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Abstract. A new approach is described to the Schubert calculus on com-

plete flag varieties, using the volume polynomial associated with Gelfand—

Zetlin polytopes. This approach makes it possible to compute the intersec-

tion products of Schubert cycles by intersecting faces of a polytope.
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1. Introduction

1.1. Main results. In this paper we explore the connection between the Schubert
calculus and the volume polynomial on spaces of convex polytopes. We give various
representations of Schubert cycles in a complete flag variety by sums of faces of the
Gelfand—Zetlin polytope. Our work is motivated by the rich interplay between
algebraic geometry and convex polytopes, originally explored for toric varieties and
recently extended to a more general setting in [10].

One of our main tools is a construction in [22] which associates with each convex
polytope P C R? a graded commutative ring Rp (called the polytope ring) satisfying
Poincaré duality (see [23] or §2). For an integrally simple polytope P (simple means
that there are exactly d = dim(P) edges meeting at each vertex, and integrally
simple means that primitive integer vectors parallel to the edges generate the lattice
7Z%), the ring Rp is isomorphic to the Chow ring of the corresponding smooth toric
variety Xp [22]. Faces of P give rise to certain elements of Rp, which generate
Rp as an additive group. If [F] is the element of Rp corresponding to a face F,
then [F]-[G] = [FNG] in Rp, provided that F' and G are transverse. Individual
faces of P represent cycles given by the closures of the torus orbits in Xp. In
this paper we are primarily interested in the case when P is not simple. Kiumars
Kaveh has related the polytope rings of some non-simple polytopes to the Chow
rings of smooth non-toric spherical varieties [9]. In particular, he observed that the
ring Rp for the Gelfand—Zetlin polytope P = Py (which is not simple) associated
with a strictly dominant weight A = (Ay,...,A,) € Z™ of the group GL,(C) is
isomorphic to the Chow ring of the variety X of complete flags in C™. Recall that
the Gelfand-Zetlin polytope Py C R?, where d := n(n — 1)/2 denotes the dimension
of the flag variety, is given by 2d inequalities depending on A (see §3.1).

When P is not simple, there is no obvious correspondence between faces of P and
elements of Rp. One of the results in the present paper is a general construction
that associates with each element of Rp a linear combination of faces of P (though
not every face of P corresponds to an element of Rp). Namely, we embed the ring
Rp in a Z-module Mp whose elements can be regarded as linear combinations of
arbitrary faces of P modulo certain relations (see §2). The module Mp depends on
the choice of a resolution of P. On the algebro-geometric level, Rp can be regarded
as the subring of the Chow ring of the singular toric variety Xp generated by the
Picard group, and Mp can be constructed using a resolution of singularities for X p.
However, we describe Mp in elementary terms using convex geometry. A crucial
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feature of such representations by sums of faces is that we can still multiply elements
of Rp by intersecting faces (assuming that the faces we intersect are transverse).

While our construction applies to any convex polytope P, it is especially inter-
esting to study the case when P = P, is a Gelfand—Zetlin polytope, due to the
isomorphism Rp ~ CH*(X) for the flag variety X. We recall that CH*(X) (as
a group) is a free Abelian group with a basis of Schubert cycles [X*], where w
runs through all the permutations in S,, (see the definition of Schubert cycles in
§4.1). In particular, our construction lets us represent Schubert cycles as linear
combinations of faces of the Gelfand—Zetlin polytope in many different ways (see
Theorem 4.3, Proposition 3.2, and Corollary 4.5), and this has applications to the
Schubert calculus.

Though the relation between Schubert varieties and certain faces of the Gelfand-
Zetlin polytope was first investigated in [15], and then by different methods also in
[16] and [12], only our approach develops this relation to such an extent that the
Schubert calculus can be modelled by the Gelfand—Zetlin polytope. The results in
[15] and [16] cannot be applied to the Schubert calculus, since only one representa-
tion by a sum of faces is constructed for each Schubert variety. The polytope ring
Rp and the Z-module Mp enable us to obtain new representations for Schubert
cycles. In particular, given two Schubert cycles [X®] and [X*'], we can represent
[X®] and [X™'] as sums of faces so that every face appearing in the decomposition
of [X™] is transverse to every face appearing in the decomposition of [X “’,]. Hence,
the intersection of any two Schubert cycles can be represented by a linear combi-
nation of faces with non-negative coefficients, which is closely related to a central
problem of the Schubert calculus —a combinatorial interpretation of the positivity
of structure constants (see §1.2). More precisely, we get the following result (see
also Corollary 4.6).

Theorem 1.1. The product of any two Schubert cycles [ X™] and [X™] can be rep-
resented as the sum of faces

X“l- X = Y [FnF
w(F)=w
w(F*)=wouwy *

where F and F* run over the reduced Kogan faces and the dual Kogan faces, respec-
tively, of the polytope Pk .

Here wy € S,, denotes the longest permutation, which takes i to (n — 1 + 1).
The rc-faces in [5] we will call reduced dual Kogan faces (see §4.3). Kogan faces
are defined in §3.3 and are characterized by the property that they contain the
simple vertex v of the Gelfand—Zetlin polytope with minimal sum of coordinates
(dual Kogan faces, correspondingly, contain the vertex v* with maximal sum of
coordinates). Each Kogan face intersects each dual Kogan face transversely (since
no facet contains both v and v*). For each Kogan or dual Kogan face F, one can
define the permutation w(F) € S, by assigning an elementary transposition to
every facet containing v or v* and then multiplying them in a certain order (see
details in §3.3).

The connection between the Schubert calculus and Gelfand—Zetlin polytopes
stems from the representation theory for the group GL,(C). Recall that by the
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definition of Gelfand—Zetlin polytopes the integer points inside and on the bound-
ary of P, parametrize a natural basis (a Gelfand—Zetlin basis) in the irreducible
highest-weight GL,-module V) with highest weight A. In particular, with every
integer point z € Py we can associate its weight p(z) in the weight lattice of GL,
(that is, in the character lattice of a maximal torus in GL,(C)). On the other
hand, the Borel-Weil-Bott theorem describes the module V) geometrically as the
dual space to the space of global sections of some line bundle %) on the flag variety
X (see §5). Thus, a basis in the space of global sections of a line bundle on X is
parametrized by integer points in the corresponding Gelfand—Zetlin polytope. This
lets us use methods from the theory of Newton polytopes. Similarly, the space of
global sections of the line bundle %) restricted to the Schubert variety X® is dual
to a B~ -submodule of the module V), namely, to the so-called Demazure submod-
ule V):w (here B~ C GL,, denotes the subgroup of lower-triangular matrices). It

is natural to ask whether a basis in V/\Tw can be parametrized by integer points in
faces of the Gelfand—Zetlin polytope. The answer is given by the following theo-
rem. For each Schubert variety X" and a strictly dominant weight A, we realize
the corresponding Demazure character y,,(\) of the Demazure module Vy.w as the
exponential sum over integer points in a union of reduced Kogan faces (see also
Theorem 5.1).

Theorem 1.2. For each permutation w € S,, the Demazure character x*(\) has

the form
XN =y e,

ZEA)hwﬁZd

where Ay, = Uw(FA):w F) is the union of all reduced Kogan faces with the per-
mutation w in the Gelfand—Zetlin polytope Py .

This generalizes the identity in Corollary 15.2 of [21] for the Demazure character
of a 132-avoiding, or in other terms Kempf, permutation w (such permutations
are also said to be dominant, but we will use the term ‘Kempf’ instead). We
note that a permutation is Kempf if and only if there is a unique reduced Kogan
face with this permutation (see [15], Proposition 2.3.2), and this is exactly the
face considered in [21]. Theorem 1.2 enables us to study the geometry of Schubert
varieties by methods of the theory of Newton polytopes (see §5).

To prove our formula for the Demazure character we use elementary convex
geometry together with a simple combinatorial procedure introduced in [14] and
called mitosis (see also [19] for an elementary exposition) for dealing with divided
difference operators. In particular, our proof yields a geometric realization of mitosis
(see §6.2). As a by-product, we construct a minimal realization of a simplex as
a cubic complex different from previously known realizations (see Proposition 6.6).

This paper is organized as follows. In § 2 we recall the definition of the polytope
ring Rp, discuss its properties, and construct the module Mp for a non-simple P.
In §3 we study the polytope rings of Gelfand—Zetlin polytopes. In §4 we represent
Schubert cycles by faces. In §5 we give formulae for Demazure characters, Hilbert
functions, and degrees of Schubert varieties in terms of faces, and we deduce some of
the results in § 4 from these formulae. In § 6 we introduce a simple geometric version
of mitosis (paramitosis) and use it to prove formulae for Demazure characters in § 5.
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1.2. History of the Schubert calculus. The groundwork for the Schubert
calculus was laid by the German mathematician Hermann Schubert in the 19th
century. He developed a general method for solving enumerative geometry prob-
lems. For instance, a classical problem on the number of lines meeting four given
lines in 3-dimensional space reduces to the computation of intersection products
of Schubert cycles in the Grassmannian G(2,4). For an arbitrary Grassmannian
there exists an algorithm called the Littlewood—Richardson rule for computing the
structure constants of the Chow ring in the basis of Schubert cycles. This algorithm
gives a combinatorial proof of the non-negativity of the structure constants —each
of them turns out to be equal to the number of Young diagrams with certain prop-
erties (see [8] or [18], Chap. 1).

For the variety of complete flags there is a simple algorithm for multiplying
Schubert cycles, but it does not yield a combinatorial proof of the non-negativity of
the structure constants. However, the non-negativity follows easily from geometric
arguments as in the case of Grassmannians: since any variety of (partial) flags is
a homogeneous space under the action of GL,,, any two subvarieties can be made
transverse by the group action in view of the Kleiman transversality theorem [13]. Tt
is not hard to deduce from this that the intersection product of any two Schubert
cycles is a linear combination of Schubert cycles with non-negative coefficients.
A combinatorial interpretation of positivity of the structure constants was recently
obtained for two-step flag varieties [5], but the related combinatorics is much more
complicated than the classical Littlewood—Richardson rule for Grassmannians. The
case of a complete flag variety is still open.

Since the Chow ring of the variety of complete flags in C™ is generated by the
Picard group, this ring can be represented as a quotient ring of the ring Z[z1, . . . , z,]
of polynomials in n variables (see [18], Theorem 3.6.15). Such a description is
called the Borel presentation. A realization of Schubert cycles by polynomials in
the Borel presentation was obtained in [3] and [6] using divided difference operators
or Demazure operators (see Theorem 4.2). Thus, Schubert cycles can be multiplied
as polynomials in the ring Z[z1, ..., z,].

It is interesting that Demazure operators (more precisely, their K-theoretic ver-
sions) also play an important role in representation theory; namely, they enable
one to compute Demazure characters. This was mentioned already in [6], but a rig-
orous proof appeared later in [1] (see Theorem 5.6). This is a manifestation of
the connections between the Schubert calculus and representation theory. Another
manifestation is that the Littlewood—Richardson rule for Grassmannians also gives
a rule for decomposing the tensor product of two irreducible GL,-modules into
irreducible modules.

In [17] Schubert polynomials were defined. These are the most natural represen-
tatives of Schubert cycles in the ring Z[x1, ..., x,]. Schubert polynomials became
a popular theme in algebraic combinatorics. A striking result in this area is the
Fomin—Kirillov theorem (see 7] or §4.2), which implies that every Schubert poly-
nomial is a linear combination of monomials with non-negative integer coefficients
(the non-negativity of the coefficients is not obvious from the definition of Schubert
polynomials).
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We note that the approach to the Schubert calculus developed in the present
paper gives a new combinatorial model of the Schubert calculus different from the
model based on Schubert polynomials (see Remark 2.5).
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2. Polytope ring

2.1. Rings associated with polynomials. Following [22], we associate a graded
commutative ring with any homogeneous polynomial. We will later specialize to the
case of the volume polynomial on a space of polytopes with a given normal fan. Let
Ay be a lattice, that is, a free Z-module, and let f be a homogeneous polynomial
on the real vector space Vy = Ay ® R containing the lattice Ay. The symmetric
algebra Sym(Ay) of Ay can be thought of as the ring of differential operators with
constant integer coefficients acting on R[V}], the space of all polynomials on V5.
If D € Sym(Ay) and ¢ € R[Vy], then we write D¢ € R[Vy] for the result of this
action. Define Ay as the homogeneous ideal in Sym(A ) consisting of all differential
operators D such that Df = 0. Let Ry = Sym(Ay)/As. We call this ring the ring
associated with the polynomial f.

Let Ay be another lattice and let o: A; — Ay be a homomorphism of lattices.
Define the polynomial g € R[V,] as 0*(f) = f o 0. We want to describe a relation
between the rings R; and R, associated with these polynomials. Unfortunately,
there is no natural homomorphism between these rings. However, we do have the
following result.

Proposition 2.1. There exist a natural Abelian group My 4, a natural epimor-
phism w: Ry — My 4, and a natural monomorphism v: Ry — My 4 such that

m(af) = v(af)
whenever m(&) = i(a) and 7(5) = 1(5).

This proposition can be used in the following way. The elements of R, can be
embedded naturally in My ,. Although elements of My, cannot be multiplied in
general, we can consider the lifts to Ry of two elements coming from R4, multiply
them in Ry, and project the product back to Mf,. In many cases this is easier
than multiplying two elements of R, directly.

Proof. Consider the Z-submodule Af, of Sym(Ay) consisting of all operators D
such that ¢*(Df) = 0. Let My, = Sym(Af)/Ayf 4. Clearly, Ay C Ay g4; thus, we
obtain a natural projection 7: Ry — My . Let o,: Sym(A,) — Sym(Ay) be the
homomorphism induced by the map o. For a differential operator D € Sym(A,)
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let [D] denote the class of D in the ring R,. We define ¢+([D]) as the class in My,
of the operator o.(D).
To verify that ¢([D]) is well defined, we need the formula

o*(0.(D)¢) = Do*¢

for every ¢ € R[Vy]. Indeed, this formula is obviously true if D € Ay, and both
parts of the formula depend multiplicatively on D. In particular, we have

0" (0.(D)f) = Do" f = Dy,

which is equal to 0 whenever D is in A,. It follows that the element ¢([D]) is well
defined: if D € Ay, then 0.(D) € Ay 4. It also follows from the same formula that
¢ is injective: if «([D]) = 0, that is, 0. (D) € As 4, then D € A,.

It remains to prove that m(&@3) = t(af) whenever (@) = 1(a) and 7(8) = ().
But this is an immediate consequence of the formula o.(DE) = 0.(D)o.(E). O

Example 2.2. Here is an example illustrating Proposition 2.1. Consider the poly-
nomial f(x,y,z) = (z + y)? + vz defined on the space R?. Assume that the lattice
Ay coincides with the standard integer lattice Z3. Then the ring Ry is generated
over the integers by the classes [0;], [9,], and [0.] of the differential operators J,,
0y, and 0, respectively. These classes satisfy the relations

(0.7 = [0y)* = [0:][0y] = 2(0:][0:],  [8,][0:] = [0:]7 =0,

as well as the relations implied by the fact that the class of any differential operator
of order 3 or higher is equal to 0. The elements 1, [0,], [3,], [0.], [0:)* form
an additive basis in R (that is, they freely generate R as a Z-module). Hence, the
additive group of the ring Ry has rank 5. Consider the Z-module homomorphism
¢: 7> — 72 given by the formula ¢(¢,1) = (£,7,0). Then the polynomial g = ¢* f
has the form (€47)2. The corresponding ring R, is generated by the class [9¢] = [0;)]
with the relation [¢]> = 0. Therefore, the additive group of the ring R, has
rank 3 and is freely generated by the elements 1, [J¢], and [0¢]?. Now consider the
Z-module My 4. Its elements are in a bijective correspondence with the restrictions
of the polynomials D f to the subspace z = 0, where D runs through all differential
operators in Sym(As). The corresponding space of polynomials has rank 4 and is
freely generated by the polynomials 1, 2(x+y), , and (z+y)?. We will identify the
elements of the module My, with the corresponding polynomials. The projection
w: Ry — My, takes the elements [0,] and [9,] to the same polynomial 2(z + y);
in particular, the map 7 is not injective. The injection ¢: R, — My, takes the
additive generators 1, [0¢], and [0¢]* of the ring R, to the polynomials (z + y)?,
2(z + y), and 2. In particular, the polynomial 2 does not belong to the image of
the map ¢.

2.2. The volume polynomial. Consider the set of all convex polytopes of dimen-
sion d in R?. This set can be endowed with the structure of a commutative semi-
group using the Minkowski sum

P1+P2:{$1+$26Rd|$1EP1, JUQEPQ}.
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It is not hard to check that this semigroup has the cancellation property. Polytopes
can also be multiplied by non-negative real numbers, which reduces to a homothety

AP={)\z|z€P}, A>0.

Hence, we can embed the semigroup of convex polytopes in its Grothendieck group
V, a real (infinite-dimensional) vector space. The elements of V' are called virtual
polytopes. We recall that two convex polytopes P and @ are said to be analogous
if they have the same normal fan, that is, there is a one-to-one correspondence
between the faces of P and the faces of ) such that any linear functional whose
restriction to P attains its maximal value at a given face F' C P has the property
that its restriction to @) attains its maximal value on the corresponding face of @
(the set of linear functionals whose restrictions to P attain their maximal values on
a face I' C P form a cone C'r, and the normal fan of P is defined as the set of cones
Cr corresponding to all faces F' C P). A virtual polytope is said to be analogous to
P if it can be represented as a difference of two convex polytopes analogous to P.
The set of all virtual polytopes analogous to P forms a finite-dimensional subspace
Vp C V. On the vector space V there is defined a homogeneous polynomial vol of
degree d, called the volume polynomial. We fix a constant (translation-invariant)
volume form on R?. If an integer lattice Z¢ C R? is fixed, we will always choose
this volume form to take the value 1 on the fundamental parallelepiped of Z?. The
volume form on R? being fixed, the volume polynomial on the space V is uniquely
characterized by the property that its value vol(P) on any convex polytope P is
equal to the volume of P. We will be interested in the restriction volp of the volume
polynomial vol to the subspace Vp.

Consider an integer convex polytope P (that is, a convex polytope with inte-
ger vertices) of dimension d, not necessarily simple. Let Ap be a lattice in Vp
generated by some integer polytopes analogous to P (we do not assume that Ap
contains all integer polytopes analogous to P, and thus this lattice may depend on
some additional parameters and not just on P). Suppose that @ is a convex poly-
tope with integer vertices whose normal fan is a simplicial subdivision of the normal
fan of P. In this case, @ is called a resolution of P (note that, since the normal
fan of @ is simplicial, the polytope @ is simple). With the volume polynomial volp
restricted to the lattice Ap we associate the polytope ring Rp := Ryol,. Similarly,
for the simple polytope ) we consider the ring Rq := Ry, associated with the
volume polynomial volg on the lattice Ag (we always assume that this lattice is
generated by all the integer polytopes analogous to Q). We will use the Z-module
Mg, p := Miyolg volp introduced in Proposition 2.1 together with the homomor-
phisms ¢: Rp — Mg p and 7m: Rg — Mg p. Since ¢ is a canonical embedding,
we will identify elements of Rp with their (-images in Mg p. With each face F of
@ we can associate a face I’ of P with the property C'z C CF, which we call the
P-degeneration of F (or just the degeneration of F if P is fixed). A face F of P is
said to be regular (with respect to Q) if there is only one face F of Q@ such that F
is the degeneration of F.

Proposition 2.3. Suppose that v is a simple vertex of P, that is, exactly d =
dim(P) facets of P meet at v. Moreover, suppose that no facet of Q degenerates
into a face of smaller dimension. Then any face of P containing v is regular.
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Proof. Let T'q,...,Ty be all the facets of P containing the vertex v (which are
clearly regular). Denote by I'y,...,I'y the corresponding (parallel) facets of Q.
Note that the intersections of different subsets of {I'y,...,I'q} are different faces
of P. Clearly, any intersection of facets T; degenerates into the intersection of the
corresponding facets I'; (which has the same dimension), and all other faces of @
degenerate into faces of P not containing v. [J

2.3. Structure of polytope rings. We now give more details on the structure
of the ring Rg. For every facet I' of ) there is a differential operator or € Sym(Ag)
such that, for every convex polytope @’ analogous to @, the number Jr volg(Q’) is
the (d — 1)-dimensional volume of the facet of Q' parallel to I'. The ideal Ag :=
Ayol, is very easy to describe. It is generated (as an ideal) by the following two
groups of differential operators [23]:

e the images of integer vectors a € Z% under the natural inclusion of Z? in
Ag = Syml(AQ) such that @ + a is the parallel translation of @ by the vector a;

e the operators of the form Op, --- 0, , where 1 N---NTy = @.

The volume polynomial on the spaces Vg was previously used in [22] to describe
the cohomology rings of smooth toric varieties. We briefly recall this description.
Every integer polytope ) determines a polarized toric variety Xq. If @) is integrally
simple, then X¢ is smooth. In this case the Chow ring of X¢ (or, equivalently, the
cohomology ring H**(Xg,7Z)) is isomorphic to Rg (|22], §1.4).

This description is very useful. First, it is functorial. Second, it is clear from the
definition that the non-zero homogeneous components of the ring Rg have degrees
< d (since the volume polynomial has degree d) and that Rg has a non-degenerate
pairing (Poincaré duality) defined by (D1, D2) := D1Ds(volg) € Z for any two
homogeneous elements Dy, Dy € Sym(Ag) of complementary degrees. The Poincaré
duality on the ring R is a key ingredient in the proof of the isomorphism between
Rg and H?*(Xq,Z) (see |9] for more details). We note that there is another func-
torial description [4] of the Chow ring of X¢ via piecewise polynomial functions on
fans, but for this description the upper bound on the degrees and the Poincaré dual-
ity are harder to check directly. Also, the first known (non-functorial) description
of the Chow ring (by generators and relations) follows easily from the definition of
the ring Rq (see, for example, [23]). So it seems that the polytope rings give the
most convenient description of the Chow rings of smooth toric varieties.

Note that if a polytope P is not simple, then the ring Rp makes sense, has all
non-zero homogeneous components in degrees < d, and satisfies Poincaré duality.
However, its relation to the Chow ring of the (now singular) toric variety Xp is
unclear, partly because the latter no longer enjoys Poincaré duality. On the other
hand, the ring Rp for non-simple polytopes is sometimes related to the Chow rings
of smooth non-toric varieties, as was noted by Kaveh [9].

We now discuss some important properties of the isomorphism Rg ~ CH*(X()
for a simple polytope (). This isomorphism lets us identify the algebraic cycles
on X¢ with linear combinations of faces of ). The dimension of the space Vg is
equal to the number N(Q) of facets of @ (since we can shift all support hyperplanes
of @@ independently). We note that for a non-simple polytope P the dimension of
Vp is strictly less than N(P) (for example, if P is an octahedron, then Vp has
dimension 4). For simple ) the space Vg has natural coordinates called the support
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numbers. There are as many support numbers as facets of ). The support numbers
are defined by fixing N = N(Q) linear functionals & on R? corresponding to facets
T of Q such that every facet T' of @ is contained in the hyperplane ér(x) = Hr for
some constant Hr, and the points of @ satisfy the inequalities {r(z) < Hp. If T'y,
..., I'y are all the facets of @, then any collection of real numbers (Hr,, ..., Hry)
defines a unique (possibly virtual) polytope in V. When dealing with integer
polytopes, we always choose &r to be a primitive integer covector orthogonal to T'.
In this case Hr is (up to a sign) the integer distance between the origin and the
hyperplane containing I.

If we choose the volume form and the linear functionals 1 to be consistent with
the integer lattice (in the sense explained above), then the differential operators or
coincide with the partial derivatives with respect to the support numbers Hr. For
a face F =11 N--- NI} of codimension k we set 0 = O, --- Jr, and denote by
[F] the class of 9 in the ring Rg. The elements [F] corresponding to the faces of
Q generate Rg as an Abelian group. Moreover, it suffices to take certain special
faces, called separatrices in [23], as generators. There is an explicit algorithm
to represent the product [Fi] - [F3] € Rg as a linear combination of faces, that
is, of elements of the form [F] corresponding to faces F' of (). This algorithm
resembles the well-known algorithm from intersection theory: we need to replace
[F1] by a linear combination of faces that are transverse to Fy. The linear relations
between facets of @ follow immediately from the description of the ideal Ag given
above. They have the form

S &r(@)r] =0, (1)

where a € R? is any vector, and the sum is over all facets of Q. Indeed, the volume
polynomial is invariant under parallel translations. Therefore, the t-derivative of
vol( - +ta) is zero (where - replaces any fixed element of V). By the chain rule, this
derivative is equal to > &r(a)dr vol(-). Any linear relation between the elements
[['] has this form (see [23]).

If @Q is a resolution of P, then we will be interested in representations of elements
« € Rp by linear combinations of faces of @, that is, in the form

a=n(3IF),

where the summation is over some set of faces of @. Then Proposition 2.1 enables
us to compute the product of two elements a,o’ € Rp as follows. If we find

a representation
o = (Y IF),

such that each F’ is transverse to each F', then

oz-a’:W(Z[FﬂF']).

In the sequel we will also use the following lemma, which is a direct corollary of
the definition of Mg p.

Lemma 2.4. Let a and B be two homogeneous elements in Rg of the same degree.
Then w(a) = w(B) in Mg p if and only if w(ay) = 7(By) for all homogeneous
elements v € Rg of complementary degree such that w(vy) € Rp C Mg, p.
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2.5 2.5
2.0 y 2.0 Yy

3.0

Figure 1. A Gelfand—Zetlin polytope for GL3s and its resolution.

2.4. Example: Gelfand—Zetlin polytopes in R3. Consider the polytope P in
R3 given by the following linear inequalities:

a<ax<b, b<y<ec, r<z<y.

This is a 3-dimensional Gelfand—Zetlin polytope (see Figure 1). The defining system
of linear inequalities for P is usually represented schematically as follows:

For instance, the fact that z lies between a and b one row below means that this
coordinate satisfies the inequalities a < z < b.

The polytope P can be obtained from the parallelepiped [a,b] X [b,¢] X [a, ] by
removing the two prisms

{a<z<z<b b<y<cl, {b<y<z<e a<e<b}
Therefore, the volume of P is equal to

(- a)(e-b)(e—a) - LZOLZD B2 D Loy by —a)

(one can also see geometrically, without any computations, that the parts we are
removing make up exactly half the volume of the whole parallelepiped). The ring
Rp is spanned by the classes of the partial differentiations 9, dy, and d.. Moreover,
since the volume of P will not change if we shift a, b, and ¢ simultaneously by the
same real number, we have 9, + 9, + 0. = 0 in Rp. A distinguished set of additive
generators of Rp is given by Schubert polynomials in —d, and —0Jy, namely,

6313231 = _82857 68182 = aaaba 68251 = agv
632 = _aa - 6b7 631 = _aaa 6id =1
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Let us now consider the simple polytope ) given by the inequalities
a<x<b, b<y<e, r<2z<y+e,

where ¢ > 0 is a fixed small number. The polytope @ can also be obtained from
the parallelepiped [a, b] X [b,¢] X [a, ¢ + €] by removing the two prisms

{a<z<z<b b<y<cl, {b<y<z—e<e a<z<b}
Therefore, the volume of @ is equal to

(b—a)(c—b)(c_a+€) . (b—a)Q(C—b) . (C—b)2(b—a)

_ %(b —a)(c—b)(c—a) +(b—a)(c —b).

This is a polynomial in a, b, ¢, and €. o

The ring Rq is multiplicatively generated by the partial differentiations 9,, 0O,
. (the tildes are just to distinguish these elements of Rg from the elements 9,, Oy,
0. € Rp), and 0.. We note that O + Oy + 0, = 0 also in the ring Rgp. We have

0y = —[x =a, Oh=—[y=0b+[x=", d. =y =, 0. =[z=y+e]
The formula (1) gives three linear relations between facets of Q:
—[r=d+[z=0b+[r=2=0,

“ly=bt-lz=y+el+y==0,
—[x=z]+[z=y+¢e]=0.

We can represent the Schubert polynomials in 0, and 0, as the m-images of certain
elements of Ry as follows:

651 = 77([‘/1" = a])7 682 = ﬂ-([y = b]
Gsys, = m([z =2 = d]), Gsys, = m([z

All the faces of Q appearing on the right-hand sides of these equalities degenerate
into regular faces of P. For instance, the expression for &, 5, is obtained as follows:

Sopsy = 05 = W(ég) =
=m(lz=d-([z =0+ [z=

e
8
Il
2,
5 8
Il
2
S~—"

The first term on the right-hand side vanishes, because the faces {z = a} and
{z = b} are disjoint.

In this way it is easy to justify all the heuristic calculations with faces in §4
of [12].

Remark 2.5. Although the Schubert polynomial &, = —d, —J, can be represented
as the image of the sum of two faces,

Ss, = m(ly = b] + [z = 2]),
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there is no term-by-term equality between monomials and faces in its decomposi-
tion. The point is that the images 7([y = b]) and 7([x = z]) of the faces do not lie
in the ring Rp (regarded as a submodule of Mg p), though their sum does.

Indeed, using the definition of the Z-module Mg p and the explicit formulae for
the volume polynomials of the polytopes P and @ (see above), it is easy to deduce
that the linear relations between m(d,), 7(8;), 7(.), and m(d.) are generated by
the single relation m(d,) + 7(dy) + 7(d.) = 0. Therefore, 7(8.) = 7([z =y +€]) =
7([x = z]) cannot be expressed as a linear combination of 9, and J; in Mg, p, and
thus does not lie in the ring Rp C Mg, p.

3. The Gelfand—Zetlin polytope and its ring

3.1. The Gelfand—Zetlin polytope. We now consider the ring Rp for the
Gelfand—Zetlin polytope P = Py associated with a strictly dominant weight A =
(M, ..., An) € Z™ of the group GL,,(C), that is, with an n-tuple of integers \; such
that \; < A\jy1 for all i =1,...,n — 1. We recall that the Gelfand—Zetlin polytope
Py, is a convex integer polytope in R?, where d = n(n—1)/2, with the property that
the integer points inside and on the boundary of P, parametrize a natural basis
in the irreducible representation of GL,,(C) with highest weight A. It can be given
by the system of inequalities

A Ao As . An
)\1,1 >\1,2 cee )‘l,nfl
A2,1 e A2.n—2
(GZ)
)\n72,1 )\n72,2
An—1,1
where ()\1717 ey )\1,n71; )\2_]1, ey )\277172; ey )\n,Q’l, An72,2; >\n71,1) are coordinates
in R? and the notation
a b
C

means that a < ¢ < b. See Figure 1 for a picture of the Gelfand—Zetlin polytope
for G = GL3. We note that Gelfand—Zetlin polytopes P and P, are analogous for
any two strictly dominant weights A and u. For what follows, we set P = P
for some strictly dominant weight A, and define Ap as the lattice spanned by all
Gelfand—Zetlin polytopes P, where p runs through all strictly dominant weights.
The correspondence p — P, establishes a natural isomorphism between the lattices
Z"™ and Ap. In other words, virtual polytopes in Ap are parametrized by arbitrary
n-tuples of integers, not necessarily strictly increasing. One can show that the ring
Rp does not change if Ap is replaced by the lattice generated by all polytopes
analogous to Py, but we will not need this.

We recall that with each complete flag W = Wy C --- € W™ ! in C" one
associates the one-dimensional vector spaces L;(W) = W,;/W,_;. The disjoint
union of the sets of the form {W} x L;(W) with the natural projection on X given
by {W} x L;(W) — W has the structure of a line bundle over X. This line bundle
%, is called a tautological quotient line bundle over X.
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Theorem 3.1 [9]. The ring Rp is isomorphic to the Chow ring (and to the coho-
mology ring) of the complete flag variety X for GL,(C) (note that dim(X) = d)
in such a way that the images in Rp of the differential operators 8%17 RN 8?\,1, are
mapped to the first Chern classes of the tautological quotient line bundles £}, ..., %,
over X.

This theorem can also be deduced directly from the Borel presentation for the
cohomology ring H*(X,Z) using the fact that the volume of P\ (regarded as a func-
tion of \) is equal to J[;_;(Ai — A;) times a constant.

Along with the Gelfand—Zetlin polytope P, we consider a resolution @ of it such
that the number of facets in () is the same as the number of facets in P, and every
support hyperplane of () intersecting @ in a facet is sufficiently close to a paral-
lel support hyperplane of P intersecting P in a facet. This establishes a one-to-one
correspondence between facets of @) and facets of P such that corresponding facets
are parallel. Nothing in what follows will depend on a particular choice of Q.

3.2. Faces and face diagrams. It will be convenient to represent faces of P by
face diagrams. First, we replace all the symbols A; and A; ; in Table (GZ) by dots.
Every face of P will be given by a system of equations of the form a = b, where
a and b are coordinates represented by adjacent dots in two consecutive rows. To
represent such an equation, we draw a line segment connecting the corresponding
dots (these line segments go from northeast to southwest or from northwest to
southeast). Thus, a system of equations defining a face of P is represented by
a collection of line segments called the face diagram.! Rows of a face diagram are
defined as the collections of dots corresponding to the coordinates \; ; with a fixed 1,
and columns are by definition collections of dots with a fixed j (columns look like
diagonals in our pictures).

Let F' be a regular face of P and F the corresponding face of @, so that F' is
the degeneration of F. We will often write [F] for the class [F] in the polytope
ring Rg. Note that, in general, 7[F] does not belong to Rp.

Every facet of P is regular. Fori =0,...,n—1land j=1,...,n—i—1,let I';;
denote the facet of P given by the equation A; ; = A;41,;, where we set Ao ; = A;.
Similarly, for i =0,...,n—1and j =2,...,n—¢ we let I ; denote the facet given
by Aij = Ait1,j-1. Clearly, any facet of P is either one of I'; ; or one of I'; .

The next proposition describes all linear relations between facets of P.

Proposition 3.2. The following linear relations hold in Rq:
[Liy] = [T ;] = Licl + Ty =0,

where terms should be ignored if their indices are out of range. Moreover, all linear
relations are generated by these.

We call this relation the 4-term relation at (1, 7).

Proof. Let e; ; be the standard basis in R?. The 4-term relation at (4, 7) is exactly

the relation
> érlei)T] =0,
T

L Our face diagrams (as well as the diagrams in [12]) are reflections of the diagrams in [15]
with respect to a horizontal line.
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where the summation is over all facets of ). In fact, there are at most four facets I'
of @ such that &r(e;,;) # 0, namely, I'; ;, T'i—1 5, [, and I';_, ;. Tt is straight-
forward to check that the coefficients are as stated. [

3.3. Kogan faces. In what follows we will mostly consider faces of the Gelfand—
Zetlin polytope given by equations of the type? \;, ; = Ait1,; (that is, intersections
of facets of the form I'; ;). We will call such faces Kogan faces. With each Kogan
face F' we associate a permutation w(F') as follows. First, assign to each equation
Ai,j = Ait1,; the simple transposition s,1; = (i + j,¢ 4+ j + 1). Now compose all
simple transpositions corresponding to the equations defining F' by going from left
to right in each row of the diagram for F' and by going from the bottom row to
the top row. The word we obtain is a decomposition of some permutation w(F)
(we multiply permutations from right to left, that is, a decomposition w = wjws
means that w(i) = wy(w2(2)) for all i = 1,...,n). The face F is said to be reduced
if this decomposition is reduced (in what follows we only consider permutations
for reduced faces).> We recall that a decomposition w = s;, ---s;, is said to be
reduced if its length is minimal, that is, the permutation w cannot be decomposed
into a product of fewer than [ elementary transpositions. The reduced Kogan faces
of the Gelfand—Zetlin polytope are in bijective correspondence with the reduced
rc-graphs (also called pipe-dreams; see [15], 2.2.1). We note that the permutations
associated with a face and with the corresponding pipe-dream are the same.

[ [ J [ J [ ]
S1 So S1 ° S1 So
[ ]

52 52

W = S$95189 w = 59871 W = §1859

Figure 2. Reduced Kogan face diagrams for the 3-dimensional Gelfand—
Zetlin polytope.

2That is, of type L in the notation of [12], which is the same as equations of type A in [15]
(hiS )"i+j7i is our /\Z])

3Note that our definition of w(F) does not agree with [15], 2.2.1: his w(F) is our w(F)~1.
However, this difference does not affect the definition of reduced faces.
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All reduced Kogan face diagrams for n = 3 with the corresponding permutations
are shown in Figure 2.

Proposition 3.3. All Kogan faces are reqular.

Proof. There is a unique Kogan vertex. This vertex is simple and is contained in
any other Kogan face. The result now follows from Proposition 2.3. [J

Using the 4-term relations, we can express [F(I j 41} in terms of Kogan facets:

Lo 4+1] = [Loj] — [T1,5] + [T7,] = Lo ] = [T15] + [T1,5-1
j—1
— o]+ Ty q] == ) [Tij—i] = [Lit1,-4-
i=0
We define the k-antidiagonal sum of facets ADy as the sum of all elements of the
form [I'; ;] with ¢ + j = k fixed (including the case i = 0). Let I'; = T’y ; and
I'; =T ;. The computation above shows that

[Cja] = O] = ADja — AD;.
Proposition 3.4. The following identities hold in Rp:

0 0 _ 0 _
g =MD g =yl g =),

Proof. Let 0; be the image of the vector % under the natural inclusion Ap — Ag.
J
Denote by H; and H;" the support numbers corresponding to the facets I'; and I',

respectively. Thus, H; and H; are linear functionals on Ag. By the chain rule we
have

0, =3 H(@)[0) + 3 Hy (0[]
k=1 k=2

in Rq, since [I';] = 0/0H;, and similarly for [I';]. It suffices to note that Hy(9;) =
—0; and H, (0j) = 6r;, where dj; is the Kronecker delta. O

4. Schubert cycles and faces

4.1. Schubert cycles. For the rest of the paper we set G = GL,,(C). Let B
and B~ be the subgroups of upper-triangular and lower-triangular matrices in G,
respectively. The Weyl group of G can be identified with the symmetric group Sy,:
a permutation w € S, corresponds to the element of G acting on the standard
basis vectors e; by the formula e; — e,,(;). For each w € Sy, we define the Schubert
variety X™ to be the closure of the B~ -orbit of w in the flag variety X = G/B. It
is easy to check that the length I(w) of w is equal to the codimension of X¥ in X.
The class [X%] of X¥ in CH'")(X) is called the Schubert cycle corresponding to
the permutation w.

Remark 4.1. The notation in [16] is different from ours. Namely, they consider
the flag variety B~ \ G. Under the isomorphism G/B — B~ \ G sending ¢gB
to wogwg !B~ our Schubert variety X* is mapped to the Schubert variety
X in the notation of [16], § 4.

-1
wy T wwo
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4.2. Schubert polynomials. We now recall the notion of a Schubert polyno-
mial (3], [17]. With each elementary transposition s; = (i,i + 1) we associate
a corresponding divided difference operator (acting on polynomials in the variables
Z1,T2,...) by the formula

f=si(f)

Ti — Tit+1

where s;(f) is the polynomial f with the variables z; and x;41 interchanged. For
a permutation w, consider a reduced (that is, shortest) decomposition w=twy =
8i, - 8i, of the permutation w~lwy into a product of elementary transpositions.

The Schubert polynomial &,, is defined by the formula
Gw(l’l,xg, - ) = Ail e Aik(.T;’lL_lxg_Q . 'IL’n_l).

Theorem 4.2 [3|. The class [X™] of the Schubert variety X* in CH(X) is equal
to Gy(21,x2,...), where ©; = —c1(%;) is the negative of the first Chern class of
the tautological quotient line bundle &;. Under our identification CH(X) = Rp,

0 0
XY =6y —5—...,— .
[ ] < 8)\1 a)\n>
We now recall the Fomin—Kirillov theorem [7]. With each face F' we associate
a monomial z(F) in the variables x1,...,2,_1 by assigning x; to each equation

Ai,j = Ai+1,; giving F and then taking the product of all these variables (here
the order does not matter, of course). The Fomin—Kirillov theorem states that the
Schubert polynomial &,, of the Schubert cycle [X"] is equal to

Z l’(F),

w(F)=w
where the sum is taken only over the reduced Kogan faces.

4.3. Representation of Schubert cycles by faces. The polytope ring provides
a natural setting in which one can directly identify Schubert cycles with linear
combinations of faces, sidestepping the use of Schubert polynomials. The following
theorem is an immediate analogue of the Fomin—Kirillov theorem: it shows that
each Schubert cycle can be represented by a sum of faces in exactly the same way as
the corresponding Schubert polynomial can be represented by a sum of monomials.

Theorem 4.3. The Schubert cycle [X™], regarded as an element of the Gelfand—
Zetlin polytope ring, can be represented by the linear combination of faces

xe = X 171),
w(F)=w
where the sum is taken only over the reduced dual Kogan faces (all these faces are
regular).

The proof of this theorem will be given in §5.2. It uses the combinatorics and
the geometry of the Gelfand—Zetlin polytope together with the Demazure character
formula.
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Despite the similarity between this theorem and the Fomin—Kirillov theorem, the
former cannot be formally deduced from the latter, since there is no term-by-term
equality between monomials in the Schubert polynomial &,, (which always lie in
the ring Rp) and the images 7([F]) of the faces in the decomposition of the cycle
X" (which usually do not lie in Rp). This can already be seen in the case when
n =3 and w = sy (see Remark 2.5).

We note that a Schubert cycle might have a simpler representation by sums of
faces than the one given by this theorem (see Example 4.4).

Example 4.4. Using Proposition 3.4 and Theorem 4.2, we can express the Schu-
bert divisors [X®] in terms of the elements of the polytope ring corresponding to
facets of P. First, we have

[X*0] =&, (‘ail’ ‘a%’ : ) = w(i({m - [Fﬂ)>,

=1

where we drop all terms whose indices are out of range. As we have seen, the
element [I';] — [[';] is equal to AD; — AD;_;. It follows that

[X*0] = m(AD;,) = 7 (i[rioj,j1).

Jj=1

We obtain a representation of [X®o] as a sum of iy facets. This representation
coincides with the one given in Theorem 4.3. Note, however, that [X*"-1] can be
represented by a single facet, namely, we have

[Xont] = 5‘)\ )\ =[]

We have used the equality >, % = 0 in Rg because the volume polynomial is
translation invariant, in particular, it does not change if we add the same number
to all the A;.

Theorem 4.3 together with relations in the polytope ring Rp implies the following
dual representation of Schubert cycles by faces. We define dual Kogan faces of the
Gelfand-Zetlin polytope to be the faces given by equations of the type* Nij =
Ait1,j—1 (that is, intersections of facets of the form T ]). In other words, dual
Kogan faces are mirror images of Kogan faces with respect to a vertical line. With
each dual Kogan face F* we can again associate a permutation w(F™*). Namely,
assign to each equation \; ; = Aj41 j—1 the simple reflection s,,_;11, and compose
these reflections by going from the bottom row to the top row and from right to left
in each row. We note that the permutation w(F*) is the same as the permutation
w(F') constructed from the Kogan face F' obtained as the mirror image of F* with
respect to a vertical line (that is, each equation A;; = Ai41,;—1 is replaced by

Xisn—i—jt1 = Nit1,n—i—jt1)-

4That is, of type R in the notation of [12], which is the same as an equation of type B in [15].
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Corollary 4.5. The Schubert cycle [X"™], regarded as an element of the Gelfand-
Zetlin polytope ring, can be represented by the following linear combination of faces:

x=n( ¥ I[F*])’

w(F*)=wowwy
where the sum is taken only over the reduced dual Kogan faces.

Proof. Consider the linear automorphism of R? that takes a point with coordinates
Ai,; to the point with coordinates —\; ,—;—;4+1. It takes a Gelfand-Zetlin polytope
Py to the Gelfand—Zetlin polytope P_.,x, where wo(A1,...,An) = (An,..., A1).
Thus, it induces an automorphism of the space Vp preserving the lattice Ap, and
hence an automorphism A of Rp. Choose a resolution @) so that the automorphism
A extends to Rg. It is clear that the extended automorphism takes the element
7[F] corresponding to a regular face F' of P to the element w[F™*], where the face
diagram of F™ is obtained from the face diagram of F' by the mirror reflection
with respect to a vertical line. It now suffices to prove that the automorphism A
of Rp coincides with the automorphism of CH*(X) that sends a Schubert cycle
[X %] to [Xwowwo 1]. (The latter automorphism is induced by the automorphism of
X that sends a complete flag to the flag of its orthogonal complements.) Indeed,
this is easy to verify for Schubert divisors as in Example 4.4 (we basically need to
repeat the same computation with dual Kogan faces instead of Kogan faces). The
general case now follows, since Schubert divisors are multiplicative generators of
the cohomology ring of X. [J

Note that any Kogan face intersects any dual Kogan face transversely. Hence,
we can represent the cycles given by the Richardson varieties as sums of faces.

Corollary 4.6. The product of any two Schubert cycles [X™] and [X™] can be
represented as the following sum of faces:

[X%]- [XY] = 77< > [Fn F*]) ,
w(F)=w
w(F*)=wouwy "
where F and F* run over the reduced Kogan faces and the dual Kogan faces, respec-
tively.

5. Demazure characters

5.1. Characters. For each A = (\1,...,\,) we consider the affine hyperplane
R"~! C R™ with coordinates y1, ..., ¥y, given by the equation y; +- - -+, +uo = 0,
where ug = A\ + - + A,. Let ug,...,u,—1 be coordinates in R®~! such that y; =
w; —uj—1 fori=1,...,n— 1, and consider the following linear map p: R? — R*~!
from the space R? with coordinates Aij to the hyperplane R"~! C R™:

n—u

U; = Z )\7;_’]‘.

Jj=1

In other words, if we arrange the coordinates \; ; into a triangular table as in (GZ),
then u; is the sum of all the elements in the ith row. In what follows we identify R™
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with the real span of the weight lattice A of G in such a way that the ith basis
vector in R™ corresponds to the weight given by the ith entry of the diagonal torus
in G. Then the hyperplane R" ! is the parallel translate of the hyperplane spanned
by the roots of G. It is easy to check that the image of the Gelfand—Zetlin polytope
P, C R? under the map p is the weight polytope of the representation V.

Let S be a subset of the Gelfand—Zetlin polytope Py (in what follows, S will
be a face or a union of faces), and define the character xs of S as the sum of the
formal exponentials e?(*) over all integer points z € S, that is,

x(S) = Z eP(2),
zeSNZ4

The formal exponentials e*, u € Z™, generate the group algebra of A. Thus, the
character takes values in this group algebra.

Consider the linear operators s;: R"™! — R™™! with the point Si(Uty ey Up_1)
differing from the point (uq,...,u,—1) at most in the ith coordinate, and with
the ith coordinate of s;(u1,...,u,—1) equal to w;—1 + u;41 — u;, where u, = 0.

It is known and easy to verify that the operators s; are induced by orthogonal
reflections in R™ (given by the simple roots) and that they generate an action of
the symmetric group S, on R™! such that the reflection s; corresponds to the
elementary transposition s; = (i,7 + 1) (we use the same notation for a reflection
and the corresponding transposition, which is a standard practice when dealing
with group actions). We also define the action of s; on the group algebra of the
weight lattice by setting s;(e%) := e% (¥,

In what follows we identify R®~! with the real vector space spanned by the roots
of G, and s; with the reflections corresponding to simple roots. The simple roots cor-
respond to the standard basis vectors in R®~!, that is, the only non-zero coordinate
of the simple root «; is u;, and this coordinate is equal to 1.

Let Vi, be the Demazure B~ -module defined as the dual space to the space
HO(X™, #\|xw) of global sections, where £y := ZEM @ .. @ L& is the very
ample line bundle on X corresponding to a strictly dominant weight A. By the
Borel-Weil-Bott theorem, V;’id is isomorphic to the irreducible representation V)

of G with the highest weight A. We choose a basis of weight vectors in V, ., and

recall that the Demazure character x*(X) of V_, is the sum, over all weight vectors
in this basis, of the exponentials of the corresponding weights, or equivalently,

XY (A) = Z mw(p)er,

HEA

where m () is the multiplicity of the weight p in V.

The main result in this section establishes a relation between the Demazure
character of a Schubert variety and the character of the union of the corresponding
faces.

Theorem 5.1. For each permutation w € S,, the Demazure character x“(\) is
equal to the character of the following union of faces:

X (\) = X( U FA>’
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where, as usual, F\ runs only over the reduced Kogan faces in the Gelfand—Zetlin
polytope Py .

In contrast to Theorem 4.3, this theorem and its corollaries below (describing the
Hilbert functions and the degrees of Schubert varieties in projective embeddings in
P(Vy)) use exactly the polytope Py and not just any one of the polytopes analogous
to Py. Whenever the choice of A matters, we indicate this by using the notation
F), instead of F' for the faces.

For Kempf permutations, Theorem 5.1 reduces to the form in Corollary 15.2
of [21]. We note that by Proposition 2.3.2 in [15], a permutation w is Kempf if
and only if there is a unique reduced Kogan face F' such that w(F) = w. Hence,
XY (A) = x(F) in this case.

In §5.4 we will reduce this theorem to the purely combinatorial Key Lemma 5.8,
the proof of which is given in §6.3.

We now derive some corollaries of Theorem 5.1. First, we can similarly describe
the Demazure character of B-modules. Let V)\wa be the Demazure B-module defined
as the dual space to H°(X,,, % |x, ), where X,, is the closure of the B-orbit of w
in X (in particular, [X,] = [X™“°"] in CH*(X)).

Corollary 5.2. For each permutation w € S,, the Demazure character x,(\) is
equal to the character of the following union of faces:

Xu(A) = X( U Fi‘>,

w(F5)=wwo
where FY runs over the reduced dual Kogan faces in the Gelfand-Zetlin polytope.

This corollary follows immediately from the proof of Theorem 5.1 together with
the definition of dual Kogan faces, since ., (A) = wox™°™ ().

Another corollary of Theorem 5.1 describes the Hilbert function of the Schubert
variety X™ embedded in P(H?(X"™, Z\|xw)*) C P(Vy).

Corollary 5.3. For any permutation w € S, the space H*(XY, A\|xw) has dimen-
sion equal to the number of integer points in the union of all reduced Kogan faces
with the permutation w:

dim HO(X", A |x«)=| |J Fanz?

w(F)=w

In particular, the Hilbert function Hy (k) := dim HO(X", Z&*|xw) is equal to the
Ehrhart polynomial of Uw(FA):w F\, that is,

Hyo)=| |J kBNZ
w(Fy)=w

for all positive integers k.

This corollary will be essential for the proof of Theorem 4.3.
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5.2. Degrees of Schubert varieties. To prove Theorem 4.3 we first prove an
analogous identity for the degree polynomials of Schubert varieties. The degree poly-
nomial D, on R™ is uniquely characterized by the property that (d—I(w))! D,,(\) =
deg, (X") for all dominant weights A € Z" C R"™. In particular, D,, = 1 and
Dig = (1/d!) degy(X) = Volume(Q»). The degree polynomials first appeared in
the Bernstein—Gelfand—Gelfand paper [3] and were recently studied by Postnikov
and Stanley [21]. Below we prove identities relating the degree polynomial and the
volumes of faces of the Gelfand—Zetlin polytope.

Denote by REF C R? the affine span of the face F. In the formulae of the next
theorem, the volume form on R F' is normalized so that the covolume of the lattice
ZENRF in RF is equal to 1.

Theorem 5.4. The following equalities hold:

D, = Z Volume(F)),
w(Fy)=w

D, = Z Volume(Fy).

w(F;):wowwgl

For Kempf permutations the first equality in this theorem reduces to the last
formula in Corollary 15.2 of [21].

Proof. Theorem 5.4 follows easily from Corollary 5.3 and Hilbert’s theorem describ-
ing the leading monomial of the Hilbert polynomial, by the same arguments as
in [11]. Indeed, by Hilbert’s theorem dim(V},, ) is a polynomial in k (for large k),
and its leading term is equal to D,,(\)k?. Next, note that dim(Vyy ,,) is the num-
ber of integer points in Uw( Fy)=w kFy by Corollary 5.3. Finally, use the fact that
the volume of each face F' is the leading term in the Ehrhart polynomial of this
face (since Volume(kF') = k™ Volume(F') is approximately equal to the number of
integer points in kF for large k). O

Remark 5.5. Dual Kogan faces are exactly the faces considered in [16], §4. We note
that the definition of w(F™*) in [16] is different from ours as well as from that in [15].
Namely, in our notation they associate the permutation wowwg ! with a dual Kogan
face F*. However, since their Schubert cycle [X,,] is defined so that it coincides
with our Schubert cycle [X®o®*wo 1] (see Remark 4.1), their Theorem 8 (describing
the toric degeneration of the Schubert variety X,,) uses exactly the same faces as
in the second equality of our Theorem 5.4, and the latter equality can be deduced
from the former by standard arguments from toric geometry.

Proof of Theorem 4.3. We now deduce Theorem 4.3 from Theorem 5.4 using Lem-
ma 2.4. Recall that the lattice Ap is a sublattice of Ag. In particular, the polytope
Py can be regarded as an element of Ag = Sym'(Ag). Let Ly denote the image
of Py under the canonical projection Sym(Ag) — Rg. It is easy to check that,
under the isomorphism in Theorem 3.1, the class m(Ly) corresponds to the first
Chern class of the line bundle .%2). Hence, we have the following identity in Rp:

[X“]m(La) ™" = (degy (X™))[pt],
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where d — | = d — I(w) is the dimension of the variety X® (the product on the
left-hand side is taken in Rp; according to our usual convention, we identify ele-
ments of Rp with their images in Mg p).

On the other hand, it is easy to check that for each face F\ C @, of codimension
[ the product [F\]LY™" in R is equal to (d — I)! Volume(Fy) times the class of
a vertex. Hence, by Theorem 5.4 we have

(et =3 i)

w(F)=w

Since elements of the form 7(Ly)?! span de_l, we can apply Lemma 2.4 and
conclude that [X*] = W(Zw(F):w[F]). O

5.3. The Demazure character formula. To prove Theorem 5.1, we use the
Demazure character formula for x*(\) together with a purely combinatorial argu-
ment. Let us recall the Demazure character formula (see [1] for more details). For
each i = 1,...,n — 1 define the operator T; on the group algebra of the weight
lattice of G by the formula

f—e™sif)

1 —e

Ti(f) =
Similarly, define the operator 7 by the formula

- f—evsi(f)
T =
S =t d
Theorem 5.6 [1]. Let w = s;, ---s;, be a reduced decomposition of w. Then the
Demazure characters X, (\) and x™°*(\) can be computed as follows:

Xw<)\) = El o 'Tize/\

and
’LUo)\

Xwow()\) =T~ T

n—iy n—i, ©

The first equality is the standard form of the Demazure character formula. We
will use the second equality, which follows immediately from the first one, since
Xw(A) = wox™°™(\) and woT; = T,,_,wo.

We note that this theorem is similar to Theorem 4.2 (and especially to its
K-theory version ([6]; see also [20], §3)), which describes Schubert cycles using
divided difference operators. However, in this theorem we apply the operators T;;
in the same order as the elementary transpositions s;; in a reduced decomposition
of w, while in Theorem 4.2 the order is the opposite (that is, the same as in w™1).

5.4. Mirror mitosis. Mitosis is a combinatorial operation (introduced in
[14], [19]) that produces for each Kogan face a set of Kogan faces.” If we apply
mitosis in the ith column to the set of all reduced Kogan faces corresponding to
a permutation w, then we obtain all the reduced Kogan faces corresponding to the

5The original definition was in terms of pipe-dreams rather than Kogan faces.
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Figure 3. Mirror mitosis applied to the first row of the upper face diagram
gives the set consisting of the two lower diagrams.

permutation ws; satisfying the condition l(ws;) = l(w) — 1. We will need mirror
mitosis, which is obtained from the usual mitosis by transposition of the face dia-
grams (interchanging rows and columns). In other words, mirror mitosis for w is
the usual mitosis for w™!'. We use mirror mitosis to deduce Theorem 5.1 from the
Demazure character formula. We now give a direct definition of mirror mitosis.

Let F' be a reduced Kogan face of dimension I. For each i = 1,...,n — 1 we
construct a set M, (F') of reduced Kogan faces of dimension [ 4 1 as follows. For
each i = 1,...,n — 1 we say that the diagram of F has an edge in the ith row
if the face F' satisfies the equation \;_; ; = A; ; for some j. Similarly, we say that
the diagram of F' has an edge in the ¢th column if the face satisfies the equation
Aj—1,s = Aj,; for some j. We consider the ith row in the face diagram of F. If it
does not have an edge in the first column, then M, (F') is empty. Suppose now that
the ith row of F' contains edges in all the columns from the first through the kth,
and does not have an edge in the (k 4+ 1)th column. Then for each j < k we check
whether the (i 4+ 1)th row has an edge in the jth column. If it does, we do nothing.
The elements of M, (F) correspond to the values of j for which there is no edge at
the intersection of the (i + 1)th row and the jth column. For such a value of j we
delete the jth edge in the ith row and shift each edge on the left of it in the same
row one step to the southeast (to the (i + 1)th row) whenever possible. The new
reduced Kogan face F; ; thus obtained is called the jth offspring of F' in the ith
row. The set M, (F') consists of the offsprings F; ; for all 1 < j < k.

The cardinality of M, (F) is equal to k — &k, where k' is the number of edges
in the first k positions in the (i + 1)th row. This is the same as the number of
monomials in A4;(zFz¥, ;). An illustration of mirror mitosis is given in Figure 3.

The next theorem follows from the properties of the usual mitosis [19].
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Theorem 5.7. If [(s;w) = l(w) — 1, then
U M= U (B
w(F)=w w(E)=s;w

Proof of Theorem 5.1. This now follows by backwards induction on [(w) from the
Demazure character formula (the second equality in Theorem 5.6), Theorem 5.7,
and the next lemma.

Key Lemma 5.8. For each permutation w € S, and an elementary transposition
s; such that l(s;w) = l(w) — 1,

T;x( U FA>— ( U EA).

w(F)=w
The proof of this lemma is purely combinatorial. It is given in §6.3. O

6. Mitosis on parallelepipeds

In this section we reduce the mitosis on faces of the Gelfand—Zetlin polytope to an
analogous operation (called paramitosis) on faces of a parallelepiped. The latter is
easier to study and has a transparent geometric meaning (see Remark 6.7). Parami-
tosis for parallelepipeds and its applications to exponential sums and Demazure
operators are studied in §§6.1 and 6.2. The material therein is self-contained, and
all the results are proved by elementary methods. These results are then used in
§6.3 to prove Key Lemma 5.8. Another application is Proposition 6.6, which gives
a new minimal realization of a simplex as a cubic complex.

6.1. Parallelepipeds. We consider integers pi1, ..., thm, 1, -, Vm With pr < vg

for all k =1,...,m and define the parallelepiped II(u, v) as the convex polytope
M v) ={y = (Y1, ym) €R™ | Syp <vi, k=1,...,m}.

For any such parallelepiped IT = II(u, v) the sum

Sut)= > "W, where o(y)=> i
k=1

yelnzm

is a polynomial in ¢. It can be found explicitly; namely, the following proposition
holds.

Proposition 6.1.
L o S S T

Sn(t):H Po—

k=1
Proof. Indeed,

s - (5 (E)- (5

yellnzm Y1=p1 Y2=[2 Ym=Hm

Each factor on the right-hand side can be computed as the sum of a geometric
progression. [
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The following proposition describes a duality property of Sr(t).

Proposition 6.2.
SH (t) = tZkzl(#kJruk)SH (til),

The proof is a straightforward computation. Proposition 6.2 can be restated in
combinatorial terms as follows: the number of ways to represent an integer N as
asum y; + - + Yy in which pp < yr < vy for all K = 1,...,m is equal to the
number of ways to represent the integer ;" | (ux + vx) — N in the same form.

Fix an integer C. Consider the following linear operator on the space of Lau-
rent polynomials in ¢: with every Laurent polynomial f we associate the Laurent
polynomial f* obtained from f by replacing each power t* by t“~*. In other terms
we have f*(t) =t f(t~!). Clearly, f** = f for every Laurent polynomial f. The
duality property of Sy can be restated as follows: if C' = Zzlzl(/lk + 1), then
St = Sf;. For the same value of C, we define the operator 71y by the formula

f—=tfr
1—t

Tu(f) =

It is not hard to see that for every Laurent polynomial f the function T1;(f) is also
a Laurent polynomial. The operator Ty depends on the parallelepiped II.

Proposition 6.3. Let T’ be the face of II = (u,v) given by the equation y; = py
(it may coincide with the whole of 11 if u3 = v1). Then

St = T (Sr).
Proof. We have T' = TI(p1, ft1, 42, V2, - - -, fin, V). Therefore, by Proposition 6.1,

L T

Se(t) =t ] —

k=2

and
v+l e tritl—ni G (4) — Sn(t
sl = [ = = orlt) = Selt) (2)
k=1

Proposition 6.2 applied to ' gives us that Sp(t) = t2#1 k=2 (s+ve) Sp(¢=1). Sub-
stituting this in the right-hand side of equation (2), we get the desired result. O

Under certain assumptions this proposition remains true if IT and I" are replaced
by their images under an embedding II — RF that preserves the sum of the coor-
dinates.

Proposition 6.4. Consider a linear operator A: R¥ — R™ defined over the inte-
gers such that oo A = o (the function o on the right-hand side is the sum of all the
coordinate functions on R¥). Let I, T', and Ty be as in Proposition 6.3. Assume
that A(BNZF) =TINZ™ and A(ANZF) =T NZ™ for some subsets A, B C RF
such that the restrictions of A to BNZ* and ANZ* are injective. Then

3 t“<Z>:TH( 3 to<z>),

z€BNZk z€EANZF
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Proof. For each z € BNZF let y = A(z). Since o(z) = o(y), we get that

Y oo 3w

z€BNZk yelInzm

(these two sums coincide term by term), and similarly for the right-hand side. Thus,
the desired statement follows from Proposition 6.3. O

6.2. Combinatorics of parallelepipeds. Let IT = II(u, v) be a coordinate par-
allelepiped in R™ of dimension m with u; < v; for all i = 1,...,m. We will now
discuss the combinatorics of II. For every point y € II with coordinates (y1, ..., Ym)
we can define the paradiagram (‘para’ from parallelepiped) of y as the m-tuple
(J1,--+,Um), where

9 =0 ify; = py, g =1 ify; = v,
7; = * otherwise.

A paradiagram is said to be reduced if 1 is never followed immediately by 0 in it.
We consider a face F' of II and note that all points in the relative interior of F’
have the same paradiagram. We will call this the paradiagram of F'. A face F' is
said to be reduced if its paradiagram is reduced. Define a parabox as a sequence
of consecutive positions in a paradiagram. A parabox filled with a string (possibly
empty) of ones, followed by a single star, followed by a string (possibly empty)
of zeros is called an intron® parabox. A parabox that contains the left end of
a paradiagram and that is filled with a string (possibly empty) of zeros is called an
initial parabox. A parabox that contains the right end of a paradiagram and that
is filled with a string (possibly empty) of ones is called a final paraboz. It is not
hard to see that any reduced paradiagram consists of an initial parabox followed
by several (possibly none) intron paraboxes, followed by a final parabox. Below is
an example of how to split a paradiagram into initial, intron, and final paraboxes:

[000] 111%00 [ %00 [ 11 [«[ 111 ]

Two reduced faces F; and Fy of II of the same dimension are said to be related
by an L-move if their intersection is a non-reduced facet of both F; and F». We can
also define an L-move of a reduced paradiagram. This is an operation that replaces
a single string * 0 in a paradiagram by the string 1 *. Note that an L-move does not
affect the decomposition of a paradiagram into initial, intron, and final paraboxes.

Proposition 6.5. Two faces Fy and Fs of the same dimension are related by an
L-move if and only if their paradiagrams are related by an L-move.

Proof. Let §; be the paradiagram of F; and J> the paradiagram of F5. Since
Fy N F; has codimension 1 in Fj, the paradiagram § of F; N F5 is obtained from &
by replacing one star by either 0 or 1. We consider two cases.

Case 1: the star is replaced by 0. Then, since F; N F5 is non-reduced, there must
be a 1 immediately before this 0. Since F5 is reduced, this 1 must be replaced by

6The origin of this term is explained in [14], § 3.5.
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a star in the paradiagram J,. Therefore, the paradiagram §; is obtained from ds
by an L-move.

Case 2: the star is replaced by 1. Then, since F; N Fy is non-reduced, there must
be a 0 immediately after this 1. Since Fj is reduced, this 0 must be replaced by
a star in the paradiagram J,. Therefore, the paradiagram J, is obtained from &
by an L-move. [J

Two faces of the same dimension are said to be L-equivalent if one of them
can be obtained from the other by a sequence of L-moves or inverse L-moves (on
the level of paradiagrams, inverse L-moves are defined as the inverse operations of
L-moves). For the sake of brevity, we will write L-classes instead of L-equivalence
classes. Throughout the rest of the subsection, we identify L-classes of faces and
their unions (clearly, an equivalence class can be easily recovered from its union).

Proposition 6.6. The L-classes form a simplicial cell complex combinatorially
equivalent to a standard simplex. More precisely:

e any L-class is homeomorphic to a closed disk;

e there is a one-to-one correspondence between L-classes and the faces of a sim-
plex such that corresponding sets are homeomorphic, and intersections correspond
to intersections.

Figure 4 illustrates this proposition for m = 3.

Figure 4. The subdivision of a tetrahedron by two extra edges yields
a combinatorial cube.

Proof. First consider all reduced vertices. There are exactly m + 1 of them. The
paradiagram of a reduced vertex consists of a string of zeros followed by a string of
ones. We note that different reduced vertices are never L-equivalent.

Next, consider any L-class A of dimension k. It has k intron paraboxes. With
the L-class A we associate a set v(A) of k + 1 vertices in the following way: we
fill the first ¢ < k intron paraboxes with zeros, and the remaining intron paraboxes
with ones. Clearly, the set v(A) is precisely the set of all reduced vertices contained
in the class A. It follows that v(AN B) = v(A) Nv(B) for any two classes A and B.
We note that A is determined by the positions and sizes of the initial, intron, and
final paraboxes, that is, by the set v(A). The set v(A) spans a face of the simplex
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Y. with vertices at all reduced vertices of II. Thus, we have an injective map v from
L-classes of faces of II to faces of X, and it takes intersections to intersections.

The map v is surjective: any set of reduced vertices has the form v(A) for some
equivalence class A. Indeed, A can be defined as the class in which the boundaries
of the intron paraboxes are the boundaries between zeros and ones for the vertices
in the given set v(A).

It remains to prove that any L-class is homeomorphic to a closed disk. First, note
that an L-class with only one intron parabox is a broken line whose straight line
segments are parallel to coordinate axes (every straight line segment of this broken
line corresponds to a particular position of the star inside the intron parabox).
A broken line is homeomorphic to a line segment. In general, an L-class is a direct
product of broken lines as above, and hence it is homeomorphic to a direct product
of line segments, that is, to a closed cube. [J

The most important corollary for us is that the intersection of two L-classes is
again an L-class.

We can now define paramitosis. This is an operation that produces several faces
from a single face F. If the paradiagram of F' has no initial parabox, then the
paramitosis of F'is empty. Suppose now that the paradiagram of F' has a non-empty
initial parabox. Then we replace it by an intron parabox: the set of all faces
obtained in this way (corresponding to all different ways of filling the new intron
parabox) is the paramitosis of F'. Below is an example of paramitosis:

[00x0] »=% [0+0] and [1xx0]

The paramitosis of a set of faces is defined as the union of the paramitoses of
the individual faces in this set.

Remark 6.7. Tt is easy to describe the paramitosis of an L-class using the bijection
between L-classes and faces of the standard simplex as defined in Proposition 6.6.
Namely, the L-classes with non-empty initial paraboxes correspond to the faces of
the simplex contained in some facet H. Let v be the vertex of the simplex that
is not contained in H. Then the paramitosis of a face A C H coincides with the
convex hull of A and v. It follows that paramitosis of an L-class is again an L-class
and that paramitosis of the intersection of two L-classes with non-empty initial
paraboxes coincides with the intersection of their paramitoses.

For a subset A C II we define the Laurent polynomial

S(A)= Y W,

yeANZ™

Proposition 6.8. Let 111 be the operator associated with I as in §6.1, let the
function o: R™ — R be the sum of all the coordinates, and let A be an L-class of
faces in I1 with a non-empty initial parabox. Let B be the paramitosis of A. Then
S (B) =TS (4).

Proof. Consider the paradiagram of a face in A. Suppose that this paradiagram has
r paraboxes in all, and that the ¢th parabox starts with index j, (so that j; = 1).
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Consider the following linear map Agp: R™ — R":

J2—1 Jz—1 m

Ap(yi, .. ym) = (Z%Z%Z%)

J=J1 J=Jj2 J=Jr

We have the equality o o Ap = o, where ¢ is the function computing the sum of all
coordinates.
We can now apply Proposition 6.4 to the map Ap. O

A similar statement holds for unions of L-classes.

Proposition 6.9. Let Aq,...,A; be L-classes with non-empty initial parabozes,
and suppose that the L-classes By, ..., By are obtained from Ay, ..., A by parami-
tosis. Then

y(BlLJ"'UBk) :Tny(AlLJ"-UAk) ZTny(BlU---UBk).
Proof. We will use the inclusion-exclusion formula:

LA U UA) =D (-)IPLo(A)),
I+

where the summation is over all non-empty subsets I C {1,...,k}, and Ay is the

intersection of all the A;, ¢ € I. The same formula holds for By, and 77y is linear,

hence it suffices to show that .7 (By) = T (Ar). But Ay is also an L-class with

non-empty initial parabox. Thus, the first equality follows from Proposition 6.8.
The second equality follows from the first one, since Ty o Tty = Ty. O

Let M(A) denote the paramitosis of A.

Proposition 6.10. Suppose that Ay, ..., Ax are L-classes with non-empty initial
paraboz, and By, ..., B, are L-classes with empty initial paraboz. Suppose also that
B;=M((AU---UAp)NDB;) forallie{l,...,r}. Then

IS MA U UA,UByU---UB,)=TpnS (A1 U---UA,UBU---UDB,).
Proof. By the inclusion-exclusion formula, we have for the right-hand side (RHS):

RHS:Tny(AlU"'UAkUBlLJ"'UBT)ZTny(AlLJ'"UA/C)
+TnS(B1U---UB,) = TnS (A U---UAp)N(B1U---UB,)).

Put A, = (A1 U--- U Ag) N B; for every i € {1,...,r}. Since B; = M(A]), we
get that Tn.(B1 U --- U B,) = Tin’(Aj U--- U A)) by the second equality in
Proposition 6.9. Hence,

T (BiU---UB,) = T (A, U---UA) N (B U---UB,)),

and RHS = Tny(Al y---u Ak)

It remains to note that the left-hand side coincides with .7 M(A; U --- U Ay),
because M(By U ---U B,) is empty. The desired statement now follows from the
first equality in Proposition 6.9. [
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Remark 6.11. We note that the condition B = M((A; U---U Ag) N B) in Propo-
sition 6.10 is satisfied whenever B = M(A) for some L-class A C A3 U--- U Ay.
Indeed, if B = M(A), then A = HN B by the definition of paramitosis, where H is
the hyperplane y; = p1. Since H contains all the A;, we always have the inclusion
(A1 U---UAp)N B C HN B. On the other hand, the condition A C A; U---U A
implies the opposite inclusion HN B C (43 U---U Ag) N B.

6.3. Fibre diagrams, ladder moves, and the proof of Key Lemma 5.8.
We now apply the general results for parallelepipeds to mitosis on faces of the
Gelfand—Zetlin polytopes Py. Fix some i. We will consider mirror mitosis in the ith
row (in what follows, mitosis will always mean mirror mitosis). Let ¢;: R? —
R~ ("=9) denote the linear projection that forgets all entries in the ith row, that is,
it forgets the values of all the coordinates A; ; with first index 7. The fibres of Py are
defined as the fibres of this projection restricted to the Gelfand—Zetlin polytope Pj.

We fix the values of all coordinates A/ ; with ¢’ # ¢. This determines a fibre of Py.
The fibre can be given in the coordinates y; = A; ; by the following inequalities:

Aic11 Aic1,2 Aic1,3 . Nie1 n—it1
Y Y2 Yn—i
Ait1,1 e Ait1n—i—1
Let /L; = max()\i_Lj, Ai+1,j—1) and l/;» = min()\i_Lj_,_l, Ai+17j)a where >‘i+1,0 = —00
(or a sufficiently large negative number) and A;11,-; = 400 (or a sufficiently

large positive number). Therefore, the fibre can be identified with the coordinate
parallelepiped TI(y’,v") C R"~%.

Let F' be any reduced Kogan face of Py. We define a fibre of the face F' as the
intersection of F' with a fibre of Py. It will be convenient to represent a fibre of F' by
the ith fibre diagram of F', that is, by the restriction of the face diagram of F' to
the union of rows ¢ — 1, ¢, and ¢« + 1. We note that the mitosis in the ith row
can be seen on the level of the fibre diagram —it does not affect other parts of
the face diagram. With the fibre diagram of each Kogan face we can associate
the paradiagram of a face of the parallelepiped II(y/, ') as follows. A fibre of each
Kogan face is a face of II(/, v/’), and we take the paradiagram of this face (note that
the length of this paradiagram, which is equal to the dimension of II(x/, '), may
be strictly less than n — 7). It is easy to check that the paradiagram of a reduced
Kogan face is also reduced, and that mirror mitosis on the level of fibre diagrams
coincides with the paramitosis on the associated paradiagrams.

For convenience of the reader we now recall the definition of a ladder move from
[2] in the language of reduced Kogan faces. Consider the rows ¢ — 1, 4, and i + 1
in the face diagram of F. We define a diagonal as a collection of 3 dots in rows
i —1, 7, and 7 + 1 that are aligned in the direction from northwest to southeast,
together with all the line segments joining pairs from these 3 dots and belonging to
the face diagram. Diagonals can be of four possible types: (0,0), (0,1), (1,0), and
(1,1). The first entry is 1 if the diagonal contains a segment connecting rows i — 1
and ¢, otherwise the first entry is 0. The second entry is 1 if the diagonal contains
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a segment connecting rows ¢ and ¢ + 1, otherwise the second entry is 0:

[ J [ ]
e —(0,0) -\j (0,1) \ = (1,0) — (1,1)
[ ] [ ]

We can now describe the correspondence between fiber diagrams and paradia-
grams in combinatorial terms as follows: diagonals of type (0,0), (0,1), (1,0) are
replaced by %, 1, 0, respectively, and diagonals of type (1, 1) are ignored (each such
diagonal decreases by one the dimension of the parallelepiped II(x’,v’), that is, the
length of the paradiagram). For instance, the first fiber diagram of the upper face
in Figure 3 yields the paradiagram .

Define a boz as any sequence of consecutive diagonals in a fibre diagram. In our
pictures a box will look like a parallelogram with angles 45° and 135°. By definition,
a ladder-movable bozr is a box whose first (left-most) diagonal is of type (0,0),
followed by any number of diagonals of type (1,1), and, finally, by a single diagonal
of type (1,0). Symbolically, we represent such a box as a sum (0,0)+k(1,1)+(1,0),
where k is the number of type-(1,1) diagonals. The ladder move in the paper [2]
makes this ladder-movable box into the box (0,1) + k(1,1)

LT

Note that ladder moves do not change the permutation associated with a face.
Moreover, they take reduced faces to reduced faces. Finally, note that, under the
correspondence between fibre diagrams and paradiagrams, the ladder moves are
exactly the L-moves of the previous subsection.

We are now ready to prove Key Lemma 5.8. Denote by I'” the set Uw(F):w F
and by IT” the union of all the faces that can be obtained from faces in I’ by mirror
mitosis in the ith row. These are the sets considered in Key Lemma 5.8, and to
prove the lemma we have to show that

Ty (x(I'")) = x(I").

Let IV and I’ denote fibres of T and II”, respectively, in the ith row, that is,
the pre-images of a point z € R?~("=%) under restriction of the map ¢; to I and
I1”, respectively.

Then Key Lemma 5.8 can be deduced from the next result.

Lemma 6.12. Let Ty be the operator associated with the coordinate parallelepiped
(', v') as in §6.1. If T and II' are identified with subsets of T(p', V'), then

Z o) — TH( Z t"(y)>~
yenlmzn—i yEF'ﬂZ"f’v’

Proof of Key Lemma 5.8 using Lemma 6.12. Note that ¢;(TI') is a single point
z € R4=("=9) (that is, all the coordinates in all the rows except for row i are fixed).
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For a point € IT', denote by y = (y1, ..., Yn—s) the coordinates of z in row i. Let
0j(z) = o;(z) (for j # i) be the sum of the coordinates in row j. By the definitions
of T; and T1y, the following identity holds for all € II" after substituting ¢ = e™:

T; e = [[ e @ T (t"™).
J#i

In Lemma 6.12 we replace ¢ by e“ and multiply both sides by the product

H e ()

J#i

To obtain Key Lemma 5.8, it now suffices to take the sum over all fibres IT’ of II”
in the ith row corresponding to the integer points z € R4=(»=%

Proof of Lemma 6.12. Lemma 6.12 will follow from Proposition 6.10 once we check
that I satisfies the conditions of the latter. We know that I is closed under
L-moves, since I is closed under ladder moves. We can split IV into a union
AyU---UA,UBjU---UB, of L-classes in which A; and B; have non-empty and
empty initial parabox, respectively. By Remark 6.11 it suffices to show for each
i €{1,...,r} that B; = M(A}) for some A, C (A; U---UA,). This follows from
the next lemma.

Lemma 6.13. Let F be a reduced Kogan face such that w(F) = w and the ith
fibre diagram of F' begins with 3¢ consecutive diagonals of type (1,1) followed by the
diagonal of type (0,0). If l(s;w) = l(w) —1, then there exists another reduced Kogan
face F' such that w(F') = w, the ith fibre diagram of F' begins with s consecutive
diagonals of type (1,1) followed by the diagonal of type (1,0), and F NII(y',v') is
contained in M(F' NII(y',v")).

Proof. We recall that the face diagram of F' defines a reduced decomposition w =
84, -+ 8, which by definition splits into two reduced words w; and wy as follows.
The word wy = s;, -+ - 8, is obtained by composing elementary transpositions cor-
responding to points on a path from the bottom row to the ith row inclusive, and
wy = S,,, -5 is obtained by going from the (i — 1)th row to the top row. In
particular, the word w; contains only s; with j > 4.

If 5 = 0, then w; contains only transpositions s; with j > ¢. In particular,
wi (i) = i and (i + 1,wy (i + 1)) is an inversion for w; except for the case when
wy(i+ 1) =i+ 1. Hence, the assumption that I(s;w) < I(w) (which is equivalent
to wt(i) > w~ (i + 1)) implies that I(s;wse) < I(ws). Indeed,

wH (i) = wy (i) > wy tw i+ 1) > wy i+ 1)

(the last inequality holds because the word w = wyws is reduced). If 3 > 0, then
wy can be further decomposed as W) $;118i12** * Sits8iSit1 " Sitr—1W], Where w}
contains only transpositions s; with j > ¢ and w{ contains only s; with j >
i + s. By similar arguments we deduce that [(s;4,w2) < l(wz2) (use the identity
8i(Sit18i42 ** SigseSiSit1  Sidre—1) = (Si418i42 " SitseSiSit1 " Sitse—1)Sits)-
By applying the exchange property to the word wy = s;,,, -+ s;, we can replace
it by a reduced word w) = SitsSiypy ~ Si, 8. We now replace F' by a reduced



718 V. A. Kiritchenko, E. Yu. Smirnov, and V. A. Timorin

face F’ with the same permutation and with non-empty initial parabox as follows.
In the face diagram of F' we delete the edge corresponding to s;. and add the
new edge A; .41 = Ai—1+1. The resulting face diagram defines the face F’. By
construction, M (F' NII(y/,v")) contains F NII(y/',v"). O

Let us now return to the proof of Lemma 6.12. We apply Lemma 6.13 to
a reduced Kogan face F € T whose paradiagram B lies in B; and begins with
the symbol *. We get a face F/ € I whose paradiagram A lies in A; U---U A,
and is such that M(A) = B. Hence, the L-equivalence class A} of A also lies in
Ay U---UA, and satisfies M (A}) = B;, as required. Lemma 6.12 is proved.
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