
Lecture 11

COVERING SPACES

A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds)
which, locally, is a homeomorphism, but globally may be quite complicated. The simplest
nontrivial example is the exponential map R→ S1 discussed in Lecture 6.

11.1. Definition and examples

In this lecture, we will consider only path connected spaces with basepoint and only
basepoint-preserving maps. Suppose E,B are path connected topological spaces p : E → B
is a continuous map such that p−1(y) is a discrete subspace, the cardinality of the set
p−1(y) := D is independent of y ∈ B and every x ∈ p−1(y) has a neighborhood on which
p is a homeomorphism to a neighborhood of y ∈ B, then the quadruple (p, T,B,D) is
called a covering with covering projection p, total space E, base B, and fiber D = p−1(y).

If n = |D| is finite, then (p, E,B,D) is said to be an n-fold covering. If D is countably
infinite (счетное in Russian), we say that p : E → B is a countable covering.

Examples 11.1: (i) the map w3 : S1 → S1, given by eiϕ 7→ ei3ϕ is a 3-fold covering of
the circle by the circle;

(ii) the exponential map exp:R → S1 is a countable covering of the circle by the real
line;

(iii) the map u : R2 → T2, (x, y) 7→ (2π{x}, 2π{y}), where {·} denotes the fractional
part of a real number, is a countable covering of the torus by the plane;

(iv) the map τ : S2 → RP 2 obtained by identifying antipodal points of the sphere is a
2-fold covering of the projective plane.

Like any other important class of mathematical objects, covering spaces form a category.
In this category, a morphism between two covering spaces pi : Ei → Bi, i = 1, 2, are pairs
of (continuous, basepoint-preserving) maps φ : B1 → B2 and Φ : E1 → E2 such that the
following diagram is commutative:

E1
Φ−−−→ E2yp1 yp2

B1
φ−−−→ B2

Compositions of morphisms and identical morphisms are defined in the natural way.
Then, obviously, an isomorphism of covering spaces is a morphism for which Φ and φ
are homeomorphisms. Isomorphic covering spaces are considered identical.

If E is simply connected, then the covering p : E → B is called universal.
If f : X → B is continuous and f̃ : X → E satisfies f = p ◦F , then f̃ is said to be a lift

of f . If f : B → B is continuous and f̃ : E → E is continuous and satisfies f ◦ p = pi ◦ f̃ ,
then f̃ is said to be a lift of f as well. The figure below shows the lift of a closed curve.
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A homeomorphism of the total space of a covering E of E is called a deck transformation
(“монодромия” in Russian), if it is a lift of the identity on B.

Figure 10.2. Lift of a closed curve

11.2. Path lifting and covering homotopy

In this section, we prove two important technical assertions which allow, given a covering
space p : E → B, to lift “upstairs” (i.e., toE) continuous processes taking place “downstairs”
(i.e., in B). The underlying idea has already been exploited when we defined the degree of
circle maps by using the exponential map (see Lecture??), and we will now be generalizing
the setting of the exponential map to arbitrary covering spaces.

Lemma 11.1. [Path lifting lemma] Any path in the base B of a covering space p : E →
B can be lifted to the total space of the covering, and the lift is unique if its initial point
in the covering is specified. More precisely, if p : E → B is a covering space, α : [0, 1]→ B
is any path, and x0 ∈ p−1(α(0)), then there exists a unique map α̃ : [0, 1]→ X such that
p ◦ α̃ = α and α̃(0) = x0.

Proof. By the definition of covering space, for each point b ∈ α([0, 1])) there is a
neighborhood Ub whose inverse image under p falls apart into disjoint neighborhoods
each of which is projected homeomorphically by p onto Ub. The set of all such Ub covers
α([0, 1]) and, since α([0, 1]) is compact, it possesses a finite subcover that we denote by
U0, U1, . . . Uk.

Without loss of generality, we assume that U0 contains b0 := α(0) and denote by Ũ0 the
component of p−1(U0) that contains the point x0. Then we can lift a part of the path α
contained in U0 to Ũ0 (uniquely!) by means of the inverse to the homeomorphism between
Ũ0 and U0.

Now, again without loss of generality, we assume that U1 intersects U0 and contains
points of α[0, 1] not lying in U0. Let b1 ∈ α([0, 1]) be a point contained both in U0 and U1

and denote by b̃1 the image of b1 under p−1
∣∣
U0
. Let Ũ1 be the component of the inverse
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image of U1 containing b̃1. We now extend the lift of our path to its part contained in
U1 by using the inverse of the homeomorphism between Ũ1 and U1. Note that the lift
obtained is the only possible one. Our construction in the case when the path is closed
(i.t., is a loop) is shown in Figure 11.1.

Continuing in this way, after a finite number of steps we will have lifted the entire path
α([0, 1]) to X, and the lift obtained will be the only one obeying the conditions of the
lemma. �

Remark 11.1. Note that the lift of a closed path is not necessarily a closed path, as
we have already seen in our discussion of the degree of circle maps.

Note also that if all paths (i.e., maps of A = [0, 1]) can be lifted, it is not true that all
maps of any space A can be lifted (see Exercise ??).

Now we generalize the path lifting lemma to homotopies, having in mind that a path is
actually a homotopy, namely a homotopy of the one-point space. This trivial observation
is not only the starting point of the formulation of the covering homotopy theorem, but
also the key argument in its proof.

Theorem 11.2. [Covering homotopy theorem] Any homotopy in the base of a covering
space can be lifted to the covering, and the homotopy is unique if its initial map in the
covering is specified as a lift of the initial map of the given homotopy. More precisely,
if p : E → B is a covering, F : A × [0, 1] → B is any homotopy whose initial map
f0(·) := F (·, 0) possesses a lift f̃0, then there exists a unique homotopy F̃ : A× [0, 1]→ X

such that p ◦ F̃ = F and F̃ (·, 0) = f̃0(·).
Proof. The theorem will be proved by reducing the theorem to the path lifting lemma

from the previous subsection.Fix some point α ∈ A. Define αa(t); = F (a, t) and denote by
xa the point f̃0(a). Then αa is a path, and by the path lifting lemma,there exists a unique
lift α̃a of this path such that α̃(0) = xa. Now consider the homotopy defined by

F̃ (a, t) := α̃a(t), for all a ∈ A, t ∈ [0, 1].

Then, we claim that F̃ satisfies all the conditions of the theorem, i.e., F̃ is continuous and
unique. We leave this verification to the reader. �

Remark 11.2. The covering homotopy theorem is not true if E → B is an arbitrary
surjection (and not a covering space). For a counterexample, see Exercise 7.

11.3. Role of the fundamental group

The projection p of a covering space p : E → B induces a homomorphism p# : π1(E)→
π1(B). We will see that when the spaces E and B are “locally nice”, the homomorphism
p# entirely determines (up to isomorphism) the covering space p over a given B. (What
we mean by “locally nice” will be explained below.)

More precisely, in this section we will show that, provided that the “local nicety”
condition holds, p# is a monomorphism and that, given a subgroup G of π1(B), we can
effectively construct a unique space E and a unique (up to isomorphism) covering map
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p : E → B for which G is the image of π1(E) under p#. Moreover, we will prove that there
is a bijection between conjugacy classes of subgroups of π1(B) and isomorphism classes
of coverings, thus achieving the classification of all coverings over a given base B in terms
of π1(B).

Theorem 11.2 The homomorphism p# : π1(E) → π1(B) induced by any covering
space p : E → B is a monomorphism.

Proof. The theorem is an immediate consequence of the homotopy lifting property
proved in the previous section. Indeed, it suffices to prove that a nonzero element [α] of
π1(E) cannot be taken to zero by p#. Assume that p#([α]) = 0. This means that the loop
p◦α, where α ∈ [α], is homotopic to a point in B. By the homotopy lifting theorem, we can
lift this homotopy to E, which means that [α] = 0. �

Now we describe the main construction of this lecture: given a space and a subgroup
of its fundamental group, we will construct the corresponding covering. This construction
works provided the space considered is “locally nice” in a sense that will be specified below.

Theorem 11.3. For any “locally nice” space B and any subgroup
G ⊂ π1(B, b0), there exists a unique covering space p : X → B such that p#(X) = G.

Proof. The theorem is proved by means of another trick. Let us consider the set P (B, b0)
of all paths in B issuing from b0. Two paths αi : [0, 1] → B, i = 1, 2 will be identified
(notation α1 ∼ α2) if they have a common endpoint and the loop λ given by

λ(t) =

{
α1(2t) if 0 ≤ t ≤ 1/2,

α2(2− 2t) if 1/2 ≤ t ≤ 1.

determines an element of π1(B) that belongs to G. (The loop λ can be described as first
going along α1 (at double speed) and then along α2 from its endpoint back to b0, also at
double speed.)

Denote by X := P (B, b0)
/
∼ the quotient space of P (B, b0) by the equivalence relation

just defined. Endow X with the “natural” topology (the formal definition is given below)
and define the map p : X → B by stipulating that it takes each equivalence class of
paths in P (B, b0) to the endpoint of one of them (there is no ambiguity in this definition,
because equivalent paths have the same endpoint).

Then p : X → B is the required covering space. It remains to:
(o) define the topology on X; (i) prove that p is continuous; (ii) prove that p is a local
homeomorphism; (iii) prove that p#(π1(X)) coincides with G; (iv) prove that p is unique.
We will do this after defining what we mean by “locally nice”.

Remark 11.4. To understand the main idea of the construction described above, the
reader should try applying in the case G = 0 (construction of the universal cover).

Remark 11.5. The above construction is not effective at all, and cannot be used to
describe the covering space obtained. However, in reasonably simple cases it is easy to
guess what the space X is from the fact that the fundamental group of X is G and p is a
local homeomorphism.
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A topological space X is called locally path connected if for any point x ∈ X and any
neighborhood U of x there exists a smaller neighborhood V ⊂ U of x which is path
connected. A topological space X is called locally simply connected if for any point x ∈ X
and any neighborhood U of x there exists a smaller neighborhood V ⊂ U of x which is
simply connected.

Examples 11.2. (a) Let X ⊂ R2 be the union of the segments{
(x, y) | y = 1/2n, 0 ≤ x ≤ 1

}
n = 0, 1, 2, 3, . . .

and the two unit segments [0, 1] of the x-axis and y-axis (see Figure 11.2(a)). Then X is
path connected but not locally path connected (at all points of the interval (0, 1] of the
x-axis).

(b) Let X ⊂ R2 be the union of the circles{
(x, y) |x2 + (y − 1/n)2 = 1/n2

}
n = 1, 2, 3, . . . ;

the circles are all tangent to the x-axis and to each other at the point (0, 0) (see Figure
11.2 (b)). Then X is path connected but not locally simply connected (at the point(0, 0)).

Figure 11.2. Not locally connected and not locally simply connected spaces

We will now conclude the proof of Theorem 11.3, assuming thatB is locally pathconnected
and locally simply connected.

(o) Definition of the topology in X = P (B, b0)/∼. In order to define the topology, we
will specify a base of open sets of rather special form, which will be very convenient for
our further considerations. Let U be an open set in B and x ∈ X be a point such that
p(x) ∈ U . Let α be one of the paths in x with initial point x0 and endpoint x1. Denote by
(U, x) the set of equivalence classes (with respect to ∼) of extensions of the path α whose
segments beyond x1 lie entirely inside U . Clearly, (U, x) does not depend on the choice of
α ∈ x.
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We claim that (U, x) actually does not depend on the choice of the point x in the
following sense: if x2 ∈ (U, x1), then (U, x1) = (U, x2). To prove this, consider the points
b1 := p(x1) and b2 := p(x2). Join the points b1 and (b2) by a path (denoted β) contained
in U .

Let αα1 denote an extension of α, with the added path segment α1 contained in U . Now
consider the path αββ−1α1, which is obviously homotopic to αα1. On the other hand,
it may be regarded as the extension (beyond x2) of the path αβ by the path β−1α−1.
Therefore, the assignment αα1 7→ αββ−1α1 determines a bijection between (U, x1) and
(U, x2), which proves our claim.

Now we can define the topology in X by taking for a base of the topology the family of
all sets of the form (U, x). To prove that this defines a topology, we must check that that a
nonempty intersection of two elements of the base contains an element of the base. Let the
point x belong to the intersection of the sets (U1, x1) and (U2, x2). Denote V := U1 ∩ U2

and consider the set (V, x); this set is contained in the intersection of the sets (U1, x1) and
(U2, x2) (in fact, coincides with it) and contains x, so that

{
(U, x)

}
is indeed a base of a

topology on X.
(i) The map p is continuous. Take x ∈ X. Let U be any path connected and simply

connected neighborhood of p(x) (it exists by the condition imposed on B). The inverse
image of U under p is consists of basis open sets of the topology of X (see item (o)) and
is therefore open, which establishes the continuity at an (arbitrary) point x ∈ X.

(ii) The map p is a local homeomorphism. Take any point x ∈ X and denote by p|U :
(U, x)→ U the restriction of p to any basis neighborhood (U, x) of x, so that U will be an
open path connected and simply connected set in B. The path connectedness of U implies
the surjectivity of p|U and its simple connectedness, the injectivity of p|U .

(iii) The subgroup p#(π1(X)) coincides with G. Let α be a loop in B with basepoint b0

and α̃ be the lift of α initiating at x0 (α̃ is not necessarily a closed path). The subgroup
p#(π1)(X) consists of homotopy classes of the loops α whose lifts α̃ are closed paths. By
construction, the path α̃ is closed iff the equivalence class of the loop α corresponds to
the point x0, i.e., if the homotopy class of α is an element of G.

(iv) The map p is unique. We omit the proof of this fact here.

11.4. Regular coverings.

A covering p : E → B is called regular if the subgroup p#(π1(E)) ⊂ π1(B) is normal.
Theorem 11.4. If p : E → B is any regular covering, then the quotient group

π(B)/p#(π1(E)) is isomorphic to the group of deck transformations of the fiber D =
p−1(b0) (here b0 is the basepoint of B).
Proof. There is a natural bijection between the right cosets (правые смежные классы

in Russian) of the subgroup p#(π1(E)) ⊂ π1(B) and D, but since this subgroup is normal,
these cosets forms a group that “shuffles” the points of D, so that the quotient group
π(B)/p#(π1(E)) is the group of deck transformations of D.
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11.5. Exercises

11.1. Suppose that one surface is covered by another surface. What is the relation
between their Euler characteristics, if the covering is n-fold?
11.2. Prove that the sphere with g1 handles can be covered by the sphere with g2

handles (g1, g2 ≥ 2) iff g1 − 1 is a divisor of g2 − 1.
11.3. Construct a nonregular covering of the wedge product of two circles.
11.4. Construct two regular coverings of the wedge product of two circles that are not

homotopy equivalent to each other.
11.5. Prove that for any n ≥ 2 the wedge product of two circles can be covered by the

wedge product of n circles.
11.6. Prove that if the base surface of a covering p : N2 → M2 is orientable, then so

is the covering surface N2.
11.7. Let X be the union of the lateral surface of the cone and the half-line issuing

from its vertex v, and let p : X → B be the natural projection of X on the line B = R.
Show that p : X → B does not possess the covering homotopy property.
11.8. Let the covering surface N2 of a covering p : N2 → M2 is

orientable. Is it true that the base surface M2 is orientable?
11.9. Can RP 2 cover the sphere?
11.10. Can the torus T 2 cover T 2 by a 3-fold covering?
11.11. Can RP 2 be covered by the plane?
11.12. Construct the universal covering of the Möbius band.
11.13. Construct the universal covering of the torus T3.
11.14. Construct the universal covering of the wedge product of two circles.
11.15. Construct the universal covering of the wedge product S1 ∨ S2.
11.16. Construct the universal covering of the sphere with g ≥ 2 handles.
11.17. Suppose some connected graphG has e edges and v vertices. Find the fundamental

group of the graph G.
11.18. Prove that any subgroup of a free group is a free group.
11.19. Prove that the free group of rank 2 contains as a subgroup the free group of

rank n for all n (including n =∞).
11.20. Give an example of a covering space p : E → B, of a space A, and a map

f : A→ B that cannot be lifted to E.
11.21. Prove that the universal cover ω : U → B of any (pathconnected) space B is

the cover of any other covering of B, i.e., for any covering space p : E → B, there exists
a covering space q : U → E.


