
Lecture 5

CLASSIFICATION OF SURFACES

In this lecture, we present the topological classification of surfaces. This will be done
by a combinatorial argument imitating Morse theory and will make use of the Euler
characteristic.

5.1. Main definitions
In this course, by a surface we mean a connected compact topological space M such

that that any point x ∈ M possesses an open neighborhood U 3 x whose closure is a
2-dimensional disk. By a surface-with-holes (поверхность с краем in Russian) we mean
a connected compact topological space M such that any point x ∈M possesses either an
open neighborhood U 3 x whose closure is a 2-dimensional disk, or a whose closure is the
open half disk

C = {(x, y) ∈ R2 | y ≥ 0, x2 + y2 < 1}.
(A synonym of “surface” is “two-dimensional compact connected manifold”, but we will
use the shorter term.) In the previous lecture, we presented several examples of surfaces
and surfaces-with-holes.

It easily follows from the definitions that the set of all points of a surface-with-holes
that have half-disk neighborhoods is a finite family of topological circles. We call each
such circle the boundary of a hole. For example, the Möbius strip has one hole, pants have
three holes.

5.2. Triangulating surfaces

In the previous lecture, we gave examples of triangulated surfaces (see Fig. 4.6). Actually,
it can be proved that any surface (or any surface-with holes) can be triangulated, but the
known proofs are difficult, rather ugly, and based on the Jordan Curve Theorem (whose
known proofs are also difficult). So we will accept this as a fact without proof.

Fact 1. Any surface and any surface-with-holes can be triangulated.

To state the next fact about triangulated surfaces, we need some definitions. Recall
that a (continuous) map f : M → N of triangulated surfaces is called simplicial if it sends
each simplex of M onto a simplex of N (not necessarily of the same dimension) linearly.
Any bijective simplicial map map f : M → N is said to be an isomorphism, and then M
and N are called isomorphic.

Suppose M is a triangulated surface, σ2 is a face of M and w is an interior point of
σ2. Then the new triangulation of M obtained by joining w to the three vertices of σ2 is
called a face subdivision ofM at σ (Fig. 5.1(a)); the barycentric subdivision of a 2-simplex
is shown in Fig. 5.1(c); the barycentric subdivision of M is obtained by barycentrically
subdividing all its 2-simplices. If σ1 is an edge (1-simplex) ofM , then the edge subdivision
of M at σ2 is shown on Fig. 5.1(b). If a triangulated surface M ′ is obtained from M by
subdividing some simplices of M in some way, we say that M ′ is a subdivision of M .
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Figure 5.1. Face, edge, and barycentric subdivisions

A map f : M → N is called a PL-map if there exist subdivisions of M ′, N ′ of M , N
such that f is a simplicial map of M ′ to N ′. A bijective PL-map f : M → N is said to be
a PL-equivalence, and then M and N are called PL-equivalent. The following statement,
known as the hauptvermutung for surfaces, will be stated without proof.

Fact 2. Two surfaces are homeomorphic if and only if they are PL-equivalent. Homeomorphic
triangulated surfaces have isomorphic triangulations.

If x, y are vertices ofM , then the star of x, St(x), is defined as the union of all simplices
for which x is a vertex, and the link of y, Lk(y), is the union of all 1-simplices opposite to
the vertex y of the 2-simplices forming St(x). It is easy to show that St(x) is, topologically,
a 2-disk, and Lk(y), a circle (see Figure 5.2).
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FIGURE 5.2.3. Star and link of a point on a surface

each edge of a closed PL-surface (and each nonboundary edge of a surface
with boundary) is contained in exactly two faces.

A PL-surface (closed or with boundary) is called connected if any two
vertices can be joined by a sequence of edges (each edge has a common
vertex with the previous one). Further, unless otherwise stated, we consider
only connected PL-surfaces.

A PL-surface (closed or with boundary) is called orientable if its faces
can be coherently oriented; this means that each face can be oriented (i.e.,
a cyclic order of its vertices chosen) so that each edge inherits opposite
orientations from the orientations of the two faces containing this edge. An
orientation of an orientable surface is a choice of a coherent orientation of
its faces; it is easy to see that that any orientable (connected!) surface has
exactly two orientations.

A face subdivision is the replacement of a face (triangle) by three new
faces obtained by joining the baricenter of the triangle with its vertices. An
edge subdivision is the replacement of the two faces (triangles) containing
an edge by four new faces obtained by joining the midpoint of the edge with
the two opposite vertices of the two triangles. A baricentric subdivision of
a face is the replacement of a face (triangle) by six new faces obtained by
constructing the three medians of the triangles. A baricentric subdivision of
a surface is the result of the baricentric subdivision of all its faces. Clearly,
any baricentric subdivision can be obtained by means of a finite number of
edge and face subdivisions. A subdivision of a PL-surface is the result of a
finite number of edge and face subdivisions.

Two PL-surfaces M1 and M2 are called isomorphic if there exists a
homeomorphism h : M1 → M2 such that each face of M1 is mapped onto
a face of M2. Two PL-surfaces M1 and M2 are called PL-homeomorphic
if they have isomorphic subdivisions.

5.2.3. Triangulability of Surfaces. The following theorem (which we
will not prove) shows that there is no loss of generality in studying only
PL-surfaces

Figure 5.2. Star and link of points on a surface

In the previous lecture, orientable surfaces were defined as surfaces not containing a
Möbius strip. Now we give another (equivalent) definition of orientability for triangulated
surfaces. A simplex σ2 = [0, 1, 2] is called oriented if a cyclic order of its vertices is chosen.
Adjacent oriented simplices are coherently oriented if their common edge acquires opposite
orientations induced by the two oriented simplices. Thus if the two simplices σ2

1 = [0, 1, 2]
and σ2

2 = [0, 1, 3] are coherently oriented if the cyclic orders chosen in the two simplices
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are (0, 1, 2) and (1, 0, 3), respectively. A triangulated surface is called orientable if all its
2-simplices can be coherently oriented.

It is easy to prove that a surface is orientable if and only if it does not contain a Möbius
strip.

5.3. Classification of orientable surfaces
The main result of this section is the following theorem.
Theorem 5.3. [Classification of orientable surfaces]Any orientable surface is homeomorphic

to one of the surfaces in the following list

S2, S1 × S1 (torus), (S1 × S1)#(S1 × S1) (sphere with 2 handles), . . .

. . . , (S1 × S1)#(S1 × S1)# . . .#(S1 × S1) (sphere with k handles), . . .
Any two (different) surfaces in the list are not homeomorphic.

Figure 5.3. The orientable surfaces

Proof. In view of Fact 1, we can assume that M is triangulated and take the double
baricentric subdivisionM ′′ ofM . In this triangulation, the star of a vertex ofM ′′ is called
a cap, the union of all faces of M ′′ intersecting an edge of M but not contained in the
caps is called a strip, and the connected components of the union of the remaining faces
of M ′′ are called patches.

Consider the union of all the edges of M ; this union is a graph (denoted G). Let G0

be a maximal tree of G. Denote by M0 the union of all caps and strips surrounding G0.
Clearly M0 is homeomorphic to the 2-disk (why?). If we successively add the strips and
patches from M −M0 to M0, obtaining an increasing sequence

M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mp = M,

we shall recover M .
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5.4.1. Orientable surfaces. The main result of this subsection is the
following theorem.

THEOREM 5.4.1 (Classification of orientable surfaces). Any closed ori-
entable surface is homeomorphic to one of the surfaces in the following
list
S2, S1 × S1 (torus), (S1 × S1)#(S1 × S1) (sphere with 2 handles), . . .
. . . , (S1 × S1)#(S1 × S1)# . . . #(S1 × S1) (sphere with k handles), . . .
Any two surfaces in the list are not homeomorphic.

PROOF. First we assume that M is triangulated and take the double
baricentric subdivision M �� of M . In this triangulation, the star of a vertex
ofM �� is called a cap, the union of all faces ofM �� intersecting an edge ofM
but not contained in the caps is called a strip, and the connected components
of the union of the remaining faces ofM �� are called patches.
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FIGURE 5.4.1. Caps, strips, and patches

Consider the union of all the edges ofM ; this union is a graph (denoted
G). Let G0 be a maximal tree of G. Denote byM0 the union of all caps and
strips surrounding G0. Clearly M0 is homeomorphic to the 2-disk (why?).
If we successively add the strips and patches fromM−M0 toM0, obtaining
an increasing sequence

M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mp = M,

we shall recoverM .

Figure 5.4. Caps, strips, and patches

Let us see what happens when we go from M0 to M1.
If there are no strips left 1 , then there must be a patch (topologically, a disk), which is

attached along its boundary to the boundary circle Σ0 of M0; the result is a 2-sphere and
the theorem is proved.

Suppose there are strips left. At least one of them, say S, is attached along one end to
Σ0 (because M is connected) and its other end is also attached to Σ0 (otherwise S would
have been part of M0). Denote by K0 the closed collar neighborhood of Σ0 in M0 (i.e., the
union of all simplices having at least one vertex on Σ0). The collar K0 is homeomorphic
to the annulus (and not to the Möbius strip) because M is orientable. Attaching S to M0

is the same as attaching another copy of K0 ∪ S to M0. But K ∪ S is homeomorphic to
the disk with two holes (what we have called “pants"), because attaching S cannot make
create a Möbius strip in M because M is orientable (for that reason the twisting of the
strip shown in Figure 5.5 (a) cannot occur). Thus M1 is obtained from M0 by attaching
the pants K ∪ S by the waist, and M1 has two boundary circles (Figure 5.5 (b)).

Now let us see what happens when we pass from M1 to M2. If there are no strips left,
there are two patches that must be attached to the two boundary circles of M1, and we
get the 2-sphere again.

1Actually, this case cannot occur, but it is more complicated to prove this than to prove that the
theorem holds in this case.
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Suppose there are patches left. Pick one, say S, which is attached at one end to one of
the boundary circles, say Σ1 of M1. Two cases are possible: either

(i) the second end of S is attached to Σ2, or
(ii) the second end of S is attached to Σ1.
Consider the first case. Take collar neighborhoods K1 and K2 of Σ1 and Σ2; both are

homoeomorphic to the annulus (because M is orientable). Attaching S to M1 is the same
as attaching another copy of K1 ∪ K2 ∪ S to M1 (because the copy of K1 ∪ K2 can be
homeomorphically pushed into the collars K1 and K2). But K1 ∪ K2 ∪ S is obviously
homeomorphic to the disk with two holes. Thus, in the case considered, M2 is obtained
fromM1 by attaching pants toM1 along the legs, thus decreasing the number of boundary
circles by one.

Figure 5.5. Adding pants along the legs

The second case is quite similar to adding a strip to M0 (see above), and results in
attaching pants to M1 along the waist, increasing the number of boundary circles by one.

What happens when we add a strip at the ith step? As we have seen above, two cases
are possible: either the number of boundary circles ofMi−1 increases by one or it decreases
by one. We have seen that in the first case “inverted pants” are attached to Mi−1 and in
the second case “upright pants” are added to Mi−1.

After we have added all the strips, what will happen when we add the patches? The
addition of each patch will “close” a pair of pants either at the “legs” or at the “waist”. As
the result, we obtain a surface. Let us prove that this surface is a sphere with m handles,
m ≥ 0.

We will prove this by induction over the number k of attached pants.
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Figure 5.5. Adding pants along the waist

The base of induction (k = 0) was established above. Assume that by attaching k − 1
pants by the waist and by the legs and patching up (attaching disks to the free boundaries)
we always obtain a sphere with some number (≥ 0) of handles. Let us prove that this will
be true for k pants. We will consider two cases.

Case 1: The last pants were attached by the waist (and then the legs were patched up).
Removing the pants (together with the two patches) from our surface M and patching
up the waist W , we obtain a surface M1 constructed from k − 1 pants. By the induction
hypothesis, M1 is a sphere with m1 ≥ 0 handles. But M is obtained from M1 by removing
the patch ofW and attaching pants by the waist and patching up. But thenM is obviously
a sphere with the same (m1) number of handles.

Case 2: The last pants were attached by the legs (and then the waist was patched up).
Removing the pants (together with the two patches) from our surface M and patching
up the waist W , we obtain a surface M1 constructed from k − 1 pants. By the induction
hypothesis, M1 is a sphere with m2 ≥ 0 handles. But M is obtained from M1 by removing
the patch ofW and attaching pants by the waist and patching up. But thenM is obviously
a sphere with (m1 + 1) handles.

The first part of the theorem is proved.

To prove the second part, it suffices to show that
(1) homeomorphic surfaces have the same Euler characteristic;
(2) all the surfaces in the list have different Euler characteristics (namely 2, 0,−2,−4, . . . ,

respectively).
The first statement follows from Fact 2. Indeed, if two surfaces are homeomorphic, then

they have isomorphic subdivisions. It is easy to verify that the Euler characteristic does
not change under subdivision. To do that, it suffices to check that the Euler characteristic
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does not change under face, edge, barycentric subdivision, which is obvious. This proves
(1).

The second statement is proved by simple computations using the formula for the Euler
characteristic of a connected sum (Theorem 4.2).

The theorem is proved.

112 5. TOPOLOGY AND GEOMETRY OF SURFACES

But K − 1 ∪ K2 ∪ S is obviously homeomorphic to the disk with two
holes. Thus, in the case considered, M2 is obtained from M1 by attaching
pants toM1 along the legs, thus decreasing the number of boundary circles
by one,

The second case is quite similar to adding a strip toM0 (see above), and
results in attaching pants to M1 along the waist, increasing the number of
boundary circles by one.

What happens when we add a strip at the ith step? As we have seen
above, two cases are possible: either the number of boundary circles of
Mi−1 increases by one or it decreases by one. We have seen that in the first
case “inverted pants” are attached to Mi−1 and in the second case “upright
pants” are added toMi−1.

FIGURE ??? Adding pants along the waist

After we have added all the strips, what will happen when we add the
patches? The addition of each patch will “close” a pair of pants either at the
“legs” or at the “waist”. As the result, we obtain a sphere with k handles,
k � 0. This proves the first part of the theorem.

cup upsidedown pants

cap pants (right side up)

FIGURE 5.4.2. Constructing an orientable surface

To prove the second part, it suffices to compute the Euler characteristic
(for some specific triangulation) of each entry in the list of surfaces (obtain-
ing 2, 0,−2,−4, . . . , respectively). �

Figure 5.6. Constructing an orientable surface

The genus g of an orientable surface can be defined as the number of its handles and
can be expressed in terms of the Euler characteristic in the following way:

g(M) =
1

2

(
2− χ(M)

)
.

In fact, this has already been established in the above computation of the Euler characteristic
of orientable surfaces.

5.4. Classifying nonorientable surfaces and surfaces-with-holes

Theorem 5.4. Any nonorientable surface is contained in the following list:

RP 2, RP 2#RP 2, . . . ,RP 2#RP 2# . . .#RP 2(n summands), . . .

Two different surfaces in the list are not homeomorphic.

The proof is similar to the proof of Theorem 5.3, but slightly more complicated. We
omit it.

Actually, the assertion of Theorem 5.4 is equivalent to saying that any nonorientable
surface is obtained from the sphere by attaching a Möbius cap, i.e., deleting an open disk
and attaching a Möbius strip along the boundary circle, and then attaching g ≥ 0 handles.
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The nonnegative integer g is called the genus of the nonorientable surface. It can easily
be expressed in terms of the Euler characteristic. Namely,

g(M) =
1

2

(
1− χ(M)

)
.

We leave the statement of the general classification theorem of all surfaces-with-holes
to the reader. We only note that a sphere with h handles, m Möbius caps, and d deleted
open disks has Euler characteristic

χ(M) = 2− 2h−m− d.

5.1. Exercises

5.1. Prove that χ(mT2) = 2−2m and χ(nRP 2) = 2−n. (Here the notation nM stands
for the connected sum of n copies of M .)
5.2. Prove that an orientable surface is not homeomorphic to a nonorientable surface.
5.3. (a) Prove that any graph has a maximal subtree. (b) Prove that a simplicial

neighborhood of a tree in a surface is homeomorphic to the disk.
5.4. Find the Euler characteristic of the Klein bottle.
5.5. Consider the quotient space (S1 × S1)/

(
(x, y) ∼ (y, x)

)
. This space is a surface.

Which one?
5.6. Show that the standard circle can be spanned by a Möbius band, i.e., the Möbius

band can be homeomorphically deformed in 3-space so that its boundary becomes a circle
lying in some plane.
5.7. Prove that the boundary of Mb2 × [0, 1] is the Klein bottle.
5.8. Prove that on the sphere with g handles, the maximal number of nonintersecting

closed curves not dividing this surface is equal to g.
5.9. Can K3,3 be embedded (a) in the sphere; (b) in the torus; (c) in the Klein bottle;

(d) in the Möbius strip?
5.10∗. Prove that the Klein bottle cannot be embedded in R3.


