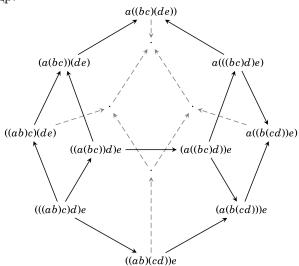
Числа Каталана и их родственники


- \triangleright Число Каталана это количество путей Дика из точки (0,0) в точку (n,n).
 - **Задача 4.1.** Пусть c(n,m) количество способов расставить числа от 1 до n+m в клетках диаграммы Юнга из двух строк, длины n и m ($n \ge m$), так чтобы в каждой строке и каждом столбце числа возрастали.
 - а) Найдите рекурренту и явную формулу для чисел c(n, m).
 - б) Докажите, что c(n, n) есть n-е число Каталана.

1	2	3	1	2	4	1	3	4	1	2	5	1	3	5
4	5	6	3	5	6	2	5	6	3	4	6	2	4	6

Задача 4.2. а) Докажите, что количество способов соединить 2n точек на горизонтальной прямой непересекающимися дугами в верхней полуплоскости есть n-е число Каталана.

- б) Найдите производящую функцию для способов соединить некоторые из n точек на горизонтальной прямой непересекающимися дугами в верхней полуплоскости.
- **Задача 4.3.** Пусть f(n,k) количество наборов из (n-1-k) непересекающихся диагоналей в выпуклом (n+2)-угольнике (в т. ч. f(n,0) есть n-е число Каталана).
- а) Найдите производящую функцию для $s_n := \sum_k f(n,k)$, количеств всех разбиений (n+2)-угольника на многоугольники непересекающимися диагоналями.
- б) Придумайте комбинаторную интерпретацию для чисел s_n в терминах деревьев.
- в) Докажите, что $\sum_{k} (-1)^{k} f(n,k) = 1$.
- **Задача 4.4*.** Постройте выпуклый (n-1)-мерный многогранник («ассоциаэдр»), количество k-мерных граней в котором есть f(n,k) (после этого предыдущее равенство мгновенно получается из формулы Эйлера!).
- Ассоциаэдр как комбинаторный объект возник в работах Сташефа по топологии. Разные реализации ассоциаэдра как выпуклого многогранника нашли Милнор, Хайман, Гельфанд, Зелевинский, Лодей и др.

