5. HOMOTOPIES

Problem 1. Prove that the following spaces are homotopy equivalent: (a) the sphere S^{2} with two points identified; (b) the union of the sphere S^{2} and one of its diameters; (c) $S^{1} \vee S^{2}$.

Problem 2. (a) Prove that the spaces $\mathbb{R}^{3} \backslash S^{1}$ and $S^{2} \vee S^{1}$ are homotopy equivalent; here $S^{1} \subset \mathbb{R}^{3}$ is the standard circle lying in the $x y$ coordinate plane. (b) Let X be the space \mathbb{R}^{3} from which n copies of S^{1} lying in parallel planes are deleted. Prove that X is homotopy equivalent to the wedge product of n copies of the space $S^{2} \vee S^{1}$.

Problem 3. Let $L=\left\{(x, y, 0) \mid x^{2}+y^{2}=1\right\} \cup\left\{(0, y, z) \mid(y-1)^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$ be a union of two circles linked in the simplest way. Prove that the spaces $\mathbb{R}^{3} \backslash L$ and $S^{2} \vee \mathbb{T}^{2}$ are homotopy equivalent.

For every continuous map $f: S^{1} \rightarrow S^{1}$ one can define an integer $\operatorname{deg}(f)$ so that the following statements are true:

- Maps f_{1} and f_{2} are homotopic if and only if $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)$.
- If $f_{n}: S^{1} \rightarrow S^{1}(n \in \mathbb{Z})$ is the map defined by the formula $f(\varphi)=n \varphi$ (where φ is the central angle on the circle) then $\operatorname{deg}(f)=n$. In particular, if f is a constant map then $\operatorname{deg}(f)=0$; if f is the identity map then $\operatorname{deg}(f)=1$.

Problem 4. Let $f, g: S^{1} \rightarrow S^{1}$ be continuous maps. Prove that $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g)$.
Problem 5. (a) Prove that if a map $f: X \rightarrow S^{n}$ is not onto, then f is homotopic to a constant map. (b) Prove that if for a map $f: S^{1} \rightarrow S^{1}$ there exists $c \in S^{1}$ such that $f^{-1}(c)$ consists of n points then $|\operatorname{deg}(f)| \leq n$.
Problem 6 (a hint for Problem 7). (a) Let $f_{0} \sim f_{1}$ and $g_{0} \sim g_{1}$ where $f_{0}, f_{1}: X \rightarrow Y$ and $g_{0}, g_{1}: Y \rightarrow Z$ are continuous maps. Prove that $g_{0} \circ f_{0} \sim g_{1} \sim f_{1}$. (b) Let $X_{1} \approx X_{2}$ and $Y_{1} \approx Y_{2}$. Define a one-to-one correspondence $\mathrm{Eq}_{X_{1}, X_{2}}^{Y_{1}, Y_{2}}$ between the homotopy classes of continuous maps $X_{1} \rightarrow Y_{1}$ and $X_{2} \rightarrow Y_{2}$. Check the following properties of the correspondence defined: if $\left[f_{2}\right]=\mathrm{Eq}_{X_{1}, X_{2}}^{Y_{1}, Y_{2}}\left(\left[f_{1}\right]\right)$ and $\left[f_{3}\right]=\mathrm{Eq}_{X_{2}, X_{3}}^{Y_{2}, Y_{3}}\left(\left[f_{2}\right]\right)$ then $\left[f_{3}\right]=\mathrm{Eq}_{X_{1}, X_{3}}^{Y_{1}, Y_{3}}\left(\left[f_{1}\right]\right)([f]$ means a homotopy class of the map f), and if $\left[f_{2}\right]=\mathrm{Eq}_{X_{1}, X_{2}}^{Y_{1}, Y_{2}}\left(\left[f_{1}\right]\right)$ and $\left[g_{2}\right]=\mathrm{Eq}_{Y_{1}, Y_{2}}^{Z_{1}, Z_{2}}\left(\left[g_{1}\right]\right)$ then $\left[g_{2} \circ f_{2}\right]=\mathrm{Eq}_{X_{1}, X_{2}}^{Z_{1}, Z_{2}}\left(\left[g_{1} \circ f_{1}\right]\right)$.
Problem 7. Let X_{n} be a wedge product of n circles, $f_{n, k}: S^{1} \rightarrow X_{n}$ be a map sending S^{1} homeomorphically to the k-th circle of the wedge, and $g_{n, k}: X_{k} \rightarrow S^{1}$ be a map sending the k-th circle of X_{n} homeomorphically to S^{1} and all the other circles, to a point. (a) Prove that $f_{n, k}$ and $g_{n, k}$ are not homotopic to the map to a point. (b) Prove that X_{n} for $n>1$ is not homotopy equivalent to a circle. (c) Prove that $X_{n_{1}}$ is not homotopy equivalent to $X_{n_{2}}$ is $n_{1} \neq n_{2}$.
Hint. Consider a composition $g_{n, k_{1}} \circ f_{n, k_{2}}: S^{1} \rightarrow S^{1}$ and use the results of Problems 4 and 6.
Problem 8. (a) Prove that the map $f:[0,1) \rightarrow\{z \in \mathbb{C}| | z \mid=1\}=S^{1}$ defined by the formula $f(t)=\exp (2 \pi i t)$ is continuous and one-to-one, but is not a homeomorphism. (b) Prove that a continuous one-to-one map of compact topological spaces is a homeomorphism.
Problem 9. Prove that the sphere with g handles from which a point has been removed is homotopy equivalent to the wedge product of n copies of the circle and find n. (a) Prove that the sphere with g_{1} handles is not homeomorphic to a sphere with g_{2} handles if $g_{1} \neq g_{2}$.

Problem 10. Prove that $A \subset X$ is a retract of X if and only if any continuous map $f: A \rightarrow Y$ can be extended to X.

Problem 11. Prove that if any continuous map $X \rightarrow X$ has a fixed point and $A \subset X$ is a retract of X, then any continuous map $A \rightarrow A$ also has a fixed point.

Brouwer Fixed Point Theorem says that any continuous map $f: D^{n} \rightarrow D^{n}$ has a fixed point.
Problem 12. Prove that the following assertions are equivalent to the Brouwer theorem: (a) There is no retraction $r: D^{n} \rightarrow S^{n-1}$. (b) Let $v(x)$ be a continuous vector field on D^{n} such that $v(x)=x$ for any point $x \in \partial D^{n}=S^{n-1}$. Then $v(x)=0$ for some point $x \in D^{n}$.
Problem 13. Is there a continuous map $f: X \rightarrow X$ without fixed points if X is (a) a 2-sphere with n holes; (b) a 2 -sphere with g handles and a hole?

