
Lecture 6

HOMOTOPY

The notions of homotopy and homotopy equivalence are quite fundamental in topology.
Homotopy equivalence of topological spaces is a weaker equivalence relation than homeomorphism,
and homotopy theory studies topological spaces up to this relation (and maps up to
homotopy). This theory constitutes the main body of algebraic topology, but we only
consider a few of its basic notions here. One of these notions is the Euler characteristic,
which is also a homotopy invariant.

6.1. Homotopic Maps

Two maps f , g : X → Y are called homotopic (notation f ' g) if they can be joined by a
homotopy, i.e., by a map F : X × [0, 1]→ Y such that F (x, 0) ≡ f(x) and F (x, 1) ≡ g(x)
(here ≡ means for all x ∈ X). If we change the notation from F (x, t) to Ft(x), we
can restate the previous definition by saying that there exists a family {Ft(x)} of maps,
parametrized by t ∈ [0, 1], continiously changing from f ≡ F0 to g ≡ F1.

It is easy to prove that
f ' f for any f : X → Y (reflexivity);
f ' g =⇒ f ' g for all f , g : X → Y (symmetry);
f ' g and g ' h =⇒ f ' h for all f , g, h : X → Y (transitivity).

For example, to prove transitivity, we obtain a homotopy joining f and h by setting

F (x, t) =

{
F1(x, 2t) for 0 ≤ t ≤ 1/2,

F2(x, 2t− 1) for 1/2 ≤ t ≤ 1,

where F1, F2 are homotopies joining f and g, g and h, respectively.
Thus the homotopy of maps is an equivalence relation, so that the set Map(X, Y ) of all

(continuous) maps of X to Y splits into equivalence classes, called homotopy classes ; the
set of these equivalence classes is denoted [X, Y ].

6.2. Homotopy Equivalence of Spaces

Two spaces X and Y are called homotopy equivalent if there exist two maps f : X → Y ,
g : Y → X (called homotopy equivalences) such that f ◦ g ' idY and g ◦ f ' idX .

Obviously, homeomorphic spaces are homotopy equivalent (the homotopy equivalences
are provided by any homeomorphism and its inverse). The converse statement is not true:
for example, the point is homotopy equivalent to the 2-disk, but these two spaces are not
homeomorphic.

Thus homotopy equivalence is a weaker equivalence relation than homeomorphism,
so that homotopy classification is rougher (and hence easier – there are less classes)
than topological classification. Its importance in topology is due to the fact that most
topological invariants are homotopy invariants (this is the case of the so-called fundamental
group, homology groups and related invariants such as the Euler characteristic).
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6.3. Degree of Maps of S1 into Itself

In this section we consider (continuous) maps f : S1 → S1 of the circle into itself.
Examples are the maps wk : S1 → S1 given by the rule eiϕ 7→ eikϕ, where S1 is modeled
by unimodular complex numbers: S1 = {z ∈ C: |z| = 1}.

Theorem 6.1. There is a natural bijection between homotopy classes of maps of the
circle into itself and the integers:

[S1,S1] ←→ Z.

Proof. Consider the map exp: R→ S1 given by the rule R 3 ϕ 7→ eiϕ ∈ S1. The map exp
is not a bijection; for example, it takes all points of the form 2kπ to 1 ∈ S1 (see Fig. 61 (a)).
However, exp is a local homeomorphism, i.e., any point has a neighborhood U (e.g. any
open interval of length less than 2π containing the point) such that the restriction exp |U
of exp to U is a homeomorphism.

Now any map S1 → S1 can be regarded as a map f : [0, 1] → S1 such that f(0) =

f(1) = 1 ∈ S1. For any such map there exists a unique map f̃ : [0, 1]→ S, called the lift of
f , such that exp ◦f̃ = f . Indeed, subdivide [0, 1] into segments [0, a1], [a1, a2], . . . , [am, 1],
so small that none of the images of these segments covers S1; then, using the fact that
exp is homeomorphic on each segment, we successively extend the map taking the point
0 ∈ [0, 1] to the point 0 ∈ R to a map f̃ of the whole interval [0, 1] to R. (Look at Figure
6.1(a).) We now define the required bijection by setting:

[S1,S1] 3 [f ] 3 f 7→ f̃(1)/2π ∈ Z.

To prove that this assignment is well defined (i.e., does not depend on the choice of f
in [f ]) and is bijective, it suffices to prove that any map f ∈ [f ] is homotopic to some wk.

Figure 6.1. Liftings of the exponential map
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Let f ∈ [f ] ∈ [S1,S1] be an arbitrary map, regarded as a map from [0, 1] to S1 such that
f(0) = f(1) = 1 ∈ S1. Then the lift f̃ is a (continuous) function defined on [0, 1] with
values in R such that f̃(0) = 0 ∈ R. Let f̃(1) = 2kπ. The graph of f̃ is shown on Figure
6.1 (b). The graph of wk is a straight line joining the points (0, 0) and (1, 2kπ). There is
an obvious homotopy (shown in Fig. 18 (b)) joining wk and f̃ ; denote it by G(x, t). Then
F (x, t) := exp(G(x, t)) is the required homotopy between f and wk.

The theorem is proved.
We can now define the degree of any circle map f : S1 → S1 by setting

deg(f) := f̃(1)/2π.

The geometric meaning of the degree of a map f : S1 → S1 is “the number of times that
the preimage circle wraps around the image circle. Thus the constant map S1 → 1 ∈ S1 has
degree 0 (the preimage circle wraps around the image circle zero times), the identity map
has degree 1 (the preimage circle wraps around the image circle exactly once), the map
w17 has degree 17 (the preimage circle wraps around the image circle seventeen times).

Corollary 6.2 The identity map of the circle is not homotopic to the constant map
S1 → 1 ∈ S1.

Remark. The notion of degree of a map can be generalized from maps of the circle to
maps of the sphere Sn for any n, and even to arbitrary n-dimensional oriented manifolds.
Although the definition is not difficult, it is hard to prove in the general case (i.e., for
any n ∈ Z) that the degree is well defined and depends only on the homotopy type of the
map. To do that properly, you need homology theory, which lies outside the scope of this
course.

6.4. A Fixed Point Theorem

The theorem proved in the previous section has numerous important corollaries, several
of which be discussed in subsequent lectures. Here we only give one illustration, namely
famous the Brouwer Fixed Point Theorem (for n = 2). Other more general fixed point
theorems lie at the basis of fundamental existence theorems in differential equations and
their applications to engineering and especially economics (the so-called Nash equilibrium),
but they require homology theory for their proofs.

6.3. Brouwer Fixed Point Theorem. Any continuous map of the (closed) disk has
a fixed point, i.e., if f : D2 → D2 is continuous, then there exists a point x ∈ D2 such that
f(x) = x.

For the proof, we will need a definition and a lemma. If A is a subspace of a topological
space X, a continuous map r : X → A is said to be a retraction if r restricted to A is the
identity. If a retraction r : X → A exists, then the subspace A is called a retract of X.

Lemma. There is no retraction of the 2-disk on its boundary circle.
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Proof of the lemma. Suppose that there exists a retraction r : D2 → ∂D1 of the 2-disk
D2 on its boundary circle S1 = ∂D2. Consider the family Ft(x) of maps Ft : S1 → S1 given
by the formula Ft(eiφ) = r(teiφ). The map F0 is the constant map S1 → r(O) and the map
F1 (which is homotopic to F0) is the identity map of the circle. This contradicts Corollary
6.2.

Figure 6.2. A retraction that does not exist

Proof of the theorem. To show that the Fixed Point Theorem follows from the lemma,
assume that the theorem is false. For any x ∈ D2, we have f(x) 6= x, and so the inter-
section point r(x) of the ray [f(x), x) with the boundary circle is well defined (look at
Figure 6.2)

’
and obviously the map x 7→ r(x) is a (continuous) retraction of D2 onto its

boundary circle. But this contradicts the lemma. The theorem is proved.
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6.5. Exercises

6.1. If the restrictions of a map f : X → Y to its closed subsets X1, . . . Xk, where
X1 ∪ · · · ∪Xk = X, are all continuous, then f is continuous.

6.2. (a) Prove that if a map f : X → S1 is not surjective, then f is homotopic to the
constant map.

(b) Prove that if a map f : X → Sn is not surjective, then f is homotopic to the
constant map.

6.3. Prove that the 2-sphere with two points identified and the union of the 2-sphere
with one of its diameters are homotopy equivalent.

6.4. Prove that the spaces S1∧ [0, 1] and S1 are homotopy equivalent. (Here and below
X∧Y denotes the wedge of the spacesX and Y connected spaces, i.e., the topological space
obtained by identifying a point of X with a point of Y in the case when this topological
space is well defined.)

6.5. Prove that the sphere with g handles from which a point has been removed is
homotopy equivalent to the wedge of n circles and find n.

6.6. Prove that the spaces S1 ∧ S2 and R3 \ S1 are homotopy equivalent.
6.7. Let X be the space R3 from which k copies of the circle have been removed (the

circles are unknotted and unlinked, i.e., they lie in nonintersecting balls). Prove that X
is homotopy equivalent to the wedge product of k copies of the space S1 ∨ S2.

6.8. Let L be the union of two circles in R3 linked in the simplest way. Prove that
R3 \ L is homotopy equivalent to the wedge S2 ∨ T2.

6.9. Prove that the following assertions are equivalent:
(1) any continuous map f : Dn → Dn has a fixed point;
(2) there is no retraction r : Dn → ∂Dn;
(3) for any vector field v on Dn such that v(x) = x for all x ∈ ∂Dn, there exists a point

x ∈ Dn such that v(x) = 0 (for n = 2 this assertion is called “теорема о макушки” in
Russian and “hedgehog theorem” in English).

6.10. Prove that A is a retract of X if and only if any continuous map f : A→ Y can
be extended to X.

6.11. Prove that if any continuous map f : X → X has a fixed point and A is a retract
of X, then any continuous map g : A→ A has a fixed point.

6.12. Let S∞ be the set of all points (x1, x2, . . . ), xi ∈ R, such that only a finite number
of xi are nonzero and

∑
x2i = 1, supplied with the natural topology. Prove that the space

S∞ is contractible (i.e., homotopy equivalent to a point). Hint: Prove that the identity
map is homotopic to the map (x1, x2, . . . ) 7→ (0, x1, x2, . . . ).)


