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In [4], we constructed generalized Newton polytopes for Schubert subvarieties in
the variety of complete flags in C". Every such “polytope” is a union of faces of a
Gelfand—Zetlin polytope (the latter is a well-known Newton—Okounkov body for
the flag variety). These unions of faces are responsible for Demazure characters of
Schubert varieties and were originally used for Schubert calculus.

The methods of [4] lead to an extension of Demazure (or divided difference)
operators from representation theory and topology to the setting of convex geom-
etry. Below I define divided difference operators acting on convex polytopes and
outline some applications such as a simple inductive construction of Gelfand-Zetlin
polytopes and their generalizations.

The definition is based on the following observation. Let II(u,v) where g,
v € Z™ denote the integer coordinate parallelepiped {(z1, ... ,zm)|p: < x; <y} C
R™, and let o(x) for x € R™ denote the sum of coordinates Y ., z;. Given a
parallelepiped I' = II(u,v) C R™ of dimension m — 1 (assume that p, = vp)
and an integer C, there is a unique parallelepiped IT = (g, ') C R™ such that
I'=TIN{xy = pm} (that is, v] = v; for i < m) and
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where D¢ is a Demazure-type operator on the ring Z[t, '] of Laurent polynomials
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Indeed, an easy calculation (using the formula for the sum of a geometric progres-
sion) shows that " | (u; + v}) = C which yields the value of v/,,. Note that I is
a facet of II unless II =T

We now use this observation in a more general context. A root space of rank n
is a coordinate space R? together with a direct sum decomposition

RI=R4 @... R

and a collection of linear functions Iy, ..., [, € (Rd)* such that [; vanishes on
R% . We always assume that the summands are coordinate subspaces so that R%
is spanned by the first d; basis vectors etc.

Let P C R? be a convex polytope in the root space. It is called a parapolytope
if for all i = 1,..., n, the intersection of P with any parallel translate of R% is a
coordinate parallelepiped. For instance, if d = n, that is, dy = ... =d, = 1, then
every polytope is a parapolytope. For each i = 1,..., n, we now define a divided
difference operator A; on parapolytopes. In general, the operator A; takes values
in conver chains in R? (see [3] for a definition) but in many cases of interest (see
examples below) these convex chains will just be single convex parapolytopes.
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First, consider the case where P C (¢ + R%) for some ¢ € RY, ie. P =
P(u,v) is a coordinate parallelepiped. Here p = (p1,...,pa), ¥ = (V1,...,04).
Put N; :=d; + ... +d; and Ng = 0. Assume that dim(P) < d;. Choose the
smallest j € [N;—1 + 1, N;] such that p; = v;. Define A;(P) to be the coordinate
parallelepiped I1(x,v"), where v}, = vy, for all k # j and v} is chosen so that

N;

S (u ) = lie), (+4)

k=N;_1+1

that is, an analog of formula (%) holds for I' = P, Il = A;(P) and C = [;(c). The
definition yields a non-virtual coordinate parallelepiped if ;(c) is sufficiently large
and can be extended to other values of [;(c) by linearity.

For an arbitrary parapolytope P C R define A;(P) as the union of A;(PN(c+
R%)) over all ¢ € R%:

Ai(P) = [J{Ai(P N (c+R™))}

ceR4

(assuming that dim(P N (¢ + R%)) < d; for all ¢ € R%). In other words, we
first slice P by subspaces parallel to R% and then replace each slice with another
parallelepiped according to (xx). Note that P is a facet of A;(P) unless A;(P) = P.
It is easy to check that A? = A; (the same identity as for the classical Demazure
operators).

Examples: (1) The simplest meaningful example is R? = R@® R = {(z,%)}
with the functions l; = y and ly = z. If P = (a,b) is a point, then A;(P) and
As(P) are segments:

Ai(P) = [(a,b), (b= a,b)].  As(P) = [(a,b), (a,a — )],

assuming that %b >a>2b. If b < 2a, then A;(P) is a virtual segment. If 2b > a,
then Ay (P) is virtual.

If P =[(a,b),(a’,b)] is a horizontal segment, then As(P) is the trapezoid (or a
skew trapezoid) with the vertices (a,b), (a’,b), (a,a —b), (a’,a’ — b).

(2) A more interesting example is R? = R2 @R = {(x,y, z)} with the functions
l1 = zand Iy = x+y. If P = [(a, b, ¢), (a’,b,c)] is a segment in R?, then A;(P) is the
rectangle with the vertices (a, b, ¢), (a’,b,¢), (a,c—a—a’—b,c), (a’,c—a—a'—b,¢).
Using this calculation and those in (1), it is easy to show that if P = (b,¢,c) is a
point and —b — ¢ > b > ¢, then A;A2A,(P) is the 3-dimensional Gelfand—Zetlin
polytope given by the inequalities a > x > b, b > y > c and x > z > y, where
a+b+c=0.

(3) Generalizing the last example we now construct Gelfand—Zetlin polytopes
for arbitrary n via divided difference operators. For n € N, put d = w
Consider the root space R? = R* 1 @ R* 2@ ... R! of rank (n — 1) with the
functions I; given by the formula: [;(x) = 0y-1(x) + 0;4+1(z). Here o;(z) denotes
the sum of those coordinates of € R? that correspond to the subspace R% (put
o9 =op, =0).



For every strictly dominant weight A = (A1,...,\,) (that is, Ay > ... > A,) of
GL, such that \; + ...+ A\, = 0, the Gelfand—Zetlin polytope @ coincides with
the polytope

[(Al cee Anfl)(Al RN An72) e (Al)] (p),
where p € R? is the point (Az, ..., Au; A3, Aniee e An)-

Similarly, divided difference operators for suitable root spaces allow one to con-
struct the classical Gelfand—Zetlin polytopes for symplectic and orthogonal groups.
They also yield an elementary description of more general string polytopes defined
in [5] and might help to extend the results of [4] to arbitrary semisimple groups.

As outlined below, these convex geometric operators are well suited for inductive
constructions of Newton—Okounkov polytopes for line bundles on Bott towers and
on Bott-Samelson varieties (for natural choice of a geometric valuation). The
former polytopes were described in [2] and the latter are currently being computed
by Dave Anderson.

Bott towers. Consider a root space with d = n, that is, dy = ... =d,, = 1.
We have the decomposition

R"=R®...0R; y=(y1,---,Yn)

n

into coordinate lines. Assume that the linear function /; for i < n does not depend
on yq, ..., ¥, and I, = y1. I can show that the polytope P := A; ... A, (p) (for a
point p € R™) coincides with the Newton-Okounkov body for a Bott tower (that
depends on Iy, ..., l,,) together with a line bundle (that depends on p). For n = 2,
a Bott tower is a Hirzebruch surface and P is a trapezoid (or a skew trapezoid)
constructed similarly to the one in example (1). In general, a Bott tower is a toric
variety obtained by successive projectivizations of rank two split vector bundles,
and P is a multidimensional version of a trapezoid.

Bott—Samelson resolutions. Let X = R(iy,...,4) be the Bott-Samelson
variety corresponding to any sequence (v, ,...,q; ) of roots of the group GL,.
It can be obtained by successive projectivizations of rank two (usually non-split)
vector bundles. Consider the root space R? = R™ @ R% @ ... & R%* 1 with the
functions I; given by the formula l;(z) = 0;_1(2) 4+ 041 (x), where d; is the number
of times the root «; occurs in the sequence (o, , - .., ;). Denote by T), the parallel
translation in the root space by a vector v € R?. Consider the polytope

P = [AilTleiQ PN Tvl,lAiJ (p)

In his talk, Dave Anderson described an algorithm for computing the Newton—
Okounkov body of a line bundle on X with respect to the valuation given by the
flag of subvarieties {... D R(i;—1,4;) D R(i;)}. Based on his computations for [ = 3
[1], T conjecture that this Newton—Okounkov body coincides with P for suitable
choice of a point p € R? and vectors v; € R% for j=1,...,1 -1
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