Упражнения и задачи по курсу «Покрытия арифметическими прогрессиями».

Часть 1

Определение 1. Через a(m) мы обозначаем множество всех целых x таких, что $x \equiv a \pmod m$ (то есть арифметическую прогрессию с разностью m и одним из членов, равным a; мы всегда считаем, что m > 1). Система прогрессий $\{a_1(m_1), \ldots, a_r(m_r)\}$ называется *покрывающей*, если в объединении она даёт множество всех целых чисел.

Упражнение 1 (R. L. GRAHAM). Существует последовательность $a_0 = a, a_1 = b, a_{n+2} = a_{n+1} + a_n,$ в которой (a,b) = 1, но все члены — составные.

Упражнение 2 (F. COHEN, J. L. SELFRDGE). Существует бесконечно много нечётных чисел, непредставимых в виде $2^k \pm p^\ell$.

Замечание. В предыдущих двух упражнениях принимается также сведение утверждения к явно сформулированному (корректному) запросу на покрытие.

Упражнение 3 (P. Erdős). Предположим, что верна гипотеза Эрдёша: для любого C > 0 существует покрывающая система с попарно различными модулями m_1, \ldots, m_n , большими C. Докажите, что существуют бесконечно много натуральных нечётных n, не представимых в виде $n = 2^k + d$, где d имеет не более 1000 различных простых делителей.

Упражнение 4 (P. Erdős). Постройте покрывающую систему с попарно различными модулями, являющимися делителями числа 210.

Упражнение 5. Пусть $\{a_1(m_1), \dots, a_r(m_r)\}$ — точная покрывающая система (т. е. *разбиение* $\mathbb Z$ на прогрессии), причём $0 \leqslant a_i < m_i$. Докажите, что $\sum_{i=1}^r \frac{a_i}{m_i} = \frac{n-1}{2}$.

Задача 6 (H. PAN). Докажите, что существует система сравнений, покрывающая \mathbb{Z} в 1000 слоёв, которую нельзя разбить на две покрывающих системы.

Часть 2

Определение 2. Покрывающая система называется *регулярной*, если после выкидывания любой прогрессии она перестаёт быть покрывающей. Покрывающая система называется *точной*, если каждое целое число покрыто **ровно** один раз. *Периодом* покрывающей системы мы называем число $M = [m_1, \ldots, m_r]$.

Упражнение 7. Пусть $p^{\alpha} \mid M$. Насколько можно усилить нижнюю оценку на количество индексов i таких, что $p \mid m_i$?

Упражнение 8. Пусть $a_1(m_1), \ldots, a_r(m_r)$ — точная покрывающая система. Докажите, что для любого i найдётся $j \neq i$ такое, что $m_i \mid m_j$.

Задача 9 (М. Berger, А. Felzenbaum, А. Fraenkel). Пусть $a_1(m_1), \ldots, a_r(m_r)$ — непустая система, p — наименьший простой делитель числа $M = [m_1, \ldots, m_r]$, а k — натуральное число. Для каждого $x \in \mathbb{Z}$ посчитаем число прогрессий, покрывающих x. Предположим, что все эти числа имеют одинаковый остаток — mod k. Докажите, что среди чисел m_i есть $\min(p, k)$ одинаковых.

Положим $f\left(\prod_{i}p_{i}^{\alpha_{i}}\right)=\sum_{i}\alpha_{i}(p_{i}-1).$

Задача 11 (Р. J. SIMPSON). Пусть $a_1(m_1), \ldots, a_r(m_r)$ — регулярная покрывающая система, $M = [m_1, \ldots, m_r]$ — её период, $d \neq M$ — некоторый делитель числа M. Докажите, что

$$|\{i: m_i \nmid d\}| \ge 1 + f(M/d).$$

Задача 12 (М. BERGER, А. FELZENBAUM, А. FRAENKEL). Пусть $M = \prod_i p_i^{\alpha_i}$. Оказывается, можно расположить остатки $\mod M$ в виде параллелепипеда $p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots$ так, чтобы каждая прогрессия a(m), где $m \mid M$, образовывала в этом параллелепипеде блок, то есть «подпараллелепипед» вида $\{(x_1, x_2, \ldots) : c_i \leq x_i \leq d_i\}$. Придумайте такое сопоставление!

Часть 3

Упражнение 13. Докажите с помощью производящих функций что в точной покрывающей системе есть хотя бы p равных модулей, где p — наименьший простой делитель наименьшего общего кратного модулей.

Упражнение 14. Пусть $a_1(m_1), \ldots, a_r(m_r)$ — регулярная покрывающая система. Докажите, что для любого $0 < k < m_r$ найдётся $J \subseteq \{1, \ldots, r-1\}$ такое, что

$$\sum_{j \in J} \frac{1}{m_j} - \frac{k}{m_r} \in \mathbb{Z}.$$

Упражнение 15. Докажите, что система из r прогрессий покрывает \mathbb{Z} хотя бы в n слоёв, если она покрывает 2^{r-n+1} подряд идущих чисел хотя бы по n раз каждое.

Задача 16 (H. PAN, Z.-W. SUN). Докажите, что в системе, покрывающей $\mathbb Z$ хотя бы в n слоёв, каждое число вида $\left\{\sum_{j\in J}\frac{1}{m_j}\right\}$, $J\subseteq\{1,2,\ldots,r\}$, реализуется таким образом хотя бы для 2^n множеств J.

Часть 4

Упражнение 17. Пусть $a_1(m_1), \ldots, a_r(m_r)$ — точная n-покрывающая система (т. е. каждое целое число покрыто ровно n раз). Докажите, что для любого $0 < s < nm_r$ число подмножеств $J \subseteq \{1, \ldots, r-1\}$ таких, что $\sum_{j \in J} \frac{1}{m_j} = \frac{s}{m_r}$, не меньше, чем $C_{n-1}^{[s/m_r]}$.

Задача 18 (М. BERGER, А. FELZENBAUM, А. FRAENKEL). Назовём точную систему *неприводимой*, если никакая её непустая подсистема, отличная от самой системы, не образует в объединении арифметической прогрессии. Докажите, что в неприводимой точной системе периода $M=p_1^{\alpha_1}\dots p_k^{\alpha_k}$ (где $p_1<\dots< p_k$) не меньше, чем $f(m_1)+(p_1-1)p_k$ прогрессий.

Задача 19 (М. FILASETA, K. FORD, S. KONYAGIN). Пусть $a_1(m_1), \ldots, a_r(m_r)$ — произвольная система сравнений. Докажите, что плотность чисел, непокрытых ею, не меньше, чем

$$\prod_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) - \sum_{\substack{1 \le i < j \le r \\ (m_i, m_j) > 1}} \frac{1}{m_i m_j}.$$