EXERCISES

DUBNA 2018: LINES ON CUBIC SURFACES

Exercise 1. The following problem is from Linear Algebra, A Modern Introduction by David Poole (2014).
45. From elementary geometry we know that there is a unique straight line through any two points in a plane. Less well known is the fact that there is a unique parabola through any three noncollinear points in a plane. For each set of points below, find a parabola with an equation of the form $y=a x^{2}+$ $b x+c$ that passes through the given points. (Sketch the resulting parabola to check the validity of your answer.)
(a) $(0,1),(-1,4)$, and $(2,1)$
(b) $(-3,1),(-2,2)$, and $(-1,5)$

The sentence "Less well known is the fact that there is a unique parabola through any three noncollinear points in a plane" is mathematically wrong. In this problem, Poole assumes that parabola is the curve in \mathbb{R}^{2} that is given by the equation

$$
y=a x^{2}+b x+c
$$

for some real numbers a, b and c. This assumption is a bit weird, since parabolas were used long before René Descartes introduced Cartesian coordinates. Moreover, this definition of parabola discriminates x-coordinate, which is not appropriate $\cdot(\cdot$. The goal of this exercise is to solve this problem using good definition of parabola: parabola is a subset in \mathbb{R}^{2} such that there exists a composition of rotations and translations that maps it to the curve given by

$$
y=p x^{2},
$$

where p is a positive real number.
(a) Find all parabolas in \mathbb{R}^{2} that pass through the points $(0,1),(-1,4),(2,1),(19,20)$.
(b) Find all parabolas in \mathbb{R}^{2} that pass through the points $(0,1),(-1,4),(2,1),(9,10)$.
(c) Describe all parabolas in \mathbb{R}^{2} that pass through the points $(0,1),(-1,4),(2,1)$.
(d) Let P be a point in \mathbb{R}^{2} that is different from $(0,1),(-1,4),(2,1)$. Explain when there exists a parabola that contains $(0,1),(-1,4),(2,1)$ and P.

Exercise 2. Let Σ be a subset in $\mathbb{P}_{\mathbb{C}}^{2}$ such that Σ is not contained in one line in $\mathbb{P}_{\mathbb{C}}^{2}$.
(a) Suppose that $|\Sigma| \leqslant 6$. Prove that there exists a line $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ that contains exactly two points of the set Σ.
(b) Suppose that $|\Sigma|=7$. Prove that there exists a line $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ that contains exactly two points of the set Σ.
(c) Suppose that $|\Sigma|=8$. Prove that there exists a line $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ that contains exactly two points of the set Σ.

Exercise 3. Do the following:
(a) Find all lines in $\mathbb{P}_{\mathbb{C}}^{2}$ that contains exactly 2 points among

$$
[0: 0: 1],[0: 1: 1],[1: 1:-1],[1: 3: 1],[2: 5: 1],[1: 1: 1],[1: 4: 2] .
$$

(b) Find a smooth conic $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ such that C contains the points

$$
[0: 0: 1],[0: 1: 0],[1: 0: 0]
$$

the line in $\mathbb{P}_{\mathbb{C}}^{2}$ that tangents the conic C at the point $[1: 0: 0]$ is given by $y-z=0$, and the line in $\mathbb{P}_{\mathbb{C}}^{2}$ that tangents C at the point $[0: 0: 1]$ is given by $y+2 x=0$.
(c) Find all smooth conics in $\mathbb{P}_{\mathbb{C}}^{2}$ that passes through

$$
[1: 0: 2],[3: 1: 2],[1: 2: 1],[1: 1: 1],
$$

and tangent to the line $x+2 y+z=0$.

Exercise 4. Observe that no three points among the four points $[1: 2: 3],[1: 0:-1]$, $[2: 5: 1]$ and $[-1: 7: 1]$ in $\mathbb{P}_{\mathbb{C}}^{2}$ are collinear.
(a) Find the projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi([1: 2: 3])=[1: 0: 0]$, $\phi([1: 0:-1])=[0: 1: 0], \phi([2: 5: 1])=[0: 0: 1]$ and $\phi([-1: 7: 1])=[1: 1: 1]$.
(b) Let \mathcal{C} be the conic in $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
-x y+2 y^{2}-3 x z+7 y z+3 z^{2}=0
$$

Find a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi(\mathcal{C})$ is given by $x y=0$.
(c) Let \mathcal{C} be the conic in \mathbb{P}^{2} that is given by

$$
x^{2}+x y-2 y^{2}+3 x z+3 y z+z^{2}=0 .
$$

Then \mathcal{C} contains the point $[-2: 1: 3]$. Find a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi([-2: 1: 3])=[0: 0: 1]$ and $\phi(\mathcal{C})$ is given by $x z+y^{2}=0$.

Exercise 5. Let λ be a complex number. Put

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}+\lambda x y z .
$$

Let C be a subset in $\mathbb{P}_{\mathbb{C}}^{2}$ given by $f(x, y, z)=0$. Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$, so that $\omega^{3}=1$. Denote by Σ the subset in $\mathbb{P}_{\mathbb{C}}^{2}$ consisting of the following 9 points:

$$
\begin{aligned}
& {[1:-1: 0],[1:-\omega: 0],\left[1:-\omega^{2}: 0\right],} \\
& {[1: 0:-1],[1: 0:-\omega],\left[1: 0:-\omega^{2}\right],} \\
& {[0: 1:-1],[0: 1:-\omega],\left[0: 1:-\omega^{2}\right] .}
\end{aligned}
$$

(a) Check that C contains Σ. Show that the set Σ is not contained in any line in $\mathbb{P}_{\mathbb{C}}^{2}$. Going through all pairs of points in Σ, one can see that every line $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ that passes through two points in Σ contains another point in Σ. Check this in some cases.
(b) Suppose that $\lambda^{3} \neq-27$. Show that there is no point $[a: b: c] \in \mathbb{P}_{\mathbb{C}}^{2}$ such that

$$
\frac{\partial f(a, b, c)}{\partial x}=\frac{\partial f(a, b, c)}{\partial y}=\frac{\partial f(a, b, c)}{\partial z}=0
$$

Use Bezout theorem to show that the homogeneous polynomial $f(x, y, z)$ is irreducible. Conclude that C is a smooth irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree 3 . Pick a point $P \in \Sigma$. Find the equation of the line $L_{P} \subset \mathbb{P}_{\mathbb{C}}^{2}$ that is tangent to the curve C at the point P. Show that $L_{P} \cap C=P$.
(c) Suppose that $\lambda^{3}=-27$. Show that there are 3 points $[a: b: c] \in \mathbb{P}_{\mathbb{C}}^{2}$ such that

$$
\frac{\partial f(a, b, c)}{\partial x}=\frac{\partial f(a, b, c)}{\partial y}=\frac{\partial f(a, b, c)}{\partial z}=0 .
$$

Use Bezout theorem to deduce that the curve C is a union of 3 different lines in $\mathbb{P}_{\mathbb{C}}^{2}$. Conclude that $f(x, y, z)$ is a product of 3 different polynomials in $\mathbb{C}[x, y, z]$ of degree 1 . Find these 3 polynomials explicitly.

Exercise 6. Let \mathcal{C} be the conic in the complex projective plane $\mathbb{P}_{\mathbb{C}}^{2}$ that is given by

$$
4 x^{2}-4 x y+y^{2}-4 x z-13 y z+12 z^{2}=0 .
$$

Let $P_{1}=[0: 1: 1], P_{2}=[-1: 4: 1], P_{3}=[2: 1: 1]$. Then \mathcal{C} contains the points P_{1}, P_{2}, P_{3}. Let $Q_{1}=[19: 20: 1], Q_{2}=[1: 2: 0], Q_{3}=[57: 37: 49]$. Then \mathcal{C} contains Q_{1}, Q_{2}, Q_{3}.
(a) Show that \mathcal{C} is irreducible. Find the intersection of the conic \mathcal{C} and the line $z=0$.
(b) Find a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi(\mathcal{C})$ is given by

$$
x z+y^{2}=0 .
$$

Compute $\phi\left(P_{1}\right), \phi\left(P_{2}\right), \phi\left(P_{3}\right), \phi\left(Q_{1}\right), \phi\left(Q_{2}\right)$ and $\phi\left(Q_{3}\right)$.
(c) Let $L_{12}, L_{13}, L_{23}, L_{21}, L_{31}, L_{32}$ be the lines in $\mathbb{P}_{\mathbb{C}}^{2}$ defined as follows:

- L_{12} contains P_{1} and $Q_{2} ; L_{13}$ contains P_{1} and $Q_{3} ; L_{23}$ contains P_{2} and Q_{3};
- L_{21} contains P_{2} and $Q_{1} ; L_{31}$ contains P_{3} and $Q_{1} ; L_{32}$ contains P_{3} and Q_{2}.

Find the defining equations of the lines $L_{12}, L_{13}, L_{23}, L_{21}, L_{31}$ and L_{32}.
Show that the points $L_{12} \cap L_{21}, L_{13} \cap L_{31}$ and $L_{23} \cap L_{32}$ are collinear.

Exercise 7. Put $f(x, y, z)=x y^{3}+y z^{3}+z x^{3}$. Let C be a subset in $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
f(x, y, z)=0 .
$$

(a) Show that there is no point $[a: b: c] \in \mathbb{P}_{\mathbb{C}}^{2}$ such that

$$
\frac{\partial f(a, b, c)}{\partial x}=\frac{\partial f(a, b, c)}{\partial y}=\frac{\partial f(a, b, c)}{\partial z}=0 .
$$

Use Bezout theorem to show that $f(x, y, z)$ is irreducible.
(b) Let L be the tangent line to C at $[0: 0: 1]$. Find $L \cap C$.
(c) Denote by $g(x, y, z)$ the determinant of the matrix

$$
\left(\begin{array}{lll}
\frac{\partial^{2} f(x, y, z)}{\partial x \partial x} & \frac{\partial^{2} f(x, y, z)}{\partial x \partial y} & \frac{\partial^{2} f(x, y, z)}{\partial x \partial z} \\
\frac{\partial^{2} f(x, y, z)}{\partial y x} & \frac{\partial^{2} f(x, y, z)}{\partial y y} & \frac{\partial^{2} f(x, y, z)}{\partial y \partial z} \\
\frac{\partial^{2} f(x, y, y)}{\partial z \partial x} & \frac{\partial^{2} f(x, y, z)}{\partial z \partial y} & \frac{\partial^{2} f(x, y, z)}{\partial z \partial z}
\end{array}\right) .
$$

Denote by Z the subset in $\mathbb{P}_{\mathbb{C}}^{2}$ given by $g(x, y, z)=0$. Show that $3 \leqslant|C \cap Z| \leqslant 24$.

Exercise 8. Let C_{4} be an irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree 4.
(a) Show that the curve C_{4} has at most 3 singular points.
(b) Suppose that the curve C_{4} has a singular point P such that

$$
\operatorname{mult}_{P}\left(C_{4}\right)=3 .
$$

Show that the curve C_{4} does not have other singular points.
(c) Give an example of a singular irreducible curve in $\mathbb{P}_{\mathbb{C}}^{2}$ of degree 4.

Exercise 9. Let S_{2} be an algebraic subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by $f_{2}(x, y, z, t)=0$, where

$$
f_{2}(x, y, z, t)=2 x^{2}-4 t x-t y+x y+2 x z-y^{2}+y z
$$

Put $P=[1:-1: 0: 0]$.
(a) Show that $f_{2}(x, y, z, t)$ is irreducible. Prove that S_{2} is smooth.
(b) Check that $P \in S_{2}$. Find all lines in $\mathbb{P}_{\mathbb{C}}^{3}$ that are contained in S_{2} and pass through P. Find $[A: B: C: D] \in \mathbb{P}_{\mathbb{C}}^{3}$ such that the equation

$$
A x+B y+C z+D t=0
$$

defines a plane $\Pi \subset \mathbb{P}_{\mathbb{C}}^{3}$ that is tangent to S_{2} at the point P. Describe $\Pi \cap S_{2}$.
(c) Find a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi\left(S_{2}\right)$ is given by $x y=z t$. Use this to describe all lines in $\mathbb{P}_{\mathbb{C}}^{3}$ that are contained in S_{2}.

Exercise 10. Let S_{2} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by $f_{2}(x, y, z, t)=0$, where

$$
f_{2}(x, y, z, t)=t^{2}+t x-2 t y+t z+x y+x z-y^{2}+y z
$$

Put $P=[1:-2: 1: 1]$.
(a) Show that $f_{2}(x, y, z, t)$ is irreducible. Prove that S_{2} is smooth.
(b) Check that $P \in S_{2}$. Find all lines in $\mathbb{P}_{\mathbb{C}}^{3}$ that are contained in S_{2} and pass through P. Find $[A: B: C: D] \in \mathbb{P}_{\mathbb{C}}^{3}$ such that the equation

$$
A x+B y+C z+D t=0
$$

defines a plane $\Pi \subset \mathbb{P}_{\mathbb{C}}^{3}$ that is tangent to S_{2} at the point P. Describe $\Pi \cap S_{2}$.
(c) Find a projective transformation $\phi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $\phi\left(S_{2}\right)$ is given by $x y=z t$. Use this to describe all lines in $\mathbb{P}_{\mathbb{C}}^{3}$ that are contained in S_{2}.

Exercise 11. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0
$$

where $f_{3}(x, y, z, t)=t x z+x y^{2}+y^{3}$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 12. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0
$$

where $f_{3}(x, y, z, t)=x y z+x y t+x z t+y z t$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 13. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0
$$

where $f_{3}(x, y, z, t)=t x z+y^{2} z+x^{3}+\lambda z^{3}$ for some complex number λ.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 14. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0,
$$

where $f_{3}(x, y, z, t)=t z^{2}+z x^{2}+y^{2} x+\lambda t^{3}$ for some complex number λ.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 15. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0,
$$

where $f_{3}(x, y, z, t)=x^{3}+y^{2} z+z^{2} t$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 16. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0,
$$

where $f_{3}(x, y, z, t)=x^{3}+y^{3}+z^{3}+t^{3}-(x+y+z+t)^{3}$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 17. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0,
$$

where $f_{3}(x, y, z, t)=t x z+y^{2} z+x^{3}$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

Exercise 18. Let S_{3} be a subset in $\mathbb{P}_{\mathbb{C}}^{3}$ that is given by

$$
f_{3}(x, y, z, t)=0,
$$

where $f_{3}(x, y, z, t)=x y z-t^{3}$.
(a) Show that $f_{3}(x, y, z, t)$ is irreducible.
(b) Find all singular points (if any) of the cubic surface S_{3}.
(c) Find all lines on S_{3}.

