Топология-3, семинар 1, 10.02.2017.

- **Задача 1.** Вычислить гомологии и когомологии k-мерного остова n-мерного симплекса, где $0 < k \le n$. Тот же вопрос для k-мерного остова n-мерного куба.
- **Задача 2.** Пусть X, Y CW-комплексы. Докажите, что существует естественная гомотопическая эквивалентность $\Sigma(X \times Y) \simeq \Sigma X \vee \Sigma Y \vee X * Y$. Если R поле, то

$$\widetilde{H}_n(X * Y; R) \cong \bigoplus_{i+j=n-1} \widetilde{H}_i(X; R) \otimes \widetilde{H}_j(Y; R).$$

- **Задача 3.** Пусть X,Y связные CW-комплексы с отмеченными точками. Докажите, что $H^i(X\vee Y)\cong H^i(X)\oplus H^i(Y)$ при $i\geqslant 1$, а произведение когомологических классов $\phi\in H^i(X)\subset H^i(X\vee Y)$ и $\psi\in H^j(Y)\subset H^j(X\vee Y)$ равно нулю при $i,j\geqslant 1$.
- **Задача 4.** Описать кольцо когомологий поверхности M_g (сферы с g ручками). Указание: построить отображение из M_g в букет g копий двумерного тора.
- **Задача 5.** Пусть $x \in X$. Группа $H_i(X, X \setminus x; R)$ называется группой i-х локальных гомологий пространства X в точке x.
- (a) Докажите, что группы локальных гомологий являются локальным инвариантом, то есть зависят лишь от сколь угодно малой окрестности точки $x \in X$.
- (б) Вычислите группы локальных гомологий пространства \mathbb{R}^n в произвольной точке.
 - (в) Вычислите группы локальных гомологий конечного графа в каждой его точке.
- **Задача 6.*** Пусть X стягиваемый n-мерный симплициальный комплекс с m вершинами. Каково максимальное возможное число n-мерных симплексов у такого симплициального комплекса?
- **Задача 7.** Описать ориентирующие накрытия бутылки Клейна и $\mathbb{R}P^n$ при $n\geqslant 1$.
- **Задача 8.** Если X некомпактное связное многообразие размерности n, то $H_j(X)=0$ при всех $j\geqslant n$.
- Задача 9. Пусть K триангуляция топологического (или гомологического) многообразия, $\dim K = n$, и пусть J симплекс размерности k. Для каждого максимального симплекса I, содержащего J, рассмотрим его грань, противоположную J (т.е. грань, вершины которой не содержатся в J). Обозначим эту грань символом $I \backslash J$. Объединение симплексов $I \backslash J$ по всем I, содержащим J, называется линком симплекса J. Докажите, что (1) Линк является размерностно однородным пространством размерности n $\dim J$ 1.
 - (2) Линк имеет гомологии как у сферы размерности $n \dim J 1$.
 - (3) Линк симплекса размерности n-2 гомеоморфен окружности.
 - (4) Линк является гомологическим многообразием.
- **Задача 10.** Докажите, что связное триангулированное гомологическое многообразие сильно связно (от любого максимального симплекса до любого другого можно добраться переступая через грани коразмерности 1).