- **Задача 6.1.** Пусть $\Phi(n)$ количество правильных несократимых дробей со знаменателем не больше n. Докажите, что $\Phi(n) = \frac{1}{2} \sum \mu(d) \lfloor n/d \rfloor \lfloor 1 + n/d \rfloor$.
- ightharpoonup Напомним, что производящая функция Дирихле последовательности a_n это функция $s\mapsto \sum a_n n^{-s}.$

Задача 6.2. Найдите (выразите через дзета-функцию Римана) производящую функцию Дирихле последовательности

- а) \sqrt{n} ; б) $\mu(n)$; в) $\phi(n)$; г) $\sigma_0(n)$; д) [n нечетно]; е) [n своб. от квадратов]. $(\sigma_0$ количество делителей; квадратные скобки индикаторная функция.)
- **Задача 6.3.** а) Многограниик в \mathbb{R}^m задан неравенствами $0 \leqslant x_1 \leqslant x_2 \leqslant \ldots \leqslant x_m \leqslant 1$. Найдите его объем.
- б) Многогранник $\Pi_{2n} \subset \mathbb{R}^{2n}_{\geqslant 0}$ задан неравенствами

$$\phi_1 + \phi_2 \leqslant \pi/2;$$

$$\phi_2 + \phi_3 \leqslant \pi/2;$$

$$\dots$$

$$\phi_{2n} + \phi_1 \leqslant \pi/2.$$

Выразите его объем через число зигзагообразных перестановок из задачи 5.4.

Задача 6.4. а) Докажите, что

$$Vol(\Pi_{2n}) = \int_{[0,1]^{2n}} \frac{dx_1 \dots dx_{2n}}{1 - x_1^2 x_2^2 \dots x_{2n}^2} = 1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \dots$$

(указание: $x_1 = \sin \phi_1 / \cos \phi_2$, $x_2 = \sin \phi_2 / \cos \phi_3$, . . . — ср. с заменой $x = \sin \phi / \cos \phi$, вычисляющей интеграл функции $(1 + x^2)^{-1}$).

б) Выведите из предыдущего пункта, что $\zeta(2n)$ — рациональное кратное π^{2n} .