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Symmetry reductions of Lax integrable 3D systems
(joint work with H. Baran, O. Morozov, and P. Vojéik)

We give a complete description of symmetry reductions for the following
3D Lax integrable (i.e., admitting a ZCR with a non-removable parameter)
equations:

the Pavlov equation Uyy = Uty + Uylpy — Uglay, (1)
the 3D rdDym equation Uty = Ugplzy — Uylze, (2)
the universal hierarchy equation Uyy = UzUgy — UyUg (3)

(see [1] and references therein). The result comprised more than 30 equa-
tions, but the majority of them were either exactly solvable or linearized by
the generalized Legendre transformations. Nevertheless, there were 10 ‘inter-
esting’ reductions, among which two well known equations, i.e., the Liouville!
and Gibbons-Tsarev equations. The rest nine can be divided in two groups by
their symmetry properties: five equations admit infinite-dimensional Lie alge-
bras of contact symmetries (with functional parameters) and four others possess
finite-dimensional symmetry algebras. The integrability properties of these four
equations were studied in [2] and the main results are as follows.
Equation (1) admits the covering

@ = (® — que —uy)qe, Gy = (¢ — Us)qs.

The symmetry @1 = uy — 22U, — yuy + 3u lifts to this covering and the reduction
leads to the equation

Uny = (vn + 2§)vge — (vg — N)ven — ve (4)
and the covering
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The reduction with respect to the symmetry o = u; — yu, + 2x leads to the
equation

Uy = (Vg + N)vee — Vevgy — 2 ()

with the covering
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By the change of variable v — v — 1?/2 Equation (5) reduces to the Gibbons-
Tsarev equation, while the covering becomes the well known nonlinear Lax pair
of this equation.

Equation (2) admits the covering
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IWhich is also linearizable by a well known differential substitution and is not considered
below.



The symmetry ¢ = u; — 2u, — uy + 2u can be prolonged to a symmetry of the
covering and as the result of p-reduction we obtain the equation

Oy = (ve — §)vey — vy(vee — 2) (6)
with the covering
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Finally, Equation (3) admits the covering
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and the reduction with respect to the symmetry ¢ = u, +u, +yu, +u prolonged
to the covering leads to the equation

Uny = Vyvge — (Vg + 0)vey + vty (7)
with the covering
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Equations (4)—(6) are pair-wise inequivalent with respect to contact trans-
formation.

Using the standard reversal procedure, i.e., passing from a one-dimensional
covering

wsz(ﬁamUaU&vaw% wnZY(f’m%Ugwn,w)

to the infinite-dimensional covering

7/15 = 7X(£anvvvvﬁavn7>‘)w)\a q/}77 = 7Y(£777,U,vfavna)‘)w>\7 (8)

and expanding (8) in formal Laurent series in A\, we constructed infinite hierar-
chies of nonlocal conservation laws for Equations (4)—(6).
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