- 1. Вытекает ли из равномерной сходимости γ_n к γ на I, что $\int_{\gamma_n} f \, dz$ сходится к $\int_{\gamma} f \, dz$? Покажите, что ответ положительный, если $f \in \mathcal{O}(\gamma(I))$, и отрицательный, если $f(z) = \overline{z}$.
- **2**. Интеграл по окружности $\{|z|=1\}$ от непрерывной \mathbb{R} -значной (\mathbb{C} -значной) функции, модуль которой не превосходит 1, сам по модулю не превосходит 4 (соответственно 2π), причем эта оценка неулучшаема.
- **3**. Пусть $G \subset \mathbb{C}$ круг, полуплоскость или вся плоскость, $a_1, \ldots, a_n \in G$, $D:=G\setminus\{a_1,\ldots,a_n\}$. Покажите, что функция $f\in\mathcal{O}(D)$ имеет первообразную в D тогда и только тогда, когда вычеты f во всех точках a_1, \ldots, a_n равны нулю. В частности, 1/z не имеет первообразной на $\{0 < |z| < \varepsilon\}$ ни при каком $\varepsilon > 0$.
- 4. (A) Если $f\in \mathcal{O}(\mathbb{C}),$ то $\frac{f(z)}{z^2+1}$ имеет первообразную на $\{|z|>1\}$ тогда и только тогда, когда f(i) = f(-i). (В) Выберем $f(z) \equiv 1$ и положим

$$g_j(z) := \frac{\pi}{2} - \int_z^\infty \frac{d\zeta}{\zeta^2 + 1}, \qquad z \in D_j := \mathbb{C} \setminus \gamma_j, \quad j = 1, 2, 3, 4,$$

где $\gamma_1 := [i, -i]$, дуги единичной окружности γ_2 и γ_3 соединяют i с -i через -1 и 1 соответственно, а γ_4 идет вдоль γ_2 от i до -1, по отрезку от -1 до 1 и вдоль γ_3 от 1 до i. Покажите, что каждая функция $g_i(z)$ является первообразной функции $\frac{1}{z^2+1}$ на D_j (значит, и на $\{|z|>1\}$) и конформно отображает D_j на свой образ. Найдите области $g_j(D_j), j=1,2,3,4.$ 5. Найдите (A) $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$, (B) $\int_0^{2\pi} \frac{\sin n\theta}{5-4\sin\theta} \, d\theta, \, n \in \mathbb{Z}.$ 6 (подготовка к задаче $\mathbf{7}(\mathbf{C})$ и дальнейшим). (A) Покажите, что если f(z)

- непрерывна на $\{\operatorname{Im} z\geqslant 0, |z|\geqslant R_0\}$ и стремится к 0 при $|z|\to\infty$, то для всех t>0 имеем $\int_{\gamma_R}f(z)e^{itz}\,dz=o(1)$ при $R\to\infty$, где $\gamma_R(\theta):=Re^{i\theta},\ 0\leqslant\theta\leqslant\pi$. Извлеките из 7(A) контрпример к этому утверждению для t < 0. (В) Пусть f(z) непрерывна при $0 < |z-a| < \varepsilon$ и существует $\lim_{z\to a} (z-a)f(z) =: A$. Ориентируем дугу окружности $\gamma_{\varepsilon}(\theta) := \varepsilon e^{i\theta}, \ 0 \leqslant \theta \leqslant \pi$, по возрастанию θ . Тогда $\int_{\gamma_{\varepsilon}} f(z) dz = \pi i A + o(1)$ при $\varepsilon \to 0$.
- 7. При всех $t \in \mathbb{R}$ найдите (A) $\int_{-\infty}^{\infty} \frac{\cos tx}{x^4+1} \, dx$; (B) $\int_{-\infty}^{\infty} \frac{e^{itx}}{-x^2+2ix+10} \, dx$; (C) $\int_{-\infty}^{\infty} \frac{\sin tx}{x} \, dx$; (D) $\int_{-\infty}^{\infty} \frac{\sin^2 tx}{x^4+a^2x^2} \, dx$, a > 0.

 8. Найдите (A) $\int_{0}^{\infty} \frac{dx}{x^n+1}$, $n = 2, 3, \ldots$ (указание: интегрируйте по границе сектора $\{0 < \arg z < 2\pi/n, |z| < R\}$); (B) $\int_{0}^{\infty} \frac{x^a \, dx}{x^n+1}$, $n = 2, 3, \ldots, -1 < a < n-1$;
- (C) $\int_0^\infty \frac{x^a \, dx}{x^2 + 4x + 8}$, -1 < a < 1. 9. Найдите (A) $\int_{-\infty}^\infty \frac{e^{ax} \, dx}{e^x + 1}$, 0 < a < 1 (после чего заменой $e^x = y^n$ проверьте результаты $\mathbf{8}(A)$,(B)); (B) $\int_{-\infty}^\infty \frac{\cos tx}{\operatorname{ch} x + \operatorname{ch} a} \, dx$, $t \in \mathbb{R}$, a > 0; (C) $\int_{-\infty}^\infty \frac{\sin tx}{\operatorname{sh} x} \, dx$, $t \in \mathbb{R}$.