Dubna 2018: lines on cubic surfaces

Ivan Cheltsov

20th July 2018

Lecture 1: projective plane

Complex plane

Definition

A line in \mathbb{C}^{2} is a subset that is given by

$$
\mathbf{a} x+\mathbf{b} y+\mathbf{c}=0
$$

for some complex numbers $\mathbf{a}, \mathbf{b}, \mathbf{c}$ such that $(\mathbf{a}, \mathbf{b}) \neq(0,0)$.

- Here x and y are coordinates on \mathbb{C}^{2}.

Lemma

There is a unique line in \mathbb{C}^{2} passing through two distinct points.
Proof.
Let $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ and $\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$ be two distinct points. Then

$$
\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)\left(x-\mathbf{x}_{1}\right)=\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\left(y-\mathbf{y}_{1}\right)
$$

defines the line that contains $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ and $\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$.

Intersection of two lines

- Let L_{1} be a line in \mathbb{C}^{2} that is given by

$$
\mathbf{a}_{1} x+\mathbf{b}_{1} y=\mathbf{c}_{1}
$$

where $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{c}_{1}$ are complex numbers and $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right) \neq(0,0)$.

- Let L_{2} be a line in \mathbb{C}^{2} that is given by

$$
\mathbf{a}_{2} x+\mathbf{b}_{2} y=\mathbf{c}_{2}
$$

where $\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{c}_{2}$ are complex numbers and $\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right) \neq(0,0)$.

Lemma

Suppose that $L_{1} \neq L_{2}$. Then $L_{1} \cap L_{2}$ consists of at most one point.
Proof.
If $\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1} \neq 0$, then $L_{1} \cap L_{2}$ consists of the point

$$
\left(\frac{\mathbf{b}_{2} \mathbf{c}_{1}-\mathbf{b}_{1} \mathbf{c}_{2}}{\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1}}, \frac{\mathbf{a}_{1} \mathbf{c}_{2}-\mathbf{a}_{2} \mathbf{c}_{1}}{\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1}}\right) .
$$

If $\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1}=0$, then $L_{1} \cap L_{2}=\varnothing$.

Conics

Definition

A conic in \mathbb{C}^{2} is a subset that is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=0
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ are complex numbers and $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq(0,0,0)$.
The conic is said to be irreducible if the polynomial

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}
$$

is irreducible. Otherwise the conic is called reducible.

- If $\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}$ is reducible, then

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=(\alpha x+\beta y+\gamma)\left(\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime}\right)
$$

for some complex numbers $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$.

- In this case the conic is a union of two lines.

Matrix form

Let C be a conic in \mathbb{C}^{2} that is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=0
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ are complex numbers and $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq(0,0,0)$.

- We can rewrite the equation of the conic C as

$$
\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{a} & \frac{\mathbf{b}}{2} & \frac{\mathbf{d}}{2} \\
\frac{\mathbf{b}}{2} & \mathbf{c} & \frac{\mathrm{e}}{2} \\
\frac{\mathbf{d}}{2} & \frac{\mathbf{e}}{2} & \mathbf{f}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0 .
$$

- Denote this 3×3 matrix by M.

Lemma
The conic C is irreducible if and only if $\operatorname{det}(M) \neq 0$.
Example
The conic $x y-1=0$ is irreducible.

Intersection of a line and a conic

Let L be a line in \mathbb{C}^{2}. Let C be an irreducible conic in \mathbb{C}^{2}.
Lemma
The intersection $L \cap C$ consists of at most 2 points.

Proof.

The line L is given by

$$
\alpha x+\beta y+\gamma=0
$$

for some complex numbers α, β, γ such that $(\alpha, \beta) \neq(0,0)$.
The conic C is given by a polynomial equation

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=0
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ are complex numbers and $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq(0,0,0)$. Then the intersection $L \cap C$ is given by

$$
\left\{\begin{array}{l}
\alpha x+\beta y+\gamma=0 \\
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=0
\end{array}\right.
$$

Five points determine a conic

Let $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ be distinct points in \mathbb{C}^{2}.

- Suppose that no 4 points among them are collinear.

Theorem

There is a unique conic in \mathbb{C}^{2} that contains $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$.

Proof.

Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), P_{3}=\left(x_{3}, y_{3}\right), P_{4}=\left(x_{4}, y_{4}\right), P_{5}=\left(x_{5}, y_{5}\right)$.
Find complex numbers $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ such that

$$
\left\{\begin{array}{l}
\mathbf{a} x_{1}^{2}+\mathbf{b} x_{1} y_{1}+\mathbf{c} y_{1}^{2}+\mathbf{d} x_{1}+\mathbf{e} y_{1}+\mathbf{f}=0 \\
\mathbf{a} x_{2}^{2}+\mathbf{b} x_{2} y_{2}+\mathbf{c} y_{2}^{2}+\mathbf{d} x_{2}+\mathbf{e} y_{2}+\mathbf{f}=0 \\
\mathbf{a} x_{3}^{2}+\mathbf{b} x_{3} y_{3}+\mathbf{c} y_{3}^{2}+\mathbf{d} x_{3}+\mathbf{e} y_{3}+\mathbf{f}=0 \\
\mathbf{a} x_{4}^{2}+\mathbf{b} x_{4} y_{4}+\mathbf{c} y_{4}^{2}+\mathbf{d} x_{4}+\mathbf{e} y_{4}+\mathbf{f}=0 \\
\mathbf{a} x_{5}^{2}+\mathbf{b} x_{5} y_{5}+\mathbf{c} y_{5}^{2}+\mathbf{d} x_{5}+\mathbf{e} y_{5}+\mathbf{f}=0
\end{array}\right.
$$

Then the conic containing $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x+\mathbf{e} y+\mathbf{f}=0
$$

Complex projective plane

- Let (x, y, z) be a point in \mathbb{C}^{3} such that $(x, y, z) \neq(0,0,0)$.
- Let $[x: y: z]$ be the subset in \mathbb{C}^{3} such that

$$
(a, b, c) \in[x: y: z] \Longleftrightarrow\left\{\begin{array}{l}
a=\lambda x \\
b=\lambda y \\
c=\lambda z
\end{array}\right.
$$

for some non-zero complex number λ.

Definition

The projective plane $\mathbb{P}_{\mathbb{C}}^{2}$ is the set of of all possible $[x: y: z]$.

- We refer to the elements of $\mathbb{P}_{\mathbb{C}}^{2}$ as points.
- We have $[1: 2: 3]=[7: 14: 21]=[2-i: 4-4 i: 3-3 i]$.
- We have $[1: 2: 3] \neq[3: 2: 1]$ and $[0: 0: 1] \neq[0: 1: 0]$.
- There is no such point as $[0: 0: 0]$.

How to live in projective plane?

Let U_{z} be the subset in $\mathbb{P}_{\mathbb{C}}^{2}$ consisting of points $[x: y: z]$ with $z \neq 0$.
Lemma
The map $U_{z} \rightarrow \mathbb{C}^{2}$ given by

$$
[x: y: z]=\left[\frac{x}{z}: \frac{y}{z}: 1\right] \mapsto\left(\frac{x}{z}, \frac{y}{z}\right)
$$

is a bijection (one-to-one and onto).

- Thus, we can identify $U_{z}=\mathbb{C}^{2}$.
- Put $\bar{x}=\frac{x}{z}$ and $\bar{y}=\frac{y}{z}$.
- Then we can consider \bar{x} and \bar{y} as coordinates on $U_{z}=\mathbb{C}^{2}$.

Question
What is $\mathbb{P}_{\mathbb{C}}^{2} \backslash U_{z}$?

- The subset in $\mathbb{P}_{\mathbb{C}}^{2}$ consisting of points $[x: y: 0]$.
- We can identify $\mathbb{C}^{2} \backslash U_{z}$ and $\mathbb{P}_{\mathbb{C}}^{1}$.
- This is a line at infinity.

Line at infinity

Three charts

$\mathbb{P}_{\mathbb{C}}^{2}$ consists of 3-tuples $[x: y: z]$ with $(x, y, z) \neq(0,0,0)$ such that $\star[x: y: z]=[\lambda x: \lambda y: \lambda z]$ for every non-zero $\lambda \in \mathbb{C}$.
Let U_{x} be the complement in $\mathbb{P}_{\mathbb{C}}^{2}$ to the line $x=0$.

- Then $U_{x}=\mathbb{C}^{2}$ with coordinates $\widetilde{y}=\frac{y}{x}$ and $\tilde{z}=\frac{z}{x}$.

Let U_{y} be the complement in $\mathbb{P}_{\mathbb{C}}^{2}$ to the line $y=0$.

- Then $U_{y}=\mathbb{C}^{2}$ with coordinates $\hat{x}=\frac{x}{y}$ and $\widehat{z}=\frac{z}{y}$.

Let U_{z} be the complement in $\mathbb{P}_{\mathbb{C}}^{2}$ to the line $z=0$.

- Then $U_{z}=\mathbb{C}^{2}$ with coordinates $\bar{x}=\frac{x}{z}$ and $\bar{y}=\frac{y}{z}$.

Then $\mathbb{P}_{\mathbb{C}}^{2}$ is a union of the charts U_{x}, U_{y}, U_{z} patched together by

$$
\tilde{y}=\frac{1}{\hat{x}}=\frac{\bar{y}}{\bar{x}}, \tilde{z}=\frac{\widehat{z}}{\widehat{x}}=\frac{1}{\bar{x}}
$$

$$
\widehat{x}=\frac{\bar{x}}{\bar{y}}=\frac{1}{\widetilde{y}}, \widehat{z}=\frac{1}{\bar{y}}=\frac{\widetilde{z}}{\tilde{y}}
$$

$$
\bar{x}=\frac{1}{\widetilde{z}}=\frac{\widehat{z}}{\widehat{x}}, \bar{y}=\frac{\widetilde{y}}{\widetilde{z}}=\frac{1}{\hat{z}}
$$

What is a line?

Definition

A line in $\mathbb{P}_{\mathbb{C}}^{2}$ is the subset given by

$$
A x+B y+C z=0
$$

for some (fixed) point $[A: B: C] \in \mathbb{P}_{\mathbb{C}}^{2}$.
Example
Let $P=[5: 0:-2]$. Let $Q=[1:-1: 1]$. Then the line

$$
2 x-3 y+5 z=0
$$

contains P and Q. It is the only line in $\mathbb{P}_{\mathbb{C}}^{2}$ that contains P and Q.
Example
Let L be the line in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
x+2 y+3 z=0
$$

Let L^{\prime} be the line given by $x-y=0$. Then $L \cap L^{\prime}=[1: 1:-1]$.

Lines and points in projective plane

- Let P and Q be two points in $\mathbb{P}_{\mathbb{C}}^{2}$ such that $P \neq Q$.

Theorem

There is a unique line in $\mathbb{P}_{\mathbb{C}}^{2}$ that contains P and Q.
Proof.
Let L be a line in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by $A x+B y+C z=0$.
If $P=[a: b: c] \in L$ and $Q=\left[a^{\prime}: b^{\prime}: c^{\prime}\right] \in L$, then

$$
\left\{\begin{array}{l}
A a+B b+C c=0 \\
A a^{\prime}+B b^{\prime}+C c^{\prime}=0
\end{array}\right.
$$

The rank-nullity theorem implies that L exists and is unique.

- Let L and L^{\prime} be two lines in $\mathbb{P}_{\mathbb{C}}^{2}$ such that $L \neq L^{\prime}$.

Theorem
The intersection $L \cap L^{\prime}$ consists of one point in $\mathbb{P}_{\mathbb{C}}^{2}$.

Conics

Definition

A conic in $\mathbb{P}_{\mathbb{C}}^{2}$ is a subset that is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.
The conic is said to be irreducible if the polynomial

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}
$$

is irreducible. Otherwise the conic is called reducible.
If $\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}$ is reducible, then

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=(\alpha x+\beta y+\gamma z)\left(\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z\right)
$$

for some complex numbers $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$.
In this case the conic is a union of two lines.

Matrix form

Let \mathcal{C} be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$. Then \mathcal{C} that is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.

- Rewrite the equation of the conic \mathcal{C} in the matrix form:

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{a} & \frac{\mathbf{b}}{2} & \frac{\mathbf{d}}{2} \\
\frac{\mathbf{b}}{2} & \mathbf{c} & \frac{\mathrm{e}}{2} \\
\frac{\mathbf{d}}{2} & \frac{e}{2} & \mathbf{f}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 .
$$

- Denote this 3×3 matrix by M.

Lemma
The conic \mathcal{C} is irreducible if and only if $\operatorname{det}(M) \neq 0$.
Example
The conic $x y-z^{2}=0$ is irreducible.

Intersection of a line and a conic

Let L be a line in $\mathbb{P}_{\mathbb{C}}^{2}$. Let C be an irreducible conic in $\mathbb{P}_{\mathbb{C}}^{2}$.
Lemma
The intersection $L \cap C$ consists of 2 points (counted with multiplicities).
Proof.
The line L is given by

$$
\alpha x+\beta y+\gamma z=0
$$

for complex numbers α, β, γ such that $(\alpha, \beta, \gamma) \neq(0,0,0)$.
The conic C is given by a polynomial equation

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$. Then the intersection $L \cap C$ is given by

$$
\left\{\begin{array}{l}
\alpha x+\beta y+\gamma z=0 \\
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
\end{array}\right.
$$

Five points determine a conic

Let $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ be distinct points in $\mathbb{P}_{\mathbb{C}}^{2}$.

- Suppose that no 4 points among them are collinear.

Theorem
There is a unique conic in $\mathbb{P}_{\mathbb{C}}^{2}$ that contains $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$.
Proof.
Let $\left[x_{1}: y_{1}: z_{1}\right],\left[x_{2}: y_{2}: z_{2}\right],\left[x_{3}: y_{3}: z_{3}\right],\left[x_{4}: y_{4}: z_{4}\right],\left[x_{5}: y_{5}: z_{6}\right]$ be our points.
Find complex numbers $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ such that

$$
\left\{\begin{array}{l}
\mathbf{a} x_{1}^{2}+\mathbf{b} x_{1} y_{1}+\mathbf{c} y_{1}^{2}+\mathbf{d} x_{1} z_{1}+\mathbf{e} y_{1} z_{1}+\mathbf{f} z_{1}^{2}=0 \\
\mathbf{a} x_{2}^{2}+\mathbf{b} x_{2} y_{2}+\mathbf{c} y_{2}^{2}+\mathbf{d} x_{2} z_{1}+\mathbf{e} y_{2} z_{1}+\mathbf{f} z_{1}^{2}=0 \\
\mathbf{a} x_{3}^{2}+\mathbf{b} x_{3} y_{3}+\mathbf{c} y_{3}^{2}+\mathbf{d} x_{3} z_{1}+\mathbf{e} y_{3} z_{1}+\mathbf{f} z_{1}^{2}=0 \\
\mathbf{a} x_{4}^{2}+\mathbf{b} x_{4} y_{4}+\mathbf{c} y_{4}^{2}+\mathbf{d} x_{4} z_{1}+\mathbf{e} y_{4} z_{1}+\mathbf{f} z_{1}^{2}=0 \\
\mathbf{a} x_{5}^{2}+\mathbf{b} x_{5} y_{5}+\mathbf{c} y_{5}^{2}+\mathbf{d} x_{5} z_{1}+\mathbf{e} y_{5} z_{1}+\mathbf{f} z_{1}^{2}=0
\end{array}\right.
$$

Then the conic containing $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

Complex irreducible plane curves

Definition
An irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree $d \geqslant 1$ is a subset given by

$$
f(x, y, z)=0
$$

for an irreducible homogeneous polynomial $f(x, y, z)$ of degree d.
Let us give few examples. The equation

$$
2 x^{2}-y^{2}+2 z^{2}=0
$$

defines an irreducible conic in $\mathbb{P}_{\mathbb{C}}^{2}$. The equation

$$
z y^{2}-x(x-z)(x+z)=0
$$

defines an irreducible cubic curve in $\mathbb{P}_{\mathbb{C}}^{2}$. The equation

$$
\left(2 x^{2}-y^{2}+2 z^{2}\right)\left(z y^{2}-x(x-z)(x+z)\right)=0
$$

defines the union of the two curves above.

Projective transformations

Let \mathbf{M} be a complex 3×3 matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) .
$$

Let $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be the map given by
$[x: y: z] \mapsto\left[a_{11} x+a_{12} y+a_{13} z: a_{21} x+a_{22} y+a_{23} z: a_{31} x+a_{32} y+a_{33} z\right]$.
Recall that there is no such point in $\mathbb{P}_{\mathbb{C}}^{2}$ as $[0: 0: 0]$.
Question
When ϕ is well-defined?
The map ϕ is well-defined $\Longleftrightarrow \operatorname{det}(\mathbf{M}) \neq 0$.
Definition
If $\operatorname{det}(\mathbf{M}) \neq 0$, we say that ϕ a projective transformation.

Projective linear group

Projective transformations of $\mathbb{P}_{\mathbb{C}}^{2}$ form a group.

- Let \mathbf{M} be a matrix in $\mathrm{GL}_{3}(\mathbb{C})$.
- Denote by $\phi_{\mathbf{M}}$ the corresponding projective transformation.

Question

When $\phi_{\mathbf{M}}$ is an identity map?
The map $\phi_{\mathbf{M}}$ is an identity map $\Longleftrightarrow \mathbf{M}$ is scalar.
Recall that \mathbf{M} is said to be scalar if

$$
M=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)
$$

for some complex number λ.
Corollary
Let \mathbf{G} be a subgroup in $\mathrm{GL}_{3}(\mathbb{C})$ consisting of scalar matrices.
The group of projective transformations of $\mathbb{P}_{\mathbb{C}}^{2}$ is isomorphic to

$$
\mathrm{PGL}_{3}(\mathbb{C})=\mathrm{GL}_{3}(\mathbb{C}) / \mathbf{G}
$$

Four points in the plane

Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four points in $\mathbb{P}_{\mathbb{C}}^{2}$ such that

- no three points among them are collinear.

Then there is a projective transformation $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that

$$
P_{1} \mapsto[1: 0: 0], P_{2} \mapsto[0: 1: 0], P_{3} \mapsto[0: 0: 1], P_{4} \mapsto[1: 1: 1] .
$$

Let $P_{1}=\left[a_{11}: a_{12}: a_{13}\right], P_{2}=\left[a_{21}: a_{22}: a_{23}\right], P_{3}=\left[a_{31}: a_{32}: a_{33}\right]$. Let ϕ be the projective transformation
$[x: y: z] \mapsto\left[a_{11} x+a_{21} y+a_{31} z: a_{12} x+a_{22} y+a_{32} z: a_{13} x+a_{23} y+a_{33} x\right]$.
Then $\phi([1: 0: 0])=P_{1}, \phi([0: 1: 0])=P_{2}, \phi([0: 0: 1])=P_{3}$.
Let ψ be the inverse of the map ϕ. Write $\psi\left(P_{4}\right)=[\alpha: \beta: \gamma]$.
Let τ be the projective transformation

$$
[x: y: z] \mapsto\left[\frac{x}{\alpha}: \frac{y}{\beta}: \frac{z}{\gamma}\right]=[\beta \gamma x: \alpha \gamma y: \alpha \beta z]
$$

Then $\tau \circ \psi$ is the required projective transformation.

Conics and their tangent lines

Let L be a line in $\mathbb{P}_{\mathbb{C}}^{2}$, and let \mathcal{C} be an irreducible conic in $\mathbb{P}_{\mathbb{C}}^{2}$.
Question
When $|L \cap \mathcal{C}|=1$?
We may assume that $[0: 0: 1] \in L \cap \mathcal{C}$. Then \mathcal{C} is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z=0
$$

for some $[\mathbf{a}: \mathbf{b}: \mathbf{c}: \mathbf{d}: \mathbf{e}] \in \mathbb{P}_{\mathbb{C}}^{4}$.
We may assume that L is given by $x=0$. Then

$$
L \cap \mathcal{C}=[0: 0: 1] \cup[0: \mathbf{e}:-\mathbf{c}]
$$

Thus, we have $|L \cap \mathcal{C}|=1 \Longleftrightarrow e=0$.

- Let U_{z} be the complement in $\mathbb{P}_{\mathbb{C}}^{2}$ to the line $z=0$.
- Identify U_{z} and \mathbb{C}^{2} with coordinates $\bar{x}=\frac{x}{z}$ and $\bar{y}=\frac{y}{z}$.

Then $U_{z} \cap \mathcal{C}$ is given by $\mathbf{a} \bar{x}^{2}+\mathbf{b} \overline{x y}+\mathbf{c} \bar{y}^{2}+\mathbf{d} \bar{x}+\mathbf{e} \bar{y}=0$.

- $\mathbf{d} \bar{x}+\mathbf{e} \bar{y}=0$ is the tangent line to $U_{z} \cap \mathcal{C}$ at $(0,0)$.
- $\mathbf{d} x+\mathbf{e} y=0$ is the tangent line to \mathcal{C} at $[0: 0: 1]$.

Then $|L \cap \mathcal{C}|=1 \Longleftrightarrow L$ is tangent to \mathcal{C} at the point $L \cap \mathcal{C}$.

Smooth complex plane curves

Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree d given by

$$
f(x, y, z)=0
$$

where $f(x, y, z)$ is a homogeneous polynomial of degree d.

Definition

A point $[a: b: c] \in \mathbb{P}_{\mathbb{C}}^{2}$ is a singular point of the curve C if

$$
\frac{\partial f(a, b, c)}{\partial x}=\frac{\partial f(a, b, c)}{\partial y}=\frac{\partial f(a, b, c)}{\partial z}=0
$$

- Denote by $\operatorname{Sing}(C)$ the set of singular points of the curve C.
- Non-singular points of the curve C are called smooth.
- The curve C is said to be smooth if $\operatorname{Sing}(C)=\varnothing$

Example

1. If $f=z x^{d-1}-y^{d}$ and $d \geqslant 3$, then $\operatorname{Sing}(C)=[0: 0: 1]$.
2. If $f=x^{d}+y^{d}+z^{d}$, then $\operatorname{Sing}(C)=\varnothing$.

Tangent lines

- Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree d given by

$$
f(x, y, z)=0
$$

where $f(x, y, z)$ is a homogeneous polynomial of degree d.

- Let $P=[\alpha: \beta: \gamma]$ be a smooth point in C. Then the line

$$
\frac{\partial f(\alpha, \beta, \gamma)}{\partial x} x+\frac{\partial f(\alpha, \beta, \gamma)}{\partial y} y+\frac{\partial f(\alpha, \beta, \gamma)}{\partial z} z=0
$$

is the tangent line to the curve C at the point P.
Remark
We may assume that $P=[0: 0: 1]$. Then

$$
f(x, y, z)=z^{d-1} h_{1}(x, y)+z^{d-2} h_{2}(x, y)+\cdots+z h_{d-1}(x, y)+h_{d}(x, y)=0
$$

where $h_{i}(x, y)$ is a homogenous polynomial of degree i.
Then $h_{1}(x, y)=0$ is the tangent line to C at the point P.

Conics and projective transformation

Let \mathcal{C} be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$. Then \mathcal{C} is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.
Theorem
There is a projective transformations ϕ such that $\phi(\mathcal{C})$ is given by

1. either $x y=z^{2}$ (an irreducible smooth conic),
2. or $x y=0$ (a union of two lines in $\mathbb{P}_{\mathbb{C}}^{2}$),
3. or $x^{2}=0$ (a line in $\mathbb{P}_{\mathbb{C}}^{2}$ taken with multiplicity 2).

Example

Let \mathcal{C} be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$ given by $(x-3 y+z)(x+7 y-5 z)=0$. Let $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be a projective transformations given by

$$
[x: y: z] \mapsto[x-3 y+z: x+7 y-5 z: z]
$$

Then $\phi(\mathcal{C})$ is a conic in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by $x y=0$.

Irreducible conics

Let \mathcal{C} be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$. Then \mathcal{C} that is given by

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{a} & \frac{\mathbf{b}}{2} & \frac{\mathbf{d}}{2} \\
\frac{\mathbf{b}}{2} & \mathbf{c} & \frac{\mathrm{e}}{2} \\
\frac{\mathbf{d}}{2} & \frac{\mathrm{e}}{2} & \mathbf{f}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 .
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.

- Denote this 3×3 matrix by \mathcal{M}.

Lemma

The conic \mathcal{C} is irreducible if and only if $\operatorname{det}(\mathcal{M}) \neq 0$.

Proof.

Let $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be a projective transformation given by matrix \mathbf{M}. Let $\mathbf{N}=\mathbf{M}^{-1}$. Then the conic $\phi(\mathcal{C})$ is given by

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right) \mathbf{N}^{T}\left(\begin{array}{ccc}
\mathbf{a} & \frac{\mathbf{b}}{2} & \frac{\mathbf{d}}{2} \\
\frac{\mathbf{b}}{2} & \mathbf{c} & \frac{\mathrm{e}}{2} \\
\frac{d}{2} & \frac{e}{2} & \mathbf{f}
\end{array}\right) \mathbf{N}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=0
$$

Classification of irreducible conics

Let \mathcal{C} be an irreducible conic in $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.

1. Pick a point in \mathcal{C} and map it to $[0: 0: 1]$. This kills \mathbf{f}.
2. Map the tangent line $\mathbf{d} x+\mathbf{e} y=0$ to $x=0$. This kills \mathbf{e}.
3. Map the line $z=0$ to the line

$$
z+\alpha y+\beta z
$$

for appropriate α and β to kill \mathbf{a} and \mathbf{b}.
4. Scale x, y, and z appropriately to get $\mathbf{b}=1$ and $\mathbf{c}=-1$.

This gives a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that

$$
x z=y^{2}
$$

defines the curve $\phi(\mathcal{C})$.

The conic $x^{2}+y^{2}-2 x y+x z-3 y z+2 z^{2}=0$
Let \mathcal{C} be the conic in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
x^{2}+y^{2}-2 x y+x z-3 y z+2 z^{2}=0
$$

1. Note that $[0: 1: 1] \in \mathcal{C}$. Let $\mathbf{y}=y-z$. Then \mathcal{C} is given by

$$
x^{2}+y^{2}-y z-2 x y-x z=0
$$

2. To map the tangent line $x+y=0$ to the line $x=0$, let

$$
\mathbf{x}=x+\mathbf{y} .
$$

Then \mathcal{C} is given by $x^{2}+4 y^{2}-4 x y-x z=0$.
3. Let $z=z+x-4 y$. Then \mathcal{C} is given by $4 y^{2}-x z=0$.

Since $\mathrm{x}=x+y-z, \mathbf{y}=y-z$, and $\mathrm{z}=x-3 y+4 z$, the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
1 & -3 & 4
\end{array}\right)
$$

gives a projective transformation that maps \mathcal{C} to $x z=4 y^{2}$.

Intersection of two conics

Let \mathcal{C} and \mathcal{C}^{\prime} be two irreducible conics in $\mathbb{P}_{\mathbb{C}}^{2}$ such that $\mathcal{C} \neq \mathcal{C}^{\prime}$.
Theorem
One has $1 \leqslant\left|\mathcal{C} \cap \mathcal{C}^{\prime}\right| \leqslant 4$.

Proof.

We may assume that \mathcal{C} is given by $x y=z^{2}$. Then \mathcal{C}^{\prime} is given by

$$
\mathbf{a} x^{2}+\mathbf{b} x y+\mathbf{c} y^{2}+\mathbf{d} x z+\mathbf{e} y z+\mathbf{f} z^{2}=0
$$

for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ in \mathbb{C} such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}) \neq(0,0,0,0,0,0)$.

- Let L be the line $y=0$. Then $L \cap \mathcal{C} \cap \mathcal{C}^{\prime} \subset[1: 0: 0]$.
- One has $L \cap \mathcal{C} \cap \mathcal{C}^{\prime}=[1: 0: 0] \Longleftrightarrow \mathbf{a}=0$.
- Let $U_{y}=\mathbb{P}_{\mathbb{C}}^{2} \backslash L$. Then $U_{y} \cap \mathcal{C} \cap \mathcal{C}^{\prime}$ is given by

$$
y-1=x-z^{2}=\mathbf{a} z^{4}+\mathbf{d} z^{3}+(\mathbf{b}+\mathbf{f}) z^{2}+\mathbf{e} z+\mathbf{c}=0 .
$$

If $\mathbf{a}=0$, then $L \cap \mathcal{C} \cap \mathcal{C}^{\prime}=[1: 0: 0]$ and $0 \leqslant\left|U_{y} \cap \mathcal{C} \cap \mathcal{C}^{\prime}\right| \leqslant 3$.
If $\mathbf{a} \neq 0$, then $L \cap \mathcal{C} \cap \mathcal{C}^{\prime}=\varnothing$ and $1 \leqslant\left|U_{y} \cap \mathcal{C} \cap \mathcal{C}^{\prime}\right| \leqslant 4$.

Intersection of two conics: four points

Let \mathcal{C} be the irreducible conic

$$
511 x^{2}+709 x y-131 y^{2}-1932 x z+981 y z-448 z^{2}=0 .
$$

Let \mathcal{C} be the irreducible conic

$$
1217 x^{2}-394 x y-541 y^{2}-6555 x z+2823 y z+6748 z^{2}=0
$$

Then $\mathcal{C} \cap \mathcal{C}$ consists of [4:0:1], [1:3:-1], [0:7:1], [2:1:1].

Intersection of two conics: three points

Let \mathcal{C} be the irreducible conic

$$
511 x^{2}+709 x y-131 y^{2}-1932 x z+981 y z-448 z^{2}=0
$$

Let \mathcal{C} be the irreducible conic
$42049 x^{2}+21271 x y+23536 y^{2}-355005 x z-271500 y z+747236 z^{2}=0$.
Then $\mathcal{C} \cap \mathcal{C}$ consists of $[4: 0: 1], 2 \times[0: 7: 1],[2: 1: 1]$.

Intersection of two conics: two points $(2+2)$

Let \mathcal{C} be the irreducible conic $f(x, y, z)=0$, where

$$
f(x, y, z)=511 x^{2}+709 x y-131 y^{2}-1932 x z+981 y z-448 z^{2}
$$

Let \mathcal{C} be the irreducible conic
$(3031 x-853 y+5971 z)(821 x-3779 y+2137 z)-9700 f(x, y, z)=0$.
Then $\mathcal{C} \cap \mathcal{C}$ consists of $2 \times[0: 7: 1]$ and $2 \times[2: 1: 1]$.

Intersection of two conics: two points $(3+1)$

Let \mathcal{C} be the irreducible conic $f(x, y, z)=0$, where

$$
f(x, y, z)=511 x^{2}+709 x y-131 y^{2}-1932 x z+981 y z-448 z^{2}
$$

Let \mathcal{C} be the irreducible conic

$$
(3031 x-853 y+5971 z)(6 x+2 y-14 z)-50 f(x, y, z)=0 .
$$

Then $\mathcal{C} \cap \mathcal{C}$ consists of $3 \times[0: 7: 1]$ and [2:1:1].

Intersection of two conics: one point

Let \mathcal{C} be the irreducible conic $f(x, y, z)=0$, where

$$
f(x, y, z)=511 x^{2}+709 x y-131 y^{2}-1932 x z+981 y z-448 z^{2} .
$$

Let \mathcal{C} be the irreducible conic

$$
(3031 x-853 y+5971 z)^{2}-5000 f(x, y, z)=0
$$

Then $\mathcal{C} \cap \mathcal{C}$ consists of $4 \times[0: 7: 1]$.

Transversal intersection of two conics

Let \mathcal{C} and \mathcal{C}^{\prime} be two irreducible conics in $\mathbb{P}_{\mathbb{C}}^{2}$.
Question
When the intersection $\mathcal{C} \cap \mathcal{C}^{\prime}$ consists of 4 points?
Let P be a point in $\mathcal{C} \cap \mathcal{C}^{\prime}$.

- \exists unique line $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ such that $P \in L$ and $|L \cap \mathcal{C}|=1$.
- \exists unique line $L^{\prime} \subset \mathbb{P}_{\mathbb{C}}^{2}$ such that $P \in L^{\prime}$ and $\left|L^{\prime} \cap \mathcal{C}\right|=1$.

The lines L and L^{\prime} are tangent lines to \mathcal{C} and \mathcal{C}^{\prime} at P, respectively.
Definition
We say that \mathcal{C} intersects \mathcal{C}^{\prime} transversally at P if $L \neq L^{\prime}$.

- The answer to the question above is given by

Theorem
The following two conditions are equivalent:

1. the intersection $\mathcal{C} \cap \mathcal{C}^{\prime}$ consists of 4 points,
2. \mathcal{C} intersects \mathcal{C}^{\prime} transversally at every point of $\mathcal{C} \cap \mathcal{C}^{\prime}$.

Bezout's theorem

- Let $f(x, y, z)$ be a homogeneous polynomial of degree d.
- Let $g(x, y, z)$ be a homogeneous polynomial of degree \widehat{d}.

Consider the system of equations

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \\
g(x, y, z)=0
\end{array}\right.
$$

Question

How many solutions in $\mathbb{P}_{\mathbb{C}}^{2}$ does (\star) has?

- Infinite if $f(x, y, z)$ and $g(x, y, z)$ have a common factor.

Theorem (Bezout)

Suppose that $f(x, y, z)$ and $g(x, y, z)$ have no common factors. Then the number of solutions to (\star) depends only on d and \widehat{d}.

- Here we should count solutions with multiplicities.

Bezout's theorem: baby case

- Let $f(x, y, z)$ be a homogeneous polynomial of degree d.
- Let $g(x, y, z)$ be a homogeneous polynomial of degree 1 .

Suppose that $g(x, y, z)$ does not divide $f(x, y, z)$.

- We may assume that $g(x, y, z)=z$.

We have to solve the system

$$
\left\{\begin{array}{l}
z=0 \\
f(x, y, z)=0
\end{array}\right.
$$

Theorem (Fundamental Theorem of Algebra)
There are linear polynomials $h_{1}(x, y), \ldots, h_{d}(x, y)$ such that

$$
f(x, y, 0)=\prod_{i=1}^{d} h_{i}(x, y)
$$

- This gives d points in $\mathbb{P}_{\mathbb{C}}^{2}$ counted with multiplicities.

Bezout's theorem: algebraic version

- Let $f(x, y, z)$ be a homogeneous polynomial of degree d.
- Let $g(x, y, z)$ be a homogeneous polynomial of degree \widehat{d}.

Suppose that $f(x, y, z)$ and $g(x, y, z)$ do not have common factors.

- Let C be the subset in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by $f(x, y, z)=0$.
- Let Z be the subset in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by $g(x, y, z)=0$.

For every $P \in C \cap Z$, define a positive integer $(f, g)_{P}$ as follows:

- Assume that $P \in U_{z}=\mathbb{C}^{2}$ with coordinates $\bar{x}=\frac{x}{z}$ and $\bar{y}=\frac{y}{z}$.
- Let \mathbf{R} be a subring in $\mathbb{C}(\bar{x}, \bar{y})$ consisting of all fractions

$$
\frac{a(\bar{x}, \bar{y})}{b(\bar{x}, \bar{y})}
$$

with $a(\bar{x}, \bar{y})$ and $b(\bar{x}, \bar{y})$ in $\mathbb{C}[\bar{x}, \bar{y}]$ such that $b(P) \neq 0$.

- Let I be the ideal in \mathbf{R} generated by $f(\bar{x}, \bar{y}, 1)$ and $g(\bar{x}, \bar{y}, 1)$.
- Let $(f, g)_{P}=\operatorname{dim}_{\mathbb{C}}(\mathbf{R} / \mathbf{I}) \geqslant 1$.

Then Bezout's theorem says that

$$
\sum_{P \in C \cap Z}(f, g)_{P}=d \widehat{d}
$$

Intersection multiplicity

- Let $f(x, y, z)$ be a homogeneous polynomial.
- Let $g(x, y, z)$ be a homogeneous polynomial.

Suppose that $f(x, y, z)$ and $g(x, y, z)$ do not have common factors. Fix $P \in \mathbb{P}_{\mathbb{C}}^{2}$ such that $f(P)=g(P)=0$. Then

$$
(f, g)_{P}=(g, f)_{P} \geqslant 1
$$

- Let $h(x, y, z)$ be a homogeneous polynomial.

Suppose that $f(x, y, z)$ and $h(x, y, z)$ do not have common factors.

- If $h(P)=0$, then

$$
(f, g h)_{P}=(f, g)_{P}+(f, h)_{P}
$$

- If $h(P) \neq 0$, then

$$
(f, g h)_{P}=(f, g)_{P}
$$

Bezout's theorem: geometric version

- Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
f(x, y, z)=0
$$

where f is a homogeneous irreducible polynomial of degree d.

- Let Z be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
g(x, y, z)=0
$$

where g is a homogeneous irreducible polynomial of degree \widehat{d}.
Theorem (Bezout)
Suppose that $f(x, y, z) \neq \lambda g(x, y, z)$ for any $\lambda \in \mathbb{C}^{*}$. Then

$$
1 \leqslant|C \cap Z| \leqslant \sum_{P \in C \cap Z}(C \cdot Z)_{P}=d \widehat{d}
$$

where $(C \cdot Z)_{P}=(f, g)_{P}$ is the intersection multiplicity.
Corollary
$C=Z \Longleftrightarrow f(x, y, z)=\lambda g(x, y, z)$ for some $\lambda \in \mathbb{C}^{*}$.

Intersection of two cubics

Let \mathcal{C} be the irreducible cubic curve in $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
-5913252577 x^{3}+30222000280 x^{2} y-21634931915 x y^{2}+
$$

$+5556266591 y^{3}-73906985473 x^{2} z+102209537669 x y z-37300172365 y^{2} z+$

$$
+1389517162 x z^{2}-88423819400 y z^{2}+204616284808 z^{3}=0
$$

Let \mathcal{C} be the irreducible cubic curve in $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\begin{aligned}
& -4844332 x^{3}-8147864 x^{2} y-4067744 x y^{2}- \\
& -1866029 y^{3}+32668904 x^{2} z-28226008 x y z+41719157 y^{2} z+ \\
& \quad+252639484 x z^{2}+126319742 y z^{2}-960898976 z^{3}=0
\end{aligned}
$$

Then the intersection $\mathcal{C} \cap \mathcal{C}$ consists of the eight points [2:3:1],[-3:4:1],[4:5:-1],[-6:2:1],[5:3:1],[3:2:1],[2:6:-11],[4:8:1] and the ninth point
$[1439767504290697562: 4853460637572644276: 409942054104759719]$.

Intersection of three cubics

How to find the intersection $\mathcal{C} \cap \mathcal{C}$?

1. Let $f(x, y)$ be the polynomial

$$
\begin{array}{r}
-5913252577 x^{3}+30222000280 x^{2} y-21634931915 x y^{2}+5556266591 y^{3}-73906985473 x^{2}+ \\
+102209537669 x y-37300172365 y^{2}+1389517162 x-88423819400 y+204616284808
\end{array}
$$

2. Let $g(x, y)$ be the polynomial

$$
\begin{aligned}
&-4844332 x^{3}-8147864 x^{2} y-4067744 x y^{2}-1866029 y^{3}+32668904 x^{2}- \\
&-28226008 x y+41719157 y^{2}+252639484 x+126319742 y-960898976
\end{aligned}
$$

3. Consider $f(x, y)$ and $g(x, y)$ as polynomials in y with coefficients in $\mathbb{C}[x]$.
4. Their resultant $R(f, g, y)$ is the polynomial:

$$
\begin{aligned}
& 3191684116143355051418558877844721248419567192327169 x^{9}- \\
& -8017907650232644802095920848553578107779291488585493 x^{8}- \\
& -199518954618833947887209453519236853012953323028215633 x^{7}+ \\
& +568807074848026694866216096400002745811565213596359157 x^{6}+ \\
& +3880614266608601523032194501984570152069164753998933464 x^{5}- \\
& -11708714303403885204269002049013593498191154175608876232 x^{4}- \\
& -27936678172063675450258473952703104020433424068758015952 x^{3}+ \\
& +86672526536406322333733242006002412277456517441705929808 x^{2}+ \\
& +61609026384389751204137037731562203601860663683619173632 x- \\
& -193701745722977277468730209672162612875116278006170799360
\end{aligned}
$$

5. Its roots are $2,3,4,5,-6,-4,-3,-2$ and $\frac{1439767504290697562}{409942054104759719}$.

Resultant

One has $f(x, y)=a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}$, where

$$
\left\{\begin{array}{l}
a_{3}=5556266591 \\
a_{2}=-21634931915 x-37300172365 \\
a_{1}=30222000280 x^{2}+102209537669 x-88423819400 \\
a_{0}=5913252577 x^{3}-73906985473 x^{2}+1389517162 x+204616284808
\end{array}\right.
$$

One has $g(x, y)=b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}$, where

$$
\left\{\begin{array}{l}
b_{3}=-1866029 \\
b_{2}=-4067744 x+41719157 \\
b_{1}=-8147864 x^{2}-28226008 x+126319742 \\
b_{0}=-4844332 x^{3}+32668904 x^{2}+252639484 x-960898976
\end{array}\right.
$$

The resultant of $f(x, y)$ and $g(x, y)$ (considered as polynomials in y) is
$R(f, g, y)=\operatorname{det}\left(\begin{array}{cccccc}a_{0} & a_{1} & a_{2} & a_{3} & 0 & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & 0 \\ 0 & 0 & a_{0} & a_{1} & a_{2} & a_{3} \\ b_{0} & b_{1} & b_{2} & b_{3} & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3}\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccc}f(x, y) & a_{1} & a_{2} & a_{3} & 0 \\ y f(x, y) & a_{0} & a_{1} & a_{2} & a_{3} \\ y^{2} f(x, y) & 0 & a_{0} & a_{1} & a_{2} \\ g(x, y) & b_{1} & b_{2} & b_{3} & 0 \\ y g(x, y) & b_{0} & b_{1} & b_{2} & b_{3} \\ y^{2} g(x, y) & 0 & b_{0} & b_{1} & b_{2} \\ b_{3}\end{array}\right)$.

This shows that $R(f, g, y)=A(x, y) f(x, y)+B(x, y) g(x, y)$ for some polynomials $A(x, y)$ and $B(x, y)$.

Intersection multiplicity and transversal intersection

- Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree d.
- Let Z be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree \widehat{d}.

Pick $P \in C \cap Z$.
Definition
We say that C intersects the curve Z transversally at P if

1. both curves C and Z are smooth at the point P,
2. and the tangent lines to C and Z are P are different.

Then $(C \cdot Z)_{P}=1 \Longleftrightarrow C$ intersects Z transversally at P.
Corollary
The following two conditions are equivalent:

1. $|C \cap Z|=d \widehat{d}$,
2. C intersects Z transversally at every point of $C \cap Z$.

Corollary
If $|C \cap Z|=d \widehat{d}$, then $\operatorname{Sing}(C) \cap Z=\varnothing=C \cap \operatorname{Sing}(Z)$.

Intersection multiplicity and singular points

- Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree d.

Let $P=[0: 0: 1]$. Then C is given by the equation

$$
z^{d} h_{0}(x, y)+z^{d-1} h_{1}(x, y)+z^{d-2} h_{2}(x, y)+\cdots+h_{d}(x, y)=0
$$

where $h_{i}(x, y)$ is a homogenous polynomial of degree i. Let

$$
\operatorname{mult}_{P}(C)=\min \left\{i \mid h_{i}(x, y) \text { is not a zero polynomial }\right\}
$$

- $\operatorname{mult}_{P}(C) \geqslant 1 \Longleftrightarrow P \in C$.
- $\operatorname{mult}_{P}(C) \geqslant 2 \Longleftrightarrow P \in \operatorname{Sing}(C)$.

We say that C has multiplicity $\operatorname{mult}_{P}(C)$ at the point P.

- Let Z be another irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$.

Lemma
Suppose that $C \neq Z$ and $P \in C \cap Z$. Then

$$
(C \cdot Z)_{P} \geqslant \operatorname{mult}_{P}(C) \operatorname{mult}_{P}(Z)
$$

Bezout's theorem: first application

Let $f(x, y, z)$ be a homogeneous polynomial of degree $d \geqslant 1$.

Lemma

Suppose that the system

$$
\frac{\partial f(x, y, z)}{\partial x}=\frac{\partial f(x, y, z)}{\partial y}=\frac{\partial f(x, y, z)}{\partial z}=0
$$

has no solutions in $\mathbb{P}_{\mathbb{C}}^{2}$. Then $f(x, y, z)$ is irreducible.
Proof.
Suppose that $f(x, y, z)$ is not irreducible. Then

$$
f(x, y, z)=g(x, y, z) h(x, y, z)
$$

where g and h are homogeneous polynomials of positive degrees. There is $[a: b: c] \in \mathbb{P}_{\mathbb{C}}^{2}$ with $g(a, b, c)=h(a, b, c)=0$. Then

$$
\frac{\partial f(a, b, c)}{\partial x}=\frac{\partial g(a, b, c)}{\partial x} h(a, b, c)+g(a, b, c) \frac{\partial h(a, b, c)}{\partial x}=0
$$

Bezout's theorem: second application

Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree $d \geqslant 2$.
Theorem
Let P and Q be two different points in C. Then

$$
\operatorname{mult}_{P}(C)+\operatorname{mult}_{Q}(C) \leqslant d
$$

Proof.
Let L be a line in $\mathbb{P}_{\mathbb{C}}^{2}$ that passes through P and Q. Then
$d=\sum_{O \in L \cap C}(L \cdot C)_{O} \geqslant(L \cdot C)_{P}+(L \cdot C)_{Q} \geqslant \operatorname{mult}_{P}(C)+\operatorname{mult}_{Q}(C)$.

Corollary
Let P be a point in C. Then $\operatorname{mult}_{P}(C)<d$.
Corollary
Suppose that $d=3$. Then C has at most one singular point.

Bezout's theorem: third application

Let C be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree 4.

Lemma

The curve C has at most 3 singular points.

Proof.

Suppose that C has at least 4 singular points.
Denote four singular points of C as $P_{1}, P_{2}, P_{3}, P_{4}$.
Let Q be a point in C that is different from these 4 points.
There is a homogeneous polynomial $f(x, y, z)$ of degree 2 such that

$$
f\left(P_{1}\right)=f\left(P_{2}\right)=f\left(P_{3}\right)=f\left(P_{4}\right)=f(Q)=0
$$

Let Z the curve in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by $f(x, y, z)=0$.
Since C is irreducible, we can apply Bezout's theorem to C and Z :

$$
8=\sum_{O \in C \cap Z}(C \cdot Z)_{O} \geqslant \sum_{i=1}^{4}(C \cdot Z)_{P_{i}}+(C \cdot Z)_{Q} \geqslant \sum_{i=1}^{4} \operatorname{mult}_{P_{i}}(C)+1
$$

Bezout's theorem: fourth application

Let $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be a map given by

$$
[x: y: z] \mapsto[f(x, y, z): g(x, y, z): h(x, y, z)]
$$

for some homogeneous polynomials f, g, h of degree d such that

$$
f(x, y, z)=g(x, y, z)=h(x, y, z)=0
$$

does not have solutions in $\mathbb{P}_{\mathbb{C}}^{2}$. Suppose that ϕ is bijection.

- Let $[A: B: C]$ and $\left[A^{\prime}: B^{\prime}: C^{\prime}\right]$ be general points in $\mathbb{P}_{\mathbb{C}}^{2}$.
- Let L be a line given by $A x+B y+C z=0$.
- Let L^{\prime} be a line given by $A^{\prime} x+B^{\prime} y+C^{\prime} z=0$.

The preimage of $L \cap L^{\prime}$ via ϕ is 1 point. But it is given by

$$
\left\{\begin{array}{l}
A f(x, y, z)+B g(x, y, z)+C h(x, y, z)=0 \\
A^{\prime} f(x, y, z)+B^{\prime} g(x, y, z)+C^{\prime} h(x, y, z)=0
\end{array}\right.
$$

One can show that this system has d^{2} solutions. Then $d=1$.

