Dubna 2018: lines on cubic surfaces

Ivan Cheltsov

21st July 2018

Lecture 2: surfaces and lines on them

Surfaces in complex projective space

Let S_d be a projective variety in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_d(x,y,z,t)=0,$$

where $f_d(x, y, z, t)$ is an irreducible form of degree d. Definition

We say that S_d is a surface in $\mathbb{P}^3_{\mathbb{C}}$ of degree d.

• If d = 1, then S_1 is given by

$$Ax + By + Cz + Dt = 0$$

for some $[A : B : C : D] \in \mathbb{P}^3_{\mathbb{C}}$ and we call S_1 a plane.

• If d = 2, then S_2 is called a quadric surface and it is given by

 $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx + Gxt + Hyt + Izt + Jt^2 = 0$

for some $[A: B: C: D: E: F: G: H: I: J] \in \mathbb{P}^9_{\mathbb{C}}$.

- If d = 3, then S_3 is called a cubic surface.
- If d = 4, then S_4 is called a quartic surface.
- If d = 5, then S_5 is called a quintic surface.

Singular and non-singular surfaces

Let S_d be a projective variety $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_d(x,y,z,t)=0$$

for an irreducible homogeneous $f_d \in \mathbb{C}[x, y, z, t]$ of degree d.

Definition

A point $[\alpha:\beta:\gamma:\delta]\in\mathbb{P}^3_{\mathbb{C}}$ is a singular point of S_d if

$$\frac{\partial f(\alpha,\beta,\gamma,\delta)}{\partial x} = \frac{\partial f(\alpha,\beta,\gamma,\delta)}{\partial y} = \frac{\partial f(\alpha,\beta,\gamma,\delta)}{\partial z} = \frac{\partial f(\alpha,\beta,\gamma,\delta)}{\partial t} = 0.$$

- Denote by $Sing(S_d)$ the set of singular points of S_d .
- Non-singular points of S_d are called smooth or nonsingular.
- ► The surface S_d is smooth or nonsingular if $Sing(S_d) = \emptyset$ Euler's formula for homogeneous polynomials gives

$$df_d = x \frac{\partial f_d(x, y, z, t)}{\partial x} + y \frac{\partial f_d(x, y, z, t)}{\partial y} + z \frac{\partial f_d(x, y, z, t)}{\partial z} + t \frac{\partial f_d(x, y, z, t)}{\partial t}.$$

Tangent planes

Let S_d be a projective variety $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_d(x, y, z, t) = 0$$

for an irreducible homogeneous $f_d \in \mathbb{C}[x, y, z, t]$ of degree d.

Remark

Almost all points of the surface S_d are smooth.

• Let $[\alpha : \beta : \gamma : \delta]$ be a smooth point of the surface S_d .

Definition The plane in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$\frac{\partial f_d(\alpha,\beta,\gamma,\delta)}{\partial x}x + \frac{\partial f_d(\alpha,\beta,\gamma,\delta)}{\partial y}y + \frac{\partial f_d(\alpha,\beta,\gamma,\delta)}{\partial z}z + \frac{\partial f_d(\alpha,\beta,\gamma,\delta)}{\partial t}t = 0$$

is the tangent plane to S_d at the point $[\alpha : \beta : \gamma : \delta]$.

Projective transformations in three dimensions

Fix a matrix with complex entries and non-zero determinant

(<i>a</i> 00	a_{10}	a ₂₀	<i>a</i> ₃₀	
	a ₀₁	a_{11}	a ₂₁	a_{31}	
	<i>a</i> ₀₂	<i>a</i> ₁₂	a ₂₂	a ₃₂	
	<i>a</i> 03	a ₁₃	a ₂₃	a 33	Ϊ

A projective transformation $\mathbb{P}^3_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$ is a map given by

$$[x:y:z:t] \mapsto \left[a_{00}x + a_{01}y + a_{02}z + a_{03}t: \\ :a_{10}x + a_{11}y + a_{12}z + a_{13}t: a_{20}x + a_{21}y + a_{22}z + a_{23}t: \\ :a_{30}x + a_{31}y + a_{32}z + a_{33}t\right].$$

Subsets X and Y in $\mathbb{P}^3_{\mathbb{C}}$ are said to be projectively equivalent if

$$\phi(X)=Y$$

for some projective transformation $\phi \colon \mathbb{P}^3_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$.

▶ Projectively equivalent surfaces in P³_C have the same degree.

Singular quadric surfaces

Let S_2 be an irreducible quadric surface in $\mathbb{P}^3_{\mathbb{C}}$. Then it is given by

$$\left(\begin{array}{cccc} x & y & z & t\end{array}\right) \left(\begin{array}{cccc} A & \frac{D}{2} & \frac{F}{2} & \frac{G}{2} \\ \frac{D}{2} & B & \frac{E}{2} & \frac{H}{2} \\ \frac{F}{2} & \frac{E}{2} & C & \frac{E}{2} \\ \frac{G}{2} & \frac{H}{2} & \frac{E}{2} & J\end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ t\end{array}\right) = 0$$

for some $[A:B:C:D:E:F:G:H:I:J] \in \mathbb{P}^9_{\mathbb{C}}$.

Lemma

The determinant of this matrix is zero $\iff S_2$ is singular.

Lemma

If S_2 is singular, then it is projectively equivalent to $xy = z^2$.

Proof.

If S_2 is singular at [0:0:0:1], then it is given by

$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx = 0$$

for $[A:B:C:D:E:F] \in \mathbb{P}^5_{\mathbb{C}}$. Now use result for conics.

Nonsingular quadric surfaces

Let S_2 be a nonsingular irreducible quadric surface in $\mathbb{P}^3_{\mathbb{C}}$.

Theorem

 S_2 is projectively equivalent to the surface given by xy = zt.

Proof.

The surface S_2 is given by

 $Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fzx + Gxt + Hyt + Izt + Jt^{2} = 0$

for some $[A : B : C : D : E : F : G : H : I : J] \in \mathbb{P}^{9}_{\mathbb{C}}$. Apply projective transformation such that

- ▶ the surfaces S₂ contains the point [0 : 0 : 0 : 1],
- the tangent plane to S_2 at the point P is z = 0.

Then J = 0, G = 0, H = 0, $I \neq 0$. We may assume I = -1. Apply $[x : y : z : t] \mapsto [x : y : z : t - Ey - Cz]$. Now E = C = 0, so that S_2 is given by $Ax^2 + By^2 + Dxy = zt$.

Lines on smooth quadric surfaces

- Let S_2 be the quadric surface in $\mathbb{P}^3_{\mathbb{C}}$ given by xy = zt.
- Let $P = [\alpha : \beta : \gamma : \delta]$ be a point in S_2 , so that $\alpha \beta = \gamma \gamma$.

Let L be a line in S_2 such that $P \in L$. Then L can be given by

$$\lambda \big[\alpha : \beta : \gamma : \delta \big] + \mu \big[\mathbf{a} : \mathbf{b} : \mathbf{c} : \mathbf{d} \big],$$

where Q = [a : b : c : d] is a point in L and $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. We may assume that P and L are not contained in the plane t = 0. Then we can let $\delta = 1$ and d = 0. Then

$$(\alpha + \mu a)(\beta + \mu b) - (\gamma + \mu c) = 0$$

for every $\mu \in \mathbb{C}$. Then the polynomial

$$m{ab}\mu^2 + ig(lpham{b}+m{a}eta-m{c}ig)\mu + lphaeta-\gamma$$

must be a zero polynomial. Then ab = 0 and $\alpha b + a\beta = c$. Then either $a = 0, b = 1, c = \alpha$ or $a = 1, b = 0, c = \beta$.

Canton Tower Guangzhou

Lines on smooth quadric surfaces revisited

- Let S_2 be a smooth quadric surface in $\mathbb{P}^3_{\mathbb{C}}$.
- Take any point $P \in S_2$.
- Then S_2 contains contains 2 lines passing through P.

Applying projective transformations, we may assume that

▶ P = [0:0:0:1],

• the tangent plane to S_2 at the point P is t = 0. Then the quadric surface S_2 is given by

$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx = zt$$

for some complex numbers A, B, C, D, E and F. Now we can make A = B = C = E = F = 0 and D = 1 fixing P. Let L be a line in S_2 such that $P \in L$. Then L can be given by

$$\lambda \big[\mathbf{0}:\mathbf{0}:\mathbf{0}:\mathbf{1} \big] + \mu \big[\mathbf{a}:\mathbf{b}:\mathbf{c}:\mathbf{0} \big],$$

where Q = [a : b : c : 0] is a point in L and $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. Then $ab\mu^2 - \mu c = 0$ for every $\mu \in \mathbb{C}$. Then ab = 0 and c = 0.

• Thus, either Q = [0:1:0:0:] or Q = [1:0:0:1].

Smooth quadric surfaces are $\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}$

 \blacktriangleright The product $\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}$ consists of all possible pairs

$$\left(\left[\alpha : \beta \right] : \left[\gamma : \delta \right] \right)$$

with $[\alpha : \beta]$ and $[\gamma : \delta]$ in $\mathbb{P}^1_{\mathbb{C}}$. Define a map $\phi : \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$ by

$$\left(\left[\alpha:\beta\right]:\left[\gamma:\delta\right]\right) \rightarrow \left[\alpha\gamma:\alpha\delta:\beta\gamma:\beta\delta\right].$$

- The map ϕ is everywhere defined.
- ▶ The image of the map ϕ is the quadric $S_2 \subset \mathbb{P}^3_{\mathbb{C}}$ given by

$$xt = yz$$
.

▶ The induced map $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}} \to S_2$ is a bijection. For a point $P \in \mathbb{P}^1_{\mathbb{C}}$, both $\phi(P \times \mathbb{P}^1_{\mathbb{C}})$ and $\phi(\mathbb{P}^1_{\mathbb{C}} \times P)$ are lines.

Counting lines on surfaces

- Let S_d be an irreducible surface in $\mathbb{P}^3_{\mathbb{C}}$ of degree d.
- Suppose that S_d does not have singular points.

Theorem (Segre, 1943)

If $d \ge 3$, then S_d contains at most (d-2)(11d-6) lines.

▶ If S_d is general enough and $d \ge 4$, it contains no lines!

Example (Shioda)

Suppose that d is prime and $d \ge 5$. Then the surface given by

$$t^{d} + xy^{d-1} + yz^{d-1} + zx^{d-1} = 0$$

does not contain lines.

Theorem (Segre, 1943)

If d = 4, then S_4 contains at most 64 lines.

- The surface $x^4 + y^4 + z^4 + t^4 = 0$ contains 64 lines.
- The surface $xy^3 + yz^3 + zx^3 + t^4 = 0$ contain 0 lines.

Singular cubic surface containing one line

Let S_3 be the surface in $\mathbb{P}^3_{\mathbb{C}}$ given by $x^3 + y^2 z + z^2 t = 0$.

- Let *L* be a line in $\mathbb{P}^3_{\mathbb{C}}$ such that $L \subset S_3$.
- Let P = [0: a: b: c] be the intersection of L with x = 0.
- Let $Q = [\alpha : \beta : 0 : \gamma]$ be the intersection of L with t = 0.

We may assume that $P \neq Q$. Then L is given by

$$[\mu\alpha:\lambda \mathbf{a} + \mu \mathbf{b}:\lambda \mathbf{b}:\lambda \mathbf{c} + \mu\gamma],$$

where $[\lambda : \mu]$ runs through all points in $\mathbb{P}^1_{\mathbb{C}}$. Then

$$\mu^{3}\alpha^{3} + \left(\lambda a + \mu b\right)^{2}\lambda b + \lambda^{2}b^{2}\left(\lambda c + \mu\gamma\right)^{2} = 0$$

for every $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. This gives

$$\alpha^{3}\mu^{3} + \beta^{2}b\mu^{2}\lambda + \left(2a\beta b + b^{2}\gamma\right)\mu\lambda^{2} + b^{2}c\lambda^{3}$$

for every $[\lambda : \mu] \in \mathbb{P}^1_{\mathbb{C}}$. This gives

$$\alpha^3 = \beta^2 b = 2a\beta b + b^2\gamma = b^2c = 0.$$

Then $\alpha = b = 0$, so that L is given by x = z = 0.

Blowing up the plane

Consider the product $\mathbb{C}^2 \times \mathbb{P}^1_{\mathbb{C}^+}$. It consists of all pairs

$$((x, y), [\alpha : \beta])$$

where $(x, y) \in \mathbb{C}^2$ and $[\alpha : \beta] \in \mathbb{P}^1_{\mathbb{C}}$.

• Let S be a subset in $\mathbb{C}^2 imes \mathbb{P}^1_{\mathbb{C}}$ that is given by

$$x\beta = \alpha y.$$

• Let $\pi: S \to \mathbb{C}^2$ be the natural projection.

• Let *E* be the subset in *S* that is given by x = y = 0.

Definition

We say that π is a blow up of \mathbb{C}^2 at the point (0,0).

We say that *E* is the exceptional curve of the blow up π . One has

$$S \setminus E \cong \mathbb{C}^2 \setminus (0,0).$$

Note that π is birational and $E \cong \mathbb{P}^1_{\mathbb{C}}$.

Blowing up the projective plane

Consider the product $\mathbb{P}^2_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}.$ It consists of all pairs

$$\left([\mathbf{x} : \mathbf{y} : \mathbf{z}], [\alpha : \beta] \right)$$

where $[x : y : z] \in \mathbb{P}^2_{\mathbb{C}}$ and $[\alpha : \beta] \in \mathbb{P}^1_{\mathbb{C}}$.

• Let S be a subset in $\mathbb{P}^2_{\mathbb{C}} imes \mathbb{P}^1_{\mathbb{C}}$ that is given by

$$x\beta = \alpha y.$$

• Let $\pi: S \to \mathbb{P}^2_{\mathbb{C}}$ be the natural projection.

• Let *E* be the subset in *S* that is given by x = y = 0.

Definition

We say that π is a blow up of $\mathbb{P}^2_{\mathbb{C}}$ at the point [0:0:1]. We say that *E* is the exceptional curve of the blow up π . One has

$$S \setminus E \cong \mathbb{C}^2 \setminus [0:0:1].$$

Note that π is birational and $E \cong \mathbb{P}^1_{\mathbb{C}}$.

Blow up and lines $\lambda x = \mu y$

Cuspidal cubic curve

Let C be the curve in \mathbb{C}^2 that is given by $x^3 = y^2$. Let

$$\widehat{\mathcal{C}}=\overline{\pi^{-1}\Big(\mathcal{C}\setminus(0,0)\Big)}\subset\mathcal{S}.$$

Let U be the open subset in $\mathbb{C}^2 \times \mathbb{P}^1_{\mathbb{C}}$ given by $\alpha \neq 0$. Let

$$z = \frac{\beta}{\alpha}.$$

Identify $U = \mathbb{C}^3$ with coordinates x, y, z. Then $S \cap U$ is given by

y = xz.

Outside of the curve $E \cap U$, the subset $\widehat{C} \cap U$ is given by

$$\begin{cases} y = xz, \\ x^3 = y^2. \end{cases}$$

Identify $S \cap U = \mathbb{C}^2$ with coordinates x and z. Then

$$x = z^2$$

defines $\widehat{C} \cap U$. Then \widehat{C} is smooth and $|E \cap \widehat{C}| = 1$.

Nodal cubic curve

Let C be the curve in \mathbb{C}^2 that is given by $x^2 = y^2 + y^3$. Let

$$\widehat{\mathcal{C}}=\overline{\pi^{-1}\Big(\mathcal{C}\setminus(0,0)\Big)}\subset\mathcal{S}.$$

Let W be the open subset in $\mathbb{C}^2 \times \mathbb{P}^1_{\mathbb{C}}$ given by $\beta \neq 0$. Let

$$z = \frac{\alpha}{\beta}.$$

Identify $W = \mathbb{C}^3$ with coordinates x, y, z. Then $S \cap W$ is given by

x = yz.

Outside of the curve $E \cap U$, the subset $\widehat{C} \cap U$ is given by

$$\begin{cases} x = yz, \\ x^2 = y^2 + y^3 \end{cases}$$

Identify $S \cap W = \mathbb{C}^2$ with coordinates y and z. Then

$$z^2 = 1 + y$$

defines $\widehat{C} \cap W$. Then \widehat{C} is smooth and $|E \cap \widehat{C}| = 2$.

Blow ups and intersection multiplicities

• Let $\pi: S \to \mathbb{C}^2$ be the blow up of the point (0,0).

• Let *E* be the exceptional curve of the blow up π .

Let C be the curve in \mathbb{C}^2 that contains (0,0). Let O = (0,0) and

$$\widehat{\mathcal{C}}=\overline{\pi^{-1}\Big(\mathcal{C}\setminus\mathcal{O}\Big)}\subset\mathcal{S}.$$

We say that \widehat{C} is the proper transform of the curve C. Then

$$\operatorname{mult}_{\mathcal{O}}(\mathcal{C}) = \sum_{P \in \mathcal{E}} \left(\widehat{\mathcal{C}} \cdot \mathcal{E}\right)_{P}.$$

- Let Z be the curve in \mathbb{C}^2 such that $O \in C$.
- Let \widehat{Z} the proper transform of the curve Z.

If C and Z has no common components, then

$$(C \cdot Z)_{O} = \operatorname{mult}_{O}(C)\operatorname{mult}_{O}(Z) + \sum_{P \in E} (\widehat{C} \cdot \widehat{Z})_{P}.$$

Stereographic projection

Let S_2 be the smooth quadric in $\mathbb{P}^3_{\mathbb{C}}$ given by xy = zt.

Let φ: S₂ --→ P²_C be a map given by
[x : y : z : t] → [y : z : t].
Let ψ: P²_C --→ P³_C be a map given by
[x : y : z] → [yz : x² : xy : xz].

Then $\psi = \phi^{-1}$ and there is a commutative diagram

where f blows up [0:0:1] and [0:1:0], and g is a morphism.

- Let ℓ be the line in $\mathbb{P}^2_{\mathbb{C}}$ given by x = 0.
- Let $\tilde{\ell}$ be the proper transform on X of the line ℓ .
- Then g blows down ℓ to the point [1:0:0:0].

What does f blow down?

Blowing up the space

Consider the product $\mathbb{C}^3 \times \mathbb{P}^2_{\mathbb{C}}$. It consists of all pairs

$$\left(\left(x,y,z
ight) ,\left[lpha :eta :\gamma
ight]
ight)$$

where $(x, y, z) \in \mathbb{C}^3$ and $[\alpha : \beta : \gamma] \in \mathbb{P}^2_{\mathbb{C}}$.

• Let V be a subset in $\mathbb{C}^3 imes \mathbb{P}^2_{\mathbb{C}}$ that is given by

$$\begin{cases} \alpha y = x\beta, \\ \alpha z = x\gamma, \\ \beta z = y\gamma. \end{cases}$$

• Let $\nu \colon V \to \mathbb{C}^3$ be the natural projection.

• Let *E* be the subset in *V* that is given by x = y = z = 0.

Definition

We say that ν is a blow up of \mathbb{C}^3 at the point (0,0,0).

We say that *E* is the exceptional surface of the blow up η . One has

$$V \setminus E \cong \mathbb{C}^3 \setminus (0,0,0).$$

Note that $E \cong \mathbb{P}^2_{\mathbb{C}}$.

Singular cubic surface I

Let S_3 be the surface in \mathbb{C}^3 given by $x^3 + y^2z + z^2 = 0$.

• Let $\chi \colon \mathbb{C}^3 \to \mathbb{C}^3$ be the map given by

$$(\widehat{x},\widehat{y},\widehat{z})\mapsto(\widehat{x}\widehat{y},\widehat{y},\widehat{z}\widehat{y},).$$

• Let E be the surface in \mathbb{C}^3 given by $\hat{y} = 0$.

• Let \widehat{S}_3 be the proper transform on \mathbb{C}^3 of the surface S_3 . Then the surface \widehat{S}_3 is given by

$$\widehat{y}\widehat{x}^3 + \widehat{z}\widehat{y} + \widehat{z}^2 = 0.$$

It is singular at (0, 0, 0). Note that $E \cap \widehat{S}_3$ is irreducible.

- We considered one chart of the blow up of \mathbb{C}^3 at (0,0,0).
- The second chart of the blow up is given by

$$(\widehat{x},\widehat{y},\widehat{z})\mapsto (\widehat{x}\widehat{z},\widehat{y}\widehat{z},\widehat{z}).$$

The third chart of the blow up is given by

$$(\widehat{x},\widehat{y},\widehat{z})\mapsto (\widehat{x},\widehat{y}\widehat{x},\widehat{z}\widehat{x}).$$

• In each of them, the proper transform of S_3 is smooth.

Singular cubic surface II

Let \widehat{S}_3 be the surface in \mathbb{C}^3 given by $\widehat{y}\widehat{x}^3 + \widehat{z}\widehat{y} + \widehat{z}^2 = 0$.

• Let $\rho \colon \mathbb{C}^3 \to \mathbb{C}^3$ be the map given by

$$(\overline{x},\overline{y},\overline{z})\mapsto (\overline{x},\overline{yz},\overline{zx}).$$

Let F be the surface in C³ given by x̄ = 0.
Let S̄₃ be the proper transform on C³ of the surface Ŝ₃.
Then S̄₃ is given by ȳx² + z̄y + z̄² = 0. It is singular.
Let φ: C³ → C³ be the map given by

$$(\widetilde{x},\widetilde{y},\widetilde{z})\mapsto (\widetilde{x},\widetilde{y}\widetilde{z},\widetilde{z}\widetilde{x})$$

• Let G be the surface in \mathbb{C}^3 given by $\tilde{x} = 0$.

• Let \widetilde{S}_3 be the proper transform on \mathbb{C}^3 of the surface \overline{S}_3 . Then \widetilde{S}_3 is given by $\widetilde{y}\widetilde{x} + \widetilde{z}\widetilde{y} + \widetilde{z}^2 = 0$. It is singular.

Singular cubic surface III

The surface \widetilde{S}_3 is given in \mathbb{C}^3 by $\widetilde{y}\widetilde{x} + \widetilde{z}\widetilde{y} + \widetilde{z}^2 = 0$.

• Let $\psi \colon \mathbb{C}^3 \to \mathbb{C}^3$ be the map given by

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}\mathbf{z}, \mathbf{z}\mathbf{x}).$$

• Let *H* be the surface in \mathbb{C}^3 given by $\mathbf{x} = 0$.

• Let S_3 be the proper transform on \mathbb{C}^3 of the surface \widetilde{S}_3 .

We consecutively blew S_3 four times

$$\mathbf{S}_3 \xrightarrow{\psi} \widetilde{S}_3 \xrightarrow{\phi} \overline{S}_3 \xrightarrow{\rho} \widehat{S}_3 \xrightarrow{\chi} S_3$$

Then S_3 is given by $y + zy + z^2 = 0$. It is smooth.

- $E \cap \widehat{S}_3$ is a smooth irreducible curve.
- $F \cap \overline{S}_3$ is a union of two smooth irreducible curves.
- $G \cap S_3$ is a union of two smooth irreducible curves.
- $H \cap S_3$ is a smooth irreducible curve.

The constructed morphism $S_3 \rightarrow S_3$ contract 6 irreducible curves.

• Their intersection graph is the Dynkin diagram \mathbb{E}_6 .