The following facts are considered known in this problem set:

- The Euler characteristic of a compact surface S is defined as V E + F where V is the number of vertices and E is the number of edges of a graph Γ embedded into S so that $S \setminus \Gamma$ is homeomorphic to a disjoint union of F disks (faces). The Euler characteristics depends on the surface S only and does not depend on the graph Γ .
- A closed surface (i.e. a compact surface without boundary) is homeomorphic to either a sphere with g handles (a connected sum of a sphere with g tori) or to a sphere with g Möbius bands attached (a connected sum of a sphere with g copies of $\mathbb{R}P^2$). A compact surface with boundary is homeomorphic to a closed surface with a finite number of disks deleted.
- **IV.1.** Find $\chi(Kl)$, where Kl is the Klein bottle.
- **IV.2.** Prove that $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) 2$.
- **IV.3.** Prove that $\chi(mT^2) = 2 2m$ and $\chi(n\mathbb{R}P^2) = 2 n$.
- IV.4. Determine the type of the surface shown in Fig. 16 [page 31 of the Prasolov–Sossinsky "Topology-I" book].
 - (a) for n = 3;
 - (b) for arbitrary $n \geq 2$.
- IV.5. Prove that the surface shown in Fig. 17 [page 31 of the Prasolov–Sossinsky "Topology-I" book] is homeomorphic to the torus from which a disk has been removed.
 - **IV.6.** Consider the quotient space $(S^1 \times S^1)/(x,y) \sim (y,x)$. Prove that this space is a surface. Which one?
- IV.7. (a) Prove that any closed nonorientable surface is homeomorphic to one of the surfaces in the following list: $\mathbb{R}P^2$ (projective plane), $\mathbb{R}P^2 \# \mathbb{R}P^2$ (Klein bottle), ... $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \dots \# \mathbb{R}P^2$,
 - (b)* Any two distinct surfaces in the list are not homeomorphic.
 - IV.8. Prove that a closed orientable surface is not homeomorphic to a closed nonorientable surface.
- IV.9. What orientable surfaces can be obtained by identifying the sides of a regular octagon? For a given g find how many are there ways to identify the sides so as to obtain a sphere with g handles.
- IV.10. Prove that on the sphere with g handles the maximal number of nonintersecting closed curves not dividing this surface is equal to g.
- IV.11. Draw four closed curves issuing from a common point on the sphere with two handles so that cutting along these curves produces an octagon (a topological disk).
- **IV.12.** Prove that the standard circle can be spanned by a Möbius band, i.e. there exists a subset $M \subset \mathbb{R}^3$ of the 3-space homeomorphic to the Möbius band and such that its boundary ∂M is a circle (lying in some plane).
 - **IV.13.** Prove that the boundary of $Mb \times [0,1]$, where Mb is the Möbius band, is the Klein bottle.
- **IV.14.** Give an example of two surfaces-with-boundary M and N that are not homeomorphic but $M \times [0,1]$ and $N \times [0,1]$ are homeomorphic.
- **IV.15.** Two three-dimensional disks \mathbb{D}_i^3 , i = 1, 2, are glued together by a homeomorphism h of their boundary spheres. Find the resulting quotient space $\mathbb{D}_1^3 \cup_h \mathbb{D}_2^3$ if
 - (a) the homeomorphism h is the identity;
 - (b)* the homeomorphism h is the symmetry w.r.t. the equatorial plane?
- **IV.16.** * Two solid tori $\mathbb{D}^2 \times \mathbb{S}^1$ and $\mathbb{S}^1 \times \mathbb{D}^2$ with coordinates (r, φ, ψ) and (ψ, r, φ) , where (r, φ) are polar coordinates in \mathbb{D}^2 , are glued together by identifying their boundaries according to the rule $(1, \varphi, \psi) \sim (\varphi, 1, \psi)$. Prove that the quotient space obtained is \mathbb{S}^3 .