Задачи

- Задача 2.1. Пусть V линейное пространство. Построить представление группы GL(V) в пространстве алгебр на V (в пространстве тензоров типа (1,2)). Доказать, что группа автоморфизмов любой алгебры является линейной группой Ли.
- Задача 2.2. Описать все (с точностью до изоморфизма) алгебры Ли размерности 1, 2 и 3 а) над полем \mathbb{C} , b) над полем \mathbb{R} .
- **Задача 2.3.** Пусть A ассоциативная алгебра. Положим [x,y] = xy yx. Доказать, что эта операция вводит на A структуру алгебры Ли. Проверить, что следующие классические алгебры Ли получаются таким образом из $\mathfrak{gl}(n)$:
- а) $\mathfrak{gl}(V)=\mathfrak{gl}(n)$ алгебра Ли всех линейных операторов в n-мерном пространстве V= алгебра Ли матриц порядка n;
- b) $\mathfrak{sl}(n) = \{x \in \mathfrak{gl}(n) \mid \operatorname{tr}(x) = 0\};$
- c) $\mathfrak{so}(n) = \{ x \in \mathfrak{gl}(n) \, | \, x + x^t = 0 \};$
- d) алгебры Ли над \mathbb{R} : $\mathfrak{u}(n) = \{x \in \mathfrak{gl}(n) \mid x + x^* = 0\}$ и $\mathfrak{su}(n) = \mathfrak{u}(n) \cap \mathfrak{sl}(n)$. e) Пусть E_n обозначает единичную матрицу порядка n, а $I_{2n} = \begin{pmatrix} 0 & E_n \\ -E_n & 0 \end{pmatrix}$. Тогда $\mathfrak{sp}(2n) = 0$ ${x \in \mathfrak{gl}(n) \mid x^t I_{2n} + I_{2n} x = 0}.$

Дифференцированием алгебры Ли \mathfrak{g} называется линейное отображение $D: \mathfrak{g} \to \mathfrak{g}$, удовлетворяющее соотношению

$$D[x,y] = [Dx,y] + [x,Dy].$$

Задача 2.4. Доказать, что множество всех дифференцирований алгебры Ли я образует алгебру Ли относительно операции

$$[D_1, D_2] = D_1 D_2 - D_2 D_1.$$

Пусть \mathfrak{g} – алгебра Ли, $\xi \in \mathfrak{g}$. Будем называть внутренним дифференцированием ad ξ отображение $\operatorname{ad} \xi \colon \eta \mapsto [\xi, \eta].$ (Убедиться, что это дифференцирование!)

Задача 2.5. Доказать, что внутренние дифференцирования образуют идеал в алгебре Ли всех дифференцирований ($I \subset \mathfrak{g}$ является идеалом в алгебре Ли \mathfrak{g} , если $[I,\mathfrak{g}] \subset I$).

Задача 2.6. Описать все дифференцирования по модулю внутренних

- а) трёхмерной алгебры Гейзенберга $\mathfrak{hei}(3)$;
- b) (2n+1)-мерной алгебры Гейзенберга $\mathfrak{hei}(2+1)$;
- с) алгебры Ли аффинных преобразований прямой $\mathfrak{aff}(1)$;
- $d) \mathfrak{sl}(2).$
- Задача 2.7. Напомним, что $SO(n,\mathbb{R})$ это группа линейных преобразований n-мерного векторного пространства над \mathbb{R} с единичным определителем, сохраняющих евклидово скалярное произведение. Доказать, что SO(2,R) – это окружность S^1 .
- **Задача 2.8.** Ввести на 3-мерной сфере S^3 структуру группы Ли (подсказка: вспомните про кватернионы).

Построить сюръективный гомоморфизм $S^3 \to SO(3,\mathbb{R})$. (Подсказка: рассмотрите действие алгебры кватернионов на себе сопряжениями). Проверить, что получилось двулистное накрытие $SO(3,\mathbb{R}).$

Задача 2.9. Построить двулистное накрытие $S^3 \times S^3 \to SO(4,\mathbb{R})$ (подсказка: пусть H - алгебра кватернионов; рассмотрите действие $H \times H$ на H умножением слева и справа).