EXERCISES

DUBNA 2018: LINES ON CUBIC SURFACES

Exercise 1. The following problem is from *Linear Algebra*, A Modern Introduction by David Poole (2014).

45. From elementary geometry we know that there
is a unique straight line through any two points
in a plane. Less well known is the fact that there is a
unique parabola through any three noncollinear
points in a plane. For each set of points below, find
a parabola with an equation of the form $y = ax^2 + ax^2 $
bx + c that passes through the given points. (Sketch
the resulting parabola to check the validity of your
answer.)
(a) $(0, 1), (-1, 4), \text{ and } (2, 1)$ (b) $(-3, 1), (-2, 2), \text{ and } (-1, 5)$

The sentence "Less well known is the fact that there is a unique parabola through any three noncollinear points in a plane" is mathematically wrong. In this problem, Poole assumes that parabola is the curve in \mathbb{R}^2 that is given by the equation

$$y = ax^2 + bx + c$$

for some real numbers a, b and c. This assumption is a bit weird, since parabolas were used long before René Descartes introduced Cartesian coordinates. Moreover, this definition of parabola discriminates x-coordinate, which is not appropriate \odot . The goal of this exercise is to solve this problem using good definition of parabola: parabola is a subset in \mathbb{R}^2 such that there exists a composition of rotations and translations that maps it to the curve given by

$$y = px^2,$$

where p is a positive real number.

- (a) Find all parabolas in \mathbb{R}^2 that pass through the points (0,1), (-1,4), (2,1), (19,20).
- (b) Find all parabolas in R² that pass through the points (0, 1), (-1, 4), (2, 1), (9, 10).
 (c) Describe all parabolas in R² that pass through the points (0, 1), (-1, 4), (2, 1).
- (d) Let P be a point in \mathbb{R}^2 that is different from (0,1), (-1,4), (2,1). Explain when there exists a parabola that contains (0, 1), (-1, 4), (2, 1) and P.

Exercise 2. Let Σ be a subset in $\mathbb{P}^2_{\mathbb{C}}$ such that Σ is not contained in one line in $\mathbb{P}^2_{\mathbb{C}}$.

- (a) Suppose that $|\Sigma| \leq 6$. Prove that there exists a line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that contains exactly two points of the set Σ .
- (b) Suppose that $|\Sigma| = 7$. Prove that there exists a line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that contains exactly two points of the set Σ .
- (c) Suppose that $|\Sigma| = 8$. Prove that there exists a line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that contains exactly two points of the set Σ .

Exercise 3. Do the following:

(a) Find all lines in $\mathbb{P}^2_{\mathbb{C}}$ that contains exactly 2 points among

$$[0:0:1], [0:1:1], [1:1:-1], [1:3:1], [2:5:1], [1:1:1], [1:4:2].$$

(b) Find a smooth conic $C \subset \mathbb{P}^2_{\mathbb{C}}$ such that C contains the points

the line in $\mathbb{P}^2_{\mathbb{C}}$ that tangents the conic C at the point [1:0:0] is given by y-z=0, and the line in $\mathbb{P}^2_{\mathbb{C}}$ that tangents C at the point [0:0:1] is given by y+2x=0.

(c) Find all smooth conics in $\mathbb{P}^2_{\mathbb{C}}$ that passes through

and tangent to the line x + 2y + z = 0.

Exercise 4. Observe that no three points among the four points [1:2:3], [1:0:-1], [2:5:1] and [-1:7:1] in $\mathbb{P}^2_{\mathbb{C}}$ are collinear.

- (a) Find the projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi([1:2:3]) = [1:0:0], \phi([1:0:-1]) = [0:1:0], \phi([2:5:1]) = [0:0:1]$ and $\phi([-1:7:1]) = [1:1:1].$
- (b) Let \mathcal{C} be the conic in $\mathbb{P}^2_{\mathbb{C}}$ that is given by

$$-xy + 2y^2 - 3xz + 7yz + 3z^2 = 0.$$

Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi(\mathcal{C})$ is given by xy = 0. (c) Let \mathcal{C} be the conic in \mathbb{P}^2 that is given by

$$x^2 + xy - 2y^2 + 3xz + 3yz + z^2 = 0.$$

Then \mathcal{C} contains the point [-2:1:3]. Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi([-2:1:3]) = [0:0:1]$ and $\phi(\mathcal{C})$ is given by $xz + y^2 = 0$.

Exercise 5. Let λ be a complex number. Put

$$f(x, y, z) = x^3 + y^3 + z^3 + \lambda xyz.$$

Let C be a subset in $\mathbb{P}^2_{\mathbb{C}}$ given by f(x, y, z) = 0. Let $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, so that $\omega^3 = 1$. Denote by Σ the subset in $\mathbb{P}^2_{\mathbb{C}}$ consisting of the following 9 points:

$$\begin{split} & [1:-1:0], [1:-\omega:0], [1:-\omega^2:0], \\ & [1:0:-1], [1:0:-\omega], [1:0:-\omega^2], \\ & [0:1:-1], [0:1:-\omega], [0:1:-\omega^2]. \end{split}$$

- (a) Check that C contains Σ . Show that the set Σ is not contained in any line in $\mathbb{P}^2_{\mathbb{C}}$. Going through all pairs of points in Σ , one can see that every line $L \subset \mathbb{P}^2_{\mathbb{C}}$ that passes through two points in Σ contains another point in Σ . Check this in some cases.
- (b) Suppose that $\lambda^3 \neq -27$. Show that there is no point $[a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$ such that

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

Use Bezout theorem to show that the homogeneous polynomial f(x, y, z) is irreducible. Conclude that C is a smooth irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree 3. Pick a point $P \in \Sigma$. Find the equation of the line $L_P \subset \mathbb{P}^2_{\mathbb{C}}$ that is tangent to the curve C at the point P. Show that $L_P \cap C = P$. (c) Suppose that $\lambda^3 = -27$. Show that there are 3 points $[a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$ such that

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

Use Bezout theorem to deduce that the curve C is a union of 3 different lines in $\mathbb{P}^2_{\mathbb{C}}$. Conclude that f(x, y, z) is a product of 3 different polynomials in $\mathbb{C}[x, y, z]$ of degree 1. Find these 3 polynomials explicitly.

Exercise 6. Let \mathcal{C} be the conic in the complex projective plane $\mathbb{P}^2_{\mathbb{C}}$ that is given by

$$4x^2 - 4xy + y^2 - 4xz - 13yz + 12z^2 = 0.$$

Let $P_1 = [0:1:1], P_2 = [-1:4:1], P_3 = [2:1:1]$. Then C contains the points P_1, P_2, P_3 . Let $Q_1 = [19:20:1], Q_2 = [1:2:0], Q_3 = [57:37:49]$. Then C contains Q_1, Q_2, Q_3 . (a) Show that C is irreducible. Find the intersection of the conic C and the line z = 0.

(b) Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi(\mathcal{C})$ is given by

$$xz + y^2 = 0.$$

Compute $\phi(P_1)$, $\phi(P_2)$, $\phi(P_3)$, $\phi(Q_1)$, $\phi(Q_2)$ and $\phi(Q_3)$.

- (c) Let L_{12} , L_{13} , L_{23} , L_{21} , L_{31} , L_{32} be the lines in $\mathbb{P}^2_{\mathbb{C}}$ defined as follows:
 - L_{12} contains P_1 and Q_2 ; L_{13} contains P_1 and Q_3 ; L_{23} contains P_2 and Q_3 ;

• L_{21} contains P_2 and Q_1 ; L_{31} contains P_3 and Q_1 ; L_{32} contains P_3 and Q_2 . Find the defining equations of the lines L_{12} , L_{13} , L_{23} , L_{21} , L_{31} and L_{32} . Show that the points $L_{12} \cap L_{21}$, $L_{13} \cap L_{31}$ and $L_{23} \cap L_{32}$ are collinear.

Exercise 7. Put $f(x, y, z) = xy^3 + yz^3 + zx^3$. Let C be a subset in $\mathbb{P}^2_{\mathbb{C}}$ given by f(x, y, z) = 0.

(a) Show that there is no point $[a:b:c]\in \mathbb{P}^2_{\mathbb{C}}$ such that

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

Use Bezout theorem to show that f(x, y, z) is irreducible.

- (b) Let L be the tangent line to C at [0:0:1]. Find $L \cap C$.
- (c) Denote by g(x, y, z) the determinant of the matrix

$$\begin{pmatrix} \frac{\partial^2 f(x,y,z)}{\partial x \partial x} & \frac{\partial^2 f(x,y,z)}{\partial x \partial y} & \frac{\partial^2 f(x,y,z)}{\partial x \partial z} \\ \frac{\partial^2 f(x,y,z)}{\partial y \partial x} & \frac{\partial^2 f(x,y,z)}{\partial y \partial y} & \frac{\partial^2 f(x,y,z)}{\partial y \partial z} \\ \frac{\partial^2 f(x,y,z)}{\partial z \partial x} & \frac{\partial^2 f(x,y,z)}{\partial z \partial y} & \frac{\partial^2 f(x,y,z)}{\partial z \partial z} \end{pmatrix}$$

Denote by Z the subset in $\mathbb{P}^2_{\mathbb{C}}$ given by g(x, y, z) = 0. Show that $3 \leq |C \cap Z| \leq 24$.

Exercise 8. Let C_4 be an irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree 4.

(a) Show that the curve C_4 has at most 3 singular points.

(b) Suppose that the curve C_4 has a singular point P such that

$$\operatorname{mult}_P(C_4) = 3.$$

Show that the curve C_4 does not have other singular points.

(c) Give an example of a singular irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree 4.

Exercise 9. Let S_2 be an algebraic subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by $f_2(x, y, z, t) = 0$, where

$$f_2(x, y, z, t) = 2x^2 - 4tx - ty + xy + 2xz - y^2 + yz.$$

Put P = [1:-1:0:0].

- (a) Show that $f_2(x, y, z, t)$ is irreducible. Prove that S_2 is smooth.
- (b) Check that $P \in S_2$. Find all lines in $\mathbb{P}^3_{\mathbb{C}}$ that are contained in S_2 and pass through P. Find $[A:B:C:D] \in \mathbb{P}^3_{\mathbb{C}}$ such that the equation

$$Ax + By + Cz + Dt = 0$$

defines a plane $\Pi \subset \mathbb{P}^3_{\mathbb{C}}$ that is tangent to S_2 at the point P. Describe $\Pi \cap S_2$. (c) Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi(S_2)$ is given by xy = zt. Use this to describe all lines in $\mathbb{P}^3_{\mathbb{C}}$ that are contained in S_2 .

Exercise 10. Let S_2 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by $f_2(x, y, z, t) = 0$, where

$$f_2(x, y, z, t) = t^2 + tx - 2ty + tz + xy + xz - y^2 + yz.$$

Put P = [1:-2:1:1].

- (a) Show that $f_2(x, y, z, t)$ is irreducible. Prove that S_2 is smooth.
- (b) Check that $P \in S_2$. Find all lines in $\mathbb{P}^3_{\mathbb{C}}$ that are contained in S_2 and pass through P. Find $[A:B:C:D] \in \mathbb{P}^3_{\mathbb{C}}$ such that the equation

$$Ax + By + Cz + Dt = 0$$

defines a plane $\Pi \subset \mathbb{P}^3_{\mathbb{C}}$ that is tangent to S_2 at the point P. Describe $\Pi \cap S_2$.

(c) Find a projective transformation $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that $\phi(S_2)$ is given by xy = zt. Use this to describe all lines in $\mathbb{P}^3_{\mathbb{C}}$ that are contained in S_2 .

Exercise 11. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = txz + xy^2 + y^3$.

- (a) Show that $f_3(x, y, z, t)$ is irreducible.
- (b) Find all singular points (if any) of the cubic surface S_3 .

(c) Find all lines on S_3 .

Exercise 12. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = xyz + xyt + xzt + yzt$.

- (a) Show that $f_3(x, y, z, t)$ is irreducible.
- (b) Find all singular points (if any) of the cubic surface S_3 .

(c) Find all lines on S_3 .

Exercise 13. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = txz + y^2z + x^3 + \lambda z^3$ for some complex number λ .

- (a) Show that $f_3(x, y, z, t)$ is irreducible.
- (b) Find all singular points (if any) of the cubic surface S_3 .
- (c) Find all lines on S_3 .

Exercise 14. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = tz^2 + zx^2 + y^2x + \lambda t^3$ for some complex number λ .

(a) Show that $f_3(x, y, z, t)$ is irreducible.

- (b) Find all singular points (if any) of the cubic surface S_3 .
- (c) Find all lines on S_3 .

Exercise 15. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = x^3 + y^2 z + z^2 t$.

(a) Show that $f_3(x, y, z, t)$ is irreducible.

(b) Find all singular points (if any) of the cubic surface S_3 .

(c) Find all lines on S_3 .

Exercise 16. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

 $f_3(x,y,z,t) = 0,$ where $f_3(x,y,z,t) = x^3 + y^3 + z^3 + t^3 - (x+y+z+t)^3.$

(a) Show that $f_3(x, y, z, t)$ is irreducible.

(b) Find all singular points (if any) of the cubic surface S_3 .

(c) Find all lines on S_3 .

Exercise 17. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x,y,z,t) = 0,$$

where $f_3(x, y, z, t) = txz + y^2 z + x^3$.

- (a) Show that $f_3(x, y, z, t)$ is irreducible.
- (b) Find all singular points (if any) of the cubic surface S_3 .
- (c) Find all lines on S_3 .

Exercise 18. Let S_3 be a subset in $\mathbb{P}^3_{\mathbb{C}}$ that is given by

$$f_3(x, y, z, t) = 0,$$

where $f_3(x, y, z, t) = xyz - t^3$.

- (a) Show that $f_3(x, y, z, t)$ is irreducible.
- (b) Find all singular points (if any) of the cubic surface S_3 .
- (c) Find all lines on S_3 .