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In [4], we constructed generalized Newton polytopes for Schubert subvarieties in
the variety of complete flags in Cn. Every such “polytope” is a union of faces of a
Gelfand–Zetlin polytope (the latter is a well-known Newton–Okounkov body for
the flag variety). These unions of faces are responsible for Demazure characters of
Schubert varieties and were originally used for Schubert calculus.

The methods of [4] lead to an extension of Demazure (or divided difference)
operators from representation theory and topology to the setting of convex geom-
etry. Below I define divided difference operators acting on convex polytopes and
outline some applications such as a simple inductive construction of Gelfand-Zetlin
polytopes and their generalizations.

The definition is based on the following observation. Let Π(µ, ν) where µ,
ν ∈ Zm denote the integer coordinate parallelepiped {(x1, . . . , xm)|µi ≤ xi ≤ νi} ⊂
Rm, and let σ(x) for x ∈ Rm denote the sum of coordinates

∑m
i=1 xi. Given a

parallelepiped Γ = Π(µ, ν) ⊂ Rm of dimension m − 1 (assume that µm = νm)
and an integer C, there is a unique parallelepiped Π = Π(µ, ν′) ⊂ Rm such that
Γ = Π ∩ {xm = µm} (that is, ν′i = νi for i < m) and∑

x∈Π∩Zd

tσ(x) = DC(
∑

x∈Γ∩Zd

tσ(x)), (∗)

whereDC is a Demazure-type operator on the ring Z[t, t−1] of Laurent polynomials
in t:

DC(f) :=
f − tf∗

1− t
, f∗ := tCf(t−1).

Indeed, an easy calculation (using the formula for the sum of a geometric progres-
sion) shows that

∑m
i=1(µi + ν′i) = C which yields the value of ν′m. Note that Γ is

a facet of Π unless Π = Γ.
We now use this observation in a more general context. A root space of rank n

is a coordinate space Rd together with a direct sum decomposition

Rd = Rd1 ⊕ . . .⊕ Rdn

and a collection of linear functions l1, . . . , ln ∈ (Rd)∗ such that li vanishes on
Rdi . We always assume that the summands are coordinate subspaces so that Rd1

is spanned by the first d1 basis vectors etc.
Let P ⊂ Rd be a convex polytope in the root space. It is called a parapolytope

if for all i = 1,. . . , n, the intersection of P with any parallel translate of Rdi is a
coordinate parallelepiped. For instance, if d = n, that is, d1 = . . . = dn = 1, then
every polytope is a parapolytope. For each i = 1,. . . , n, we now define a divided
difference operator Ai on parapolytopes. In general, the operator Ai takes values
in convex chains in Rd (see [3] for a definition) but in many cases of interest (see
examples below) these convex chains will just be single convex parapolytopes.
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First, consider the case where P ⊂ (c + Rdi) for some c ∈ Rd, i.e. P =
P (µ, ν) is a coordinate parallelepiped. Here µ = (µ1, . . . , µd), ν = (ν1, . . . , νd).
Put Ni := d1 + . . . + di and N0 = 0. Assume that dim(P ) < di. Choose the
smallest j ∈ [Ni−1 + 1, Ni] such that µj = νj . Define Ai(P ) to be the coordinate
parallelepiped Π(µ, ν′), where ν′k = νk for all k ̸= j and ν′j is chosen so that

Ni∑
k=Ni−1+1

(µk + ν′k) = li(c), (∗∗)

that is, an analog of formula (∗) holds for Γ = P , Π = Ai(P ) and C = li(c). The
definition yields a non-virtual coordinate parallelepiped if li(c) is sufficiently large
and can be extended to other values of li(c) by linearity.

For an arbitrary parapolytope P ⊂ Rd define Ai(P ) as the union of Ai(P ∩ (c+
Rdi)) over all c ∈ Rd:

Ai(P ) =
∪

c∈Rd

{Ai(P ∩ (c+ Rdi))}

(assuming that dim(P ∩ (c + Rdi)) < di for all c ∈ Rd). In other words, we
first slice P by subspaces parallel to Rdi and then replace each slice with another
parallelepiped according to (∗∗). Note that P is a facet of Ai(P ) unless Ai(P ) = P .
It is easy to check that A2

i = Ai (the same identity as for the classical Demazure
operators).

Examples: (1) The simplest meaningful example is R2 = R ⊕ R = {(x, y)}
with the functions l1 = y and l2 = x. If P = (a, b) is a point, then A1(P ) and
A2(P ) are segments:

A1(P ) = [(a, b), (b− a, b)], A2(P ) = [(a, b), (a, a− b)],

assuming that 1
2b ≥ a ≥ 2b. If b < 2a, then A1(P ) is a virtual segment. If 2b > a,

then A2(P ) is virtual.
If P = [(a, b), (a′, b)] is a horizontal segment, then A2(P ) is the trapezoid (or a

skew trapezoid) with the vertices (a, b), (a′, b), (a, a− b), (a′, a′ − b).
(2) A more interesting example is R3 = R2 ⊕R = {(x, y, z)} with the functions

l1 = z and l2 = x+y. If P = [(a, b, c), (a′, b, c)] is a segment in R2, then A1(P ) is the
rectangle with the vertices (a, b, c), (a′, b, c), (a, c−a−a′−b, c), (a′, c−a−a′−b, c).
Using this calculation and those in (1), it is easy to show that if P = (b, c, c) is a
point and −b − c > b > c, then A1A2A1(P ) is the 3-dimensional Gelfand–Zetlin
polytope given by the inequalities a ≥ x ≥ b, b ≥ y ≥ c and x ≥ z ≥ y, where
a+ b+ c = 0.

(3) Generalizing the last example we now construct Gelfand–Zetlin polytopes

for arbitrary n via divided difference operators. For n ∈ N, put d = n(n−1)
2 .

Consider the root space Rd = Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ R1 of rank (n − 1) with the
functions li given by the formula: li(x) = σi−1(x) + σi+1(x). Here σi(x) denotes
the sum of those coordinates of x ∈ Rd that correspond to the subspace Rdi (put
σ0 = σn = 0).
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For every strictly dominant weight λ = (λ1, . . . , λn) (that is, λ1 > . . . > λn) of
GLn such that λ1 + . . .+ λn = 0, the Gelfand–Zetlin polytope Qλ coincides with
the polytope

[(A1 . . . An−1)(A1 . . . An−2) . . . (A1)] (p),

where p ∈ Rd is the point (λ2, . . . , λn;λ3, . . . , λn; . . . ;λn).
Similarly, divided difference operators for suitable root spaces allow one to con-

struct the classical Gelfand–Zetlin polytopes for symplectic and orthogonal groups.
They also yield an elementary description of more general string polytopes defined
in [5] and might help to extend the results of [4] to arbitrary semisimple groups.

As outlined below, these convex geometric operators are well suited for inductive
constructions of Newton–Okounkov polytopes for line bundles on Bott towers and
on Bott-Samelson varieties (for natural choice of a geometric valuation). The
former polytopes were described in [2] and the latter are currently being computed
by Dave Anderson.

Bott towers. Consider a root space with d = n, that is, d1 = . . . = dn = 1.
We have the decomposition

Rn = R⊕ . . .⊕ R︸ ︷︷ ︸
n

; y = (y1, . . . , yn)

into coordinate lines. Assume that the linear function li for i < n does not depend
on y1, . . . , yi, and ln = y1. I can show that the polytope P := A1 . . . An(p) (for a
point p ∈ Rn) coincides with the Newton–Okounkov body for a Bott tower (that
depends on l1, . . . , ln) together with a line bundle (that depends on p). For n = 2,
a Bott tower is a Hirzebruch surface and P is a trapezoid (or a skew trapezoid)
constructed similarly to the one in example (1). In general, a Bott tower is a toric
variety obtained by successive projectivizations of rank two split vector bundles,
and P is a multidimensional version of a trapezoid.

Bott–Samelson resolutions. Let X = R(i1, . . . , il) be the Bott-Samelson
variety corresponding to any sequence (αi1 , . . . , αil) of roots of the group GLn.
It can be obtained by successive projectivizations of rank two (usually non-split)
vector bundles. Consider the root space Rd = Rd1 ⊕ Rd2 ⊕ . . . ⊕ Rdn−1 with the
functions li given by the formula li(x) = σi−1(x)+σi+1(x), where di is the number
of times the root αi occurs in the sequence (αi1 , . . . , αil). Denote by Tv the parallel
translation in the root space by a vector v ∈ Rd. Consider the polytope

P =
[
Ai1Tv1Ai2 . . . Tvl−1

Ail

]
(p).

In his talk, Dave Anderson described an algorithm for computing the Newton–
Okounkov body of a line bundle on X with respect to the valuation given by the
flag of subvarieties {. . . ⊃ R(il−1, il) ⊃ R(il)}. Based on his computations for l = 3
[1], I conjecture that this Newton–Okounkov body coincides with P for suitable

choice of a point p ∈ Rd and vectors vj ∈ Rdij for j = 1, . . . , l − 1.
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