PROBLEMS (14.03.2012)

- VI.1. Describe a homotopy that takes the immersed curve with two self-intersections forming two "outside" little loops shown in Fig.1 to the circle.
- VI.2. Describe a homotopy that takes the immersed curve with two self-intersections, one of which is an "outside" little loop and the other is an "inside" little loop, shown in Fig.2 to the circle.
 - VI.3. Recall that a simple loop ω is a part of an immersed curve γ such that:
 - (1) ω starts and ends at a double point of γ ;
- (2) ω is not self-intersecting (however, it can intersects other parts of γ). Prove that any immersed curve with self-intersections has a simple loop.
- VI.4. Describe a homotopy that changes the simple loop ω of the immersed curve γ in Fig.3 (and does not change the rest of γ) so that after this homotopy we obtain a new simple loop ω' that does not intersect the rest of γ .
- VI.5. Using the previous problems, describe a proof of the Whitney Theorem for immersed curves in the plane.
 - VI.6. Prove the Whitney Theorem for immersed curves in the sphere.
- VI.7. Can an immersed curve with two self-intersections forming two "inside" little loops be regularly homotopic to the circle?
- VI.8. Can an immersed curve with 17 self-intersections forming 17 "outside" little loops be regularly homotopic to the circle?

The next two problems yield an analytic proof of the Whitney Theorem in the general case.

- VI.9. Prove that there exists a regular homotopy of a curve γ to a curve γ' of length 1 such that the following conditions hold:
 - $\gamma'(0) = 0;$
 - at the point t=0 the velocity vector of the curve γ' is equal to (1,0);
 - at every point the velocity vector of the curve γ' is of length 1.
- VI.10. Let γ_0 and γ_1 be smooth curves such that $w(\gamma_0) = w(\gamma_1) = N$. Suppose that for these curves the conditions of Problem VI.9. are satisfied. Write the velocity vectors of the curves γ_0 and γ_1 in the form $v_0(s) = e^{i\phi_0(s)}$ and $v_1(s) = e^{i\phi_1(s)}$, where $\phi_0(0) = \phi_1(0) = 0$ and $\phi_0(1) = \phi_1(1) = 2\pi N$. Set $\phi_t(s) = (1-t) \phi_0(s) + t \phi_1(s)$ and consider the curve $\widetilde{\gamma}_t$ with the velocity vector $v_t(s) = e^{i\phi_t(s)}$:

$$\widetilde{\gamma}_t(s) = \int_0^s e^{i\phi_t(\tau)} d\tau.$$

For $t \neq 0$, 1 the curve $\tilde{\gamma}_t$ is not necessary closed. With a help of this curve construct a smooth closed curve with nonzero velocity vectors and conclude the proof of Whitney's theorem. [Hint. Consider the curve

$$\gamma_t(s) = \widetilde{\gamma}_t(s) - s\widetilde{\gamma}_t(1) = \int_0^s e^{i\phi_t(\tau)} d\tau - s \int_0^1 e^{i\phi_t(\tau)} d\tau.$$

- VI.11. For an oriented immersed curve γ indicate a rule for assigning ± 1 to each self-intersection point so that the sum of all such numbers equals $w(\gamma)$.
- VI.12. Show that the degree of a point P with respect to an immersed curve γ may be computed by joining P to some point O far away from the curve by a smooth curve transversal to γ and using the "signs" of the intersections of the two curves.