
Lecture 3

TOPOLOGICAL CONSTRUCTIONS

In this lecture, we study the basic constructions used in topology. These constructions
transform one or several given topological spaces into a new topological space. Starting
with the simplest topological spaces and using these constructions, we can create more
and more complicated spaces, including those which are the main objects of study in
topology.

3.1. Disjoint Union

The disjoint union of two topological spaces X and Y , in the case when the two sets X
and Y do not intersect, is the union of the sets X and Y with the following topology: a
set W in X ∪Y is open if the sets W ∩X and W ∩Y are open in X and Y , respectively; if
the two sets X and Y intersect, the definition is a little trickier: first we artificially make
them nonintersecting by considering, instead of the set Y , the same set of elements but
marked, say, with a star, i.e., Y ∗ := {(y, ∗) | y ∈ Y }, and then proceed as before, declaring
that a set W in X ∪ Y ∗ is open if the sets W ∩ X and W ∩ Y ∗ are open in X and Y ∗,
respectively. In both cases we obtain a topological space denoted by X t Y .

This choice of topology ensures that both natural inclusions X ↪→ X ∪ Y (x 7→ x) and
Y ↪→ X ∪ Y (y 7→ y) are continuous maps.

It is easy to see that the subsets X and Y (we do not explicitly write the stars (if any)
in Y ∗, but consider them implicitly present) are both open and closed in X t Y , so that
the set X t Y is not connected (provided both X and Y are nonempty).

3.2. Cartesian Product

Roughly speaking, the Cartesian product of two spaces is obtained by putting a copy
of one of the spaces at each point of the other space.

More precisely, let X and Y be topological spaces; consider the set of pairs X × Y =
{(x, y) | x ∈ X, y ∈ Y } and make X × Y into a topological space by defining its base: a
set W ⊂ X × Y belongs to the base if it has the form W = U × V , where U is an open
set in X and V is open in Y . It is easy to check that in this way we obtain a topological
space, which is called the Cartesian product of the spaces X and Y .

This choice of topology ensures that both natural projections X × Y → X
((x, y) 7→ x) and X × Y → Y ((x, y) 7→ y) are continuous maps.

Classical examples are: (i) the Cartesian product of two closed intervals is the square;
(ii) the Cartesian product of two circles is the torus; (iii) the Cartesian product of two
real lines R is the plane R2.

Theorem 3.1. The Cartesian product of the n-disk and them-disk is the (n+m)-disk.
The Cartesian product of Rn and Rm is Rn+m.

The proof is absolutely straightforward.
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3.3. Quotient Spaces

Roughly speaking, a quotient space is obtained from a given space by identifying the
points of certain subsets of the given space (“dividing” our space by these subsets).

More precisely let X be a topological space and let ∼ be an equivalence relation on the
set X; we then consider the equivalence classes with respect to this relation as points of
the quotient set X/∼ and introduce a topology in this set by declaring open any subset
U ⊂ X/∼ such that U∗ := {x ∈ ξ | ξ ∈ U} is open in X. The topological space thus
obtained is denoted by X/∼.

Suppose X and Y are topological spaces, A and B are closed subspaces of X and Y ,
respectively, and f : A → B is a continuous map. (The particular case in which f is a
homeomorphism is often considered.) In the disjoint union of X and Y , we identify all
points of each set in the family

Fb := {b t f−1(b) | b ∈ B}.

Then we denote the quotient space (X ∪ Y )/∼, where ∼ is the equivalence relation
identifying points in each of the sets Fb, b ∈ B, X ∪f Y and say that this space is
obtained by attaching (or gluing) Y to X along f .

3.5. Cone, Suspension, and Join

(i) Roughly speaking, the cone over a space is obtained by joining a fixed point by line
segments with all the points of the space. More precisely, let X be a topological space;
consider the Cartesian product X × [0, 1] (called the cylinder over X) and on it, the
equivalence relation (x, 1) ∼ (y, 1) for any x, y ∈ X; we define the cone over X as the
quotient space of the cylinder by the equivalence relation ∼:

C(X) := (X × [0, 1])/∼.

Note that all the points (x, t) with t = 1 are identified into one point, called the vertex
of the cone. By definition, the cone over the empty set is one point. The cone over a point
is a line segment, the cone over the circle is homeomorphic to the disk (although it is more
natural to think of it as the lateral surface of the ordinary circular cone).

(ii) Roughly speaking, the suspension over a topological space is obtained by joining
two fixed points by segments with all the points of the given space. Another heuristic way
of saying this is that the suspension is a double cone (on “different sides”) over that space.

More precisely, let X be a topological space; consider the Cartesian product X× [−1, 1]
and on it, the equivalence relation

(x, 1) ≈ (y, 1) and (x,−1) ≈ (y,−1)

for any x, y ∈ X; now define the suspension over X as the quotient space of the cylinder
X × [−1, 1] by the equivalence relation ≈ :

Σ(X) := (X × [−1, 1])/≈.
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By definition, the suspension over the empty set is the two point set S0. The suspension
over the two point set is homeomorphic to the circle, that over the circle is homeomorphic
to the 2-sphere.

The notion of suspension is extremely important in topology, particularly in algebraic
topology (surprisingly, it is much more important than that of the cone).

(iii) Roughly speaking, the join of two spaces is obtained by joining each pair of points
from the two spaces by a segment.

More precisely, suppose thatX and Y are topological spaces; consider the Cartesianproduct
X × [−1, 1] × Y and identify (via an equivalence relation that will be denoted by ≡)
all pairs of points of the form (x1, 1, y) ≡ (x2, 1, y) as well as all pairs of the form
(x,−1, y1) ≡ (x,−1, y2). The topological space X ∗ Y thus obtained,

X ∗ Y := (X × [−1, 1]× Y )/≡,

is called the join of the spaces X and Y .

Figure 3.1. Cone and suspension. Join of two closed intervals

Theorem 3.2. The cone over the n-sphere is the (n+ 1)-disk and the cone over the
n-disk is the (n+ 1)-disk. The suspension over the n-sphere is the (n+ 1)-sphere and the
suspension over the n-disk is the (n+1)-disk. The join of the n-disk and the m-disk is the
(n+m+1)-disk. The join of the n-sphere and the m-sphere is the (n+m+ 1)-sphere.

The proof is not difficult: one performs the construction in a Euclidean space of the
appropriate dimension; in each case the corresponding homeomorphism is not hard to
construct, although for large values of n and m it is difficult to visualize. The simplest
(and only really “visual”) nontrivial example is the join of two segments (which is the
tetrahedron, otherwise known as the 3-simplex); it is shown in Figure 3.1.

3.6. Simplicial spaces

A 0-simplex is a point, a 1-simplex is a closed interval, a 2-simplex is a triangle,
a 3-simplex is a tetrahedron, and so on. More generally and precisely, we define an
n-dimensional simplex σn (n-simplex for short) as a topological space supplied with a
homeomorphism

h : σn → ∆n = [e0, e1, . . . , en],
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where ∆n is the convex hull of the set of n+ 1 points consisting of the origin 0 = e0 and
the endpoints e1, . . . , en of the basis unit vectors of Euclidean space Rn. The n-simplex is
of course homeomorphic to the n-disk Dn, but it has a richer structure coming from the
homeomorphism h. Namely, for any i, 0 ≤ i ≤ n, it has a set of i-faces, each i-face is the
preimage under h of the convex hull in Rn of i points from the set {e0, e1, . . . , en}. The
0-faces of an n-simplex are called vertices, and we often write

σn = [0, 1, . . . , n],

where by abuse of notation i, i = 0, 1, . . . , n, denotes the vertex h−1(ei).
Thus the 3-simplex possesses four 2-faces (triangles), six 1-faces (edges) and four 0-faces

(vertices). By convention, we agree that the empty set is regarded as the (−1)-dimensional
simplex. Note that the 3-simplex (as well as its faces), inherits a linear structure from R3

by the homeomorphism h : σ3 → ∆3 ⊂ R3.

We now define a finite simplicial space X (also called finite simplicial complex) as the
space obtained from the disjoint union of a finite set of simplices by gluing some of their
faces together by homeomorphisms; it is assumed that the attaching homeomorphisms
respect the linear structure of the faces (so that after the gluing is performed, all the
simplices have a coherent linear structure). In this course, we will not consider the more
general notion of simplicial space with a possibly infinite number of simplices, and so will
often drop the adjective finite when speaking of finite simplicial spaces. By the dimension
of a simplicial space X we mean the dimension of the simplices of the highest dimension
in X and we often write it in the form of a superscript, writing Xn for an n-dimensional
simplicial space.

A more geometric way of defining a simplicial space is to represent it as a subset of
some Euclidean space, with the simplices being rectilinear geometric subsets of the space.
Figure 3.2 shows two such examples of simplicial spaces, represented as lying in R3: a
2-sphere and a funny 3-dimensional simplicial space.

Figure 3.2. Two simplicial spaces as subsets of R3

As the following theorem claims, any finite simplicial space X can be represented as a
subset of some Euclidean space RN in the sense specified above – one then says that X is
piecewise-linearly embedded (PL-embedded for short) in RN .
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Theorem 3.3. Any finite n-dimensional simplicial space Xn can be PL-embedded in
R2n+1.

We shall not use this theorem and therefore omit its proof. The reader may wonder
where the exponent 2n + 1 comes from; there are examples of 1 -dimensional simplicial
spaces (e.g. the so-called K3,3 space) that cannot be embedded in R2.

3.7. CW Spaces

Roughly speaking, a CW-space is a space obtained by inductively attaching k-disks
(k = 0, 1, 2, . . . ) along their boundaries to the (k − 1)-dimensional part of the previously
constructed space via continuous maps of their boundaries (these maps, as well as their
images, are called k-cells).

The formal definition of CW-space (also called CW-complex) is the following. Let X
be a Hausdorff topological space such that

X =
∞⋃
i=0

X i,

whereX0 is a discrete space and the spaceX i+1 is obtained by attaching the disjoint union
of (i+ 1)-dimensional closed discs tα∈ADi+1

α toX i along a continuous map tα∈A Siα → X i,
where Siα = ∂Di+1

α . Let us call the image of Di+1
α and the image of the interior of Di+1

α

under the natural map to X i+1 ↪→ X closed cell and open cell, respectively. The space X
is called a CW-space (or CW-complex) if the two following conditions hold:

(C) any closed cell intersects a finite number of open cells;
(W) a set C ⊂ X is closed iff any intersection of C with a closed cell is closed.
“C” is the abbreviation for “Closure Finite”, “W” is the abbreviation for “Weak Topology”.

If the number of cells is finite, then conditions (C) and (W) hold automatically. Since we
will only be considering finite cell spaces in this course, you can forget about conditions
(C) and (W).

Note that any simplicial space can be considered as a CW-space (how?). Simplicial
spaces are easier to visualize than CW-spaces, because simplices are simpler than cells,
but CW-spaces are more economical. For example, the 77-dimensional sphere has a CW-
space structure with only two cells, whereas the simplest simplicial structure of that sphere
has hundreds of simplices of dimensions 0, 1, 2, . . . , 77.
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3.8. Exercises

3.1. Prove that Dn/∂Dn ≈ Sn.
3.2. Prove that the space S1×S1 is homeomorphic to the space obtained by the following

identification of points of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 belonging to its sides:
(x, 0) ∼ (x, 1) and (0, y) ∼ (1, y). (This space is called the torus.)

3.3. Let I = [0, 1]. Prove that the space S1×I is not homeomorphic to the Möbius
band.

3.4. Prove that the following spaces (supplied with the natural topology) are homeomorphic:
(a) the set of lines in Rn+1 passing through the origin;
(b) the set of hyperplanes in Rn+1 passing through the origin;
(c) the sphere Sn with identified diametrically opposite points (every pair of diametrically

opposite points is identified);
(d) the disc Dn with identified diametrically opposite points of the boundary sphere

Sn−1 = ∂Dn.
3.5. Prove that the following spaces are homeomorphic:
(a) the set of complex lines in Cn+1 passing through the origin;
(b) the sphere S2n+1 ⊂ Cn+1 with identified points of the form λx for every λ ∈ C,
|λ| = 1 (for any fixed point x ∈ S2n+1);

(c) the disc D2n⊂Cn with points of the boundary sphere S2n−1=
∂D2n of the form λx for every λ∈C, |λ|=1 identified for any fixed point x∈S2n−1.

3.6. Prove that C(Dn) ≈ Dn+1 and Σ(Dn) ≈ Dn+1. (Here and below ≈ denotes
homeomorphisms)

3.7. Prove that RP 1 ≈ S1 and CP 1 ≈ S2.
3.8. Prove that C(Sn) ≈ Dn+1 and ΣSn ≈ Sn+1.
3.9. Is it true (for arbitrary CW-spces) that (a) X ∗ Y ≈ Y ∗ X; (b) (X ∗ Y ) ∗ Z ≈

X ∗ (Y ∗ Z); (c) C(X ∗ Y ) ≈ C(X) ∗ Y ; (d) Σ(X ∗ Y ) ≈ Σ(X) ∗ Y ?
3.10. Prove that Sn ∗ Sm ≈ Sn+m+1.
3.11. Prove that Sn+m−1 \ Sn−1 ≈ Rn× Sm−1. (We suppose that the position of Sn−1 in

Sn+m−1 is standard.)
3.12. Prove that (a) the sphere S2; (b) the torus T2; (c) the real projective space RP n;

(d) the complex projective space CP n are CW-spaces.
3.13. Find an example of a space consisting of cells that satisfies the

W-axiom, and does not satisfy the C-axiom and vice versa.


