^{2}=y^{2}+y^{3}$. Let

$$
\widehat{C}=\overline{\pi^{-1}(C \backslash(0,0))} \subset S
$$

Let W be the open subset in $\mathbb{C}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}$ given by $\beta \neq 0$. Let

$$
z=\frac{\alpha}{\beta}
$$

Identify $W=\mathbb{C}^{3}$ with coordinates x, y, z. Then $S \cap W$ is given by

$$
x=y z
$$

Outside of the curve $E \cap U$, the subset $\widehat{C} \cap U$ is given by

$$
\left\{\begin{array}{l}
x=y z \\
x^{2}=y^{2}+y^{3}
\end{array}\right.
$$

Identify $S \cap W=\mathbb{C}^{2}$ with coordinates y and z. Then

$$
z^{2}=1+y
$$

defines $\widehat{C} \cap W$. Then \widehat{C} is smooth and $|E \cap \widehat{C}|=2$.

Blow ups and intersection multiplicities

- Let $\pi: S \rightarrow \mathbb{C}^{2}$ be the blow up of the point $(0,0)$.
- Let E be the exceptional curve of the blow up π.

Let C be the curve in \mathbb{C}^{2} that contains $(0,0)$. Let $O=(0,0)$ and

$$
\widehat{C}=\overline{\pi^{-1}(C \backslash O)} \subset S
$$

We say that \widehat{C} is the proper transform of the curve C. Then

$$
\operatorname{mult}_{O}(C)=\sum_{P \in E}(\widehat{C} \cdot E)_{P}
$$

- Let Z be the curve in \mathbb{C}^{2} such that $O \in C$.
- Let \widehat{Z} the proper transform of the curve Z.

If C and Z has no common components, then

$$
(C \cdot Z)_{O}=\operatorname{mult}_{O}(C) \operatorname{mult}_{O}(Z)+\sum_{P \in E}(\widehat{C} \cdot \hat{Z})_{P}
$$

Stereographic projection

Let S_{2} be the smooth quadric in $\mathbb{P}_{\mathbb{C}}^{3}$ given by $x y=z t$.

- Let $\phi: S_{2} \longrightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be a map given by

$$
[x: y: z: t] \mapsto[y: z: t] .
$$

- Let $\psi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}$ be a map given by

$$
[x: y: z] \mapsto\left[y z: x^{2}: x y: x z\right]
$$

Then $\psi=\phi^{-1}$ and there is a commutative diagram

where f blows up $[0: 0: 1]$ and $[0: 1: 0]$, and g is a morphism.

- Let ℓ be the line in $\mathbb{P}_{\mathbb{C}}^{2}$ given by $x=0$.
- Let $\widetilde{\ell}$ be the proper transform on X of the line ℓ.
- Then g blows down $\widetilde{\ell}$ to the point $[1: 0: 0: 0]$.

What does f blow down?

Blowing up the space

Consider the product $\mathbb{C}^{3} \times \mathbb{P}_{\mathbb{C}}^{2}$. It consists of all pairs

$$
((x, y, z),[\alpha: \beta: \gamma])
$$

where $(x, y, z) \in \mathbb{C}^{3}$ and $[\alpha: \beta: \gamma] \in \mathbb{P}_{\mathbb{C}}^{2}$.

- Let V be a subset in $\mathbb{C}^{3} \times \mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
\left\{\begin{array}{l}
\alpha y=x \beta \\
\alpha z=x \gamma \\
\beta z=y \gamma
\end{array}\right.
$$

- Let $\nu: V \rightarrow \mathbb{C}^{3}$ be the natural projection.
- Let E be the subset in V that is given by $x=y=z=0$.

Definition
We say that ν is a blow up of \mathbb{C}^{3} at the point $(0,0,0)$.
We say that E is the exceptional surface of the blow up η. One has

$$
V \backslash E \cong \mathbb{C}^{3} \backslash(0,0,0)
$$

Note that $E \cong \mathbb{P}_{\mathbb{C}}^{2}$.

Singular cubic surface I

Let S_{3} be the surface in \mathbb{C}^{3} given by $x^{3}+y^{2} z+z^{2}=0$.

- Let $\chi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the map given by

$$
(\widehat{x}, \widehat{y}, \widehat{z}) \mapsto(\widehat{x} \widehat{y}, \widehat{y}, \widehat{z} \widehat{y},)
$$

- Let E be the surface in \mathbb{C}^{3} given by $\hat{y}=0$.
- Let \widehat{S}_{3} be the proper transform on \mathbb{C}^{3} of the surface S_{3}.

Then the surface \widehat{S}_{3} is given by

$$
\widehat{y} \widehat{x}^{3}+\widehat{z} \widehat{y}+\widehat{z}^{2}=0
$$

It is singular at $(0,0,0)$. Note that $E \cap \widehat{S}_{3}$ is irreducible.

- We considered one chart of the blow up of \mathbb{C}^{3} at $(0,0,0)$.
- The second chart of the blow up is given by

$$
(\widehat{x}, \widehat{y}, \widehat{z}) \mapsto(\widehat{x} \widehat{z}, \widehat{y} \widehat{z}, \widehat{z})
$$

- The third chart of the blow up is given by

$$
(\widehat{x}, \widehat{y}, \widehat{z}) \mapsto(\widehat{x}, \widehat{y} \widehat{x}, \widehat{z} \widehat{x})
$$

- In each of them, the proper transform of S_{3} is smooth.

Singular cubic surface II

Let \widehat{S}_{3} be the surface in \mathbb{C}^{3} given by $\widehat{y} \widehat{x}^{3}+\widehat{z} \widehat{y}+\widehat{z}^{2}=0$.

- Let $\rho: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the map given by

$$
(\bar{x}, \bar{y}, \bar{z}) \mapsto(\bar{x}, \overline{y z}, \overline{z x}) .
$$

- Let F be the surface in \mathbb{C}^{3} given by $\bar{x}=0$.
- Let \bar{S}_{3} be the proper transform on \mathbb{C}^{3} of the surface \widehat{S}_{3}.

Then \bar{S}_{3} is given by $\overline{y x}^{2}+\overline{z y}+\bar{z}^{2}=0$. It is singular.

- Let $\phi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the map given by

$$
(\widetilde{x}, \widetilde{y}, \tilde{z}) \mapsto(\widetilde{x}, \tilde{y} \tilde{z}, \tilde{z} \tilde{x})
$$

- Let G be the surface in \mathbb{C}^{3} given by $\widetilde{x}=0$.
- Let \widetilde{S}_{3} be the proper transform on \mathbb{C}^{3} of the surface \bar{S}_{3}.

Then \widetilde{S}_{3} is given by $\widetilde{y} \widetilde{x}+\widetilde{z} \tilde{y}+\widetilde{z}^{2}=0$. It is singular.

Singular cubic surface III

The surface \widetilde{S}_{3} is given in \mathbb{C}^{3} by $\widetilde{y} \widetilde{x}+\widetilde{z} \widetilde{y}+\widetilde{z}^{2}=0$.

- Let $\psi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the map given by

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mapsto(\mathrm{x}, \mathrm{yz}, \mathrm{zx})
$$

- Let H be the surface in \mathbb{C}^{3} given by $x=0$.
- Let S_{3} be the proper transform on \mathbb{C}^{3} of the surface \widetilde{S}_{3}.

We consecutively blew S_{3} four times

$$
\mathrm{S}_{3} \xrightarrow{\psi} \widetilde{S}_{3} \xrightarrow{\phi} \bar{S}_{3} \xrightarrow{\rho} \widehat{S}_{3} \xrightarrow{\chi} S_{3}
$$

Then S_{3} is given by $y+z y+z^{2}=0$. It is smooth.

- $E \cap \widehat{S}_{3}$ is a smooth irreducible curve.
- $F \cap \bar{S}_{3}$ is a union of two smooth irreducible curves.
- $G \cap \widetilde{S}_{3}$ is a union of two smooth irreducible curves.
- $H \cap S_{3}$ is a smooth irreducible curve.

The constructed morphism $\mathrm{S}_{3} \rightarrow S_{3}$ contract 6 irreducible curves.

- Their intersection graph is the Dynkin diagram \mathbb{E}_{6}.

