Топология-3, семинар 10, 14.04.2017.

- **Задача 1.** (а) Если η нечетномерно, то $2e(\eta) = 0$. (б) $e(\eta_1 \oplus \eta_2) = e(\eta_1) \smile e(\eta_2)$. (в) Пусть $2e(\eta) \neq 0$. Тогда η не может быть представлено в виде прямой суммы двух векторных расслоений, одно из которых нечетномерно.
- **Задача 2.** При каких n на сфере S^n существует нигде не нулевое векторное поле?
- Задача 3. (а) Пусть η ориентированное n-мерное вещественное расслоение. Тогда $(\eta_{\mathbb{C}})_{\mathbb{R}} \cong \eta \oplus \eta$ при изоморфизме, который либо сохраняет, либо меняет ориентацию в зависимости от четности числа n(n-1)/2. (б) Для всякого 2k-мерного ориентированного вещественного расслоения η выполнено $p_k(\eta) = e(\eta)^2$.
- Задача 4. Докажите, что \mathbb{Z}_2 -аналог класса Эйлера (определенный также и для неориентируемых расслоений) совпадает с $w_m(\eta)$ старшим классом Штифеля–Уитни, где m ранг расслоения η .
- **Задача 5.** Пусть η комплексное расслоение размерности n, и $\eta_{\mathbb{R}}$ его овеществление. Тогда $c_n(\eta) = e(\eta_{\mathbb{R}})$.
- **Задача 6.** Точная последовательность Гизина. Пусть $\xi \colon E \to B$ ориентируемое n-мерное векторное расслоение. Докажите существование точной последовательности

$$\cdots \to H^{i}(B) \stackrel{\smile e(\xi)}{\to} H^{i+n}(B) \to H^{i+n}(E \backslash B) \to H^{i+1}(B) \to \cdots,$$

используя точную последовательность когомологий пары $(E, E \backslash B)$ и изоморфизм Тома.

- **Задача 7.** Пусть $i: M^m \hookrightarrow N^{m+k}$ вложение гладкого ориентируемого подмногообразия в ориентируемое многообразие. Докажите, что $e(\nu_{M\subset N}) \in H^k(M;\mathbb{Z})$ совпадает с ограничением на M класса из $H^k(N;\mathbb{Z})$, Пуанкаре двойственного к $[M] \in H_m(N;\mathbb{Z})$.
- **Задача 8.** Пусть M замкнутое гладкое ориентированное многообразие, а $\eta \colon E \to M$ ориентированное расслоение ранга k. Тогда $e(\eta) \in H^k(M; \mathbb{Z})$ это класс, Пуанкаре двойственный к трансверсальному пересечению нулевого сечения $M \hookrightarrow E$ с собой.
- **Задача 9.** Пусть M гладкое замкнутое ориентируемое многообразие и $\Delta \colon M \to M \times M$ диагональное вложение. Тогда $\nu_{\Delta(M) \subset M \times M} \cong TM$.
- **Задача 10.*** Докажите, что все классы Штифеля–Уитни замкнутого ориентируемого трехмерного многообразия равны 0.