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1. Introduction

An important feature of toric geometry is the interplay between a
polarized projective toric variety and its convex polytope. For instance,
the Hilbert polynomial can be computed by counting integer points in
the dilations of the polytope. In a recent preprint [KST], we explore
the interplay between algebraic and convex geometry in a non-toric
case, namely, for Schubert varieties in a complete flag variety.

With a projective embedding of the flag variety, one can naturally as-
sociate a convex polytope, called the Gelfand–Zetlin polytope. In [Ko],
Kogan assigned a collection of faces of the Gelfand–Zetlin polytope to
each Schubert variety. Our main result is a formula for the Demazure
character of a Schubert variety in terms of the exponential sums over
the integer points in the union of these faces (Theorem 3.1). As a corol-
lary, we get a formula for the Hilbert functions of Schubert varieties via
the number of integer points (Corollary 3.2). This in turn implies a for-
mula for the degrees of Schubert varieties via volumes (Corollary 3.3)
similar to the Koushnirenko theorem in toric geometry. These results
provide a generalization of [PS, Corollary 15.2] from Kempf varieties
to all Schubert varieties.

Denote by X the variety of complete flags in Cn, and by Xw the
Schubert variety corresponding to a permutation w ∈ Sn as in Section
2 (the codimension of Xw is equal to the length l(w) of w). For every
strictly dominant weight λ, denote by Vλ the highest weight irreducible
GLn-module with the highest weight λ. Recall that the Gelfand–Zetlin
polytope Pλ is a convex integer polytope in Rd, where d = n(n− 1)/2,
with the property that the integer points inside and at the boundary
of Pλ parameterize a natural basis (Gelfand–Zetlin basis) in Vλ (see
Section 2 for a precise definition of Pλ). In particular, with each integer
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point z ∈ Pλ we can associate its weight p(z) in the character lattice
of GLn.

Denote by B− ⊂ GLn(C) the subgroup of lower-triangular matrices.
Consider the projective embedding Xw ⊂ X ↪→ P(Vλ). Denote by
χw(λ) the Demazure character of the B−-module V −

λ,w := H0(Xw,Lλ)
∗

where Lλ is the restriction to Xw ⊂ P(Vλ) of the tautological line
bundle on P(Vλ). For every λ and w, we prove that

χw(λ) =
∑

z∈Aλ,w∩Zd

ep(z), (1)

where Aλ,w :=
⋃

w(Fλ)=w Fλ is the union of all rc-faces, or reduced Kogan

faces Fλ (see Section 2) of Pλ with permutation w.
In the case w = e, that is, Xw = X and V −

λ,w = Vλ, formula (1) follows
directly from the property of the Gelfand–Zetlin polytope mentioned
above. For other w, it is usually not true that a subset of the Gelfand–
Zetlin basis (in particular, the subset given by the integer points in
Aλ,w) gives a basis in the Demazure module V −

λ,w. Our proof of formula
(1) uses the Demazure character formula and elementary arguments
involving combinatorics and geometry of the Gelfand–Zetlin polytope.
In particular, we use a combinatorial procedure for dealing with divided
difference operators (called mitosis) introduced in [KnM]. Our proof
yields a geometric realization of mitosis [KST, Remark 6.7]. As a
byproduct, we construct a realization of a simplex as a cubic complex
different from those previously known [KST, Proposition 6.6].

2. Definitions

Denote by G the group GLn(C). The Weyl group of G is identified
with the symmetric group Sn: a permutation w ∈ Sn corresponds to
the element of G acting on the standard basis vectors ei by the formula
ei 7→ ew(i). For each w ∈ Sn, we define the Schubert variety Xw to be
the closure of the B−–orbit of w in the flag variety X = G/B. It is
easy to check that the length l(w) of w is equal to the codimension of
Xw in X.

Let V −
λ,w be the Demazure B−–module defined as the dual space

to the space of global sections H0(Xw,Lλ|Xw), where Lλ is the very
ample line bundle on X corresponding to a strictly dominant weight
λ. Note that by the Borel–Weil–Bott theorem V −

λ,e is isomorphic to the
irreducible representation Vλ of G with the highest weight λ. Choose
a basis of weight vectors in V −

λ,w. Recall that the Demazure character

χw(λ) of V −
λ,w is the sum over all weight vectors in the basis of the

exponentials of the corresponding weights, or, equivalently,

χw(λ) :=
∑
µ∈Λ

mλ,w(µ)eµ,
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Figure 1. A Gelfand–Zetlin polytope for GL3

where Λ is the weight lattice of GLn and mλ,w(µ) is the multiplicity of
the weight µ in V −

λ,w.
Let λ = (λ1, . . . , λn) ∈ Zn be a strictly dominant weight of the

group GLn(C), i.e. an n-tuple of integers λi such that λi < λi+1 for all
i = 1, . . . , n − 1. The Gelfand–Zetlin polytope Pλ is a convex integer
polytope in Rd, where d = n(n− 1)/2, defined by inequalities

λ1 λ2 λ3 . . . λn

λ1,1 λ1,2 . . . λ1,n−1

λ2,1 . . . λ2,n−2

. . . . . .
λn−2,1 λn−2,2

λn−1,1

(GZ)

where (λ1,1, . . . , λ1,n−1; λ2,1, . . . , λ2,n−2; . . . ; λn−2,1, λn−2,2; λn−1,1) are co-
ordinates in Rd, and the notation

a b
c

means a ≤ c ≤ b. See Figure 1 for a picture of the Gelfand–Zetlin
polytope for G = GL3.

It will be convenient to represent faces of P by face diagrams. First,
replace all λj and λi,j in table (GZ) by dots. Every face of P is given by
a system of equations of the form a = b, where a and b are coordinates
represented by adjacent dots in two consecutive rows. To represent
such an equation, we draw a line interval connecting the correspond-
ing dots (these line intervals go from northeast to southwest or from
northwest to southeast). Thus a system of equations defining a face
of P gets represented by a collection of line intervals called the face
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diagram. Rows of a face diagram are defined as the collections of dots
corresponding to the coordinates λi,j with a fixed i, and columns are by
definition collections of dots with a fixed j (columns look like diagonals
in our pictures).

In what follows, we will consider faces of the Gelfand–Zetlin polytope
given by the equations of the type λi,j = λi+1,j. We will call such faces
Kogan faces. To each Kogan face F , we assign the permutation w(F )
as follows. First, assign to each equation λi,j = λi+1,j the elementary
transposition si+j = (i + j, i + j + 1). Now compose all elementary
transpositions corresponding to the equations defining F by going from
left to right in each row of the diagram for F and by going from the
bottom row to the top one. We say that a Kogan face F is reduced if the
decomposition for w(F ) obtained this way is reduced. Reduced Kogan
faces of the Gelfand–Zetlin polytopes are in bijective correspondence
with reduced pipe-dreams (see [Ko, 2.2.1] for more details).

Reduced Kogan faces for n = 3 (see Figure 1) are the vertex v, the
edges E1 and E2, the front faces F1, F2, the back face Γ and Pλ itself.
The corresponding permutations are s2s1s2, s2s1, s1s2, s2, s2, s1, id,
respectively. Note that the faces F1 and F2 have the same permutation.

For each λ = (λ1, . . . , λn), consider the affine hyperplane Rn−1 ⊂ Rn

with coordinates y1, . . . , yn given by the equation y1+ . . .+yn+u0 = 0,
where u0 = λ1 + · · · + λn. Choose coordinates u1, . . . , un−1 in Rn−1

such that yi = ui − ui−1 for i = 1, . . . , n − 1. Consider the following
linear map p : Rd → Rn−1 from the space Rd with coordinates λi,j to
the hyperplane Rn−1 ⊂ Rn:

ui =
n−i∑
j=1

λi,j.

In other terms, if we arrange the coordinates λi,j into a triangular table
as in (GZ), then ui is the sum of all elements in the i-th row. In what
follows, we identify Rn with the real span of the weight lattice Λ of G
so that the i-th basis vector in Rn corresponds to the weight given by
the i-th entry of the diagonal torus in G. Then the hyperplane Rn−1 is
the parallel translate of the hyperplane spanned by the roots of G. It is
easy to check that the image of the Gelfand–Zetlin polytope Pλ ⊂ Rd

under the map p is the weight polytope of the representation Vλ.
Let S be a subset of the Gelfand–Zetlin polytope Pλ (in what follows

S will be a face or a union of faces). Define the character χS of S as
the sum of formal exponentials ep(z) over all integer points z ∈ S, that
is,

χ(S) :=
∑

z∈S∩Zd

ep(z).

The formal exponentials eu, u ∈ Zn, generate the group algebra of Λ.
Thus the character takes values in this group algebra.
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3. Results

The main result of this section establishes a relation between the
Demazure character of a Schubert variety and the character of the
union of the corresponding faces.

Theorem 3.1. For each permutation w ∈ Sn, the Demazure character
χw(λ) is equal to the character of the union of all Kogan faces in the
Gelfand–Zetlin polytope Pλ, whose permutation is w:

χw(λ) = χ


 ⋃

w(Fλ)=w

Fλ


 .

If w is a 132–avoiding, or Kempf, permutation (such permutations
are also called dominant), then Theorem 3.1 reduces to [PS, Corollary
15.2]. Note that by [Ko, Proposition 2.3.2] a permutation w is Kempf if
and only if there is a unique reduced Kogan face F such that w(F ) = w,
and this is exactly the face considered in [PS]. Hence, χw(λ) = χ(F )
in this case.

Let us now obtain several corollaries from this theorem. Firstly, we
can easily describe the Hilbert function of the Schubert variety Xw

embedded into P(H0(Xw,Lλ|Xw)∗) ⊂ P(Vλ).

Corollary 3.2. The dimension of the space H0(Xw,Lλ|Xw) is equal
to the number of integer points in the union of all reduced Kogan faces
with permutation w:

dim H0(Xw,Lλ|Xw) =

∣∣∣∣∣∣
⋃

w(F )=w

Fλ ∩ Zd

∣∣∣∣∣∣
.

In particular, the Hilbert function Hw,λ(k) := dim H0(Xw,L⊗k
λ |Xw) is

equal to the Ehrhart polynomial of
⋃

w(Fλ)=w Fλ, that is,

Hw,λ(k) =

∣∣∣∣∣∣
⋃

w(Fλ)=w

kFλ ∩ Zd

∣∣∣∣∣∣
(2)

for all positive integers k.

Secondly, we can compute the degree degλ(X
w) of the Schubert vari-

ety Xw in the embedding Xw ↪→ P(Vλ). Denote by RF ⊂ Rd the affine
span of a face F . In the formulas displayed below, the volume form on
RF is normalized so that the covolume of the lattice Zd ∩ RF in RF
is equal to 1. Then

Corollary 3.3. We have

degλ(X
w) = (d− l(w))!

∑

w(Fλ)=w

Volume(Fλ) (3)
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Corollary 3.3 follows immediately from Corollary 3.2 by a standard
argument from the theory of Newton polytopes [Kh], that is, by com-
paring the higher order terms in both sides of (2). Hence, (3) can
be viewed as an asymptotic version of more precise identity (2). Note
that in the general theory of Newton polytopes and Newton–Okounkov
bodies developed recently by Kaveh and Khovanskii [KK] only asymp-
totic identities hold in most cases. So it is interesting that for Schubert
varieties and corresponding unions of faces, we have an exact identity.
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