НМУ, дополнительные главы геометрии. Домашний экзамен. Выдан 13.12.2018.

Желательно сдать решение в течение недели, отдав его мне на следующей (последней) лекции или положив его в ячейку с моим именем (А. Пенской) в учебной части. Заметим, что совершенно не обязательно решить всё для отличной оценки: задачи даны со значительным «избытком», среди них есть весьма сложные. Но надо же сделать жизнь интересной.

Задача 1. Попробуйте найти вещественную и комплексную K-группы для маломерных сфер а) \mathbb{S}^1 , b) \mathbb{S}^2 , c) \mathbb{S}^3 .

Задача 2. Докажите, что для двумерного многообразия класс Тодда $\mathrm{Td}(M)$ равен 1.

Задача 3.

- а) Доказать, что алгебра $\mathrm{Cl}(\mathbb{R}^2)$ изоморфна \mathbb{H} , и найти $\mathrm{Cl}^\pm(\mathbb{R}^2)$.
- b) Доказать, что группа $Spin(\mathbb{R}^2)$ изоморфна $U(1) \cong \mathbb{S}^1$,
- с) Доказать, что алгебра $\mathrm{Cl}(\mathbb{R}^4)$ изоморфна алгебре 2×2 -матриц с кватернионными коэффициентами, и дать описание $\mathrm{Cl}^\pm(\mathbb{R}^4)$.
- d) Используйте предыдущий пункт, чтобы выяснить, как группа $\mathrm{Spin}(\mathbb{R}^4)$ связана с $\mathrm{SU}(2) \times \mathrm{SU}(2) \cong \mathbb{S}^3 \times \mathbb{S}^3$.

Задача 4. Пусть M^n многообразие со спинорной структурой, e_1,\ldots,e_n локальный ортонормированый базис, а $\mathbb D$ оператор Дирака в спинорном расслоении. Докажите формулу Лихнеровича

$$\mathbb{D}^2 = -[\nabla_{e_i} \nabla_{e_i} + \nabla_{\nabla_{e_i} e_i}] + \frac{R}{4},$$

где R — скалярная кривизна многообразия M, а по индексу i подразумевается суммирование. Указание: удобно воспользоваться геодезическими координатами. Заметим, что выражение в квадратных скобках есть просто квадрат ковариантной производной.

Задача 5. Выведите из предыдущей задачи, что если многообразие M компактно, а $R\geqslant 0$, причём есть хотя бы одна точка $x_0\in M$, такая что $R(x_0)>0$, то ядро $\mathbb D$ тривиально, откуда следует, что индекс оператора $\mathbb D|_{\Gamma(M,S^+)}$ равен нулю. Указание: рассмотрите $\int_M (\mathbb Ds,\mathbb Ds)\eta$, где η форма объема.

Задача 6. Найдите символ оператора Дирака $\mathbb{D}: \Gamma(M, S^{\pm}) \longrightarrow \Gamma(M, S^{\mp})$ и докажите, что он является эллиптическим.

Задача 7*. Пусть $A:\Gamma(M,\xi^0)\longrightarrow \Gamma(M,\xi^1)$ эллиптический дифференциальный оператор. Докажите, что если $\mathrm{rk}\,\xi^0=\mathrm{rk}\,\xi^1=1,$ а $\dim M>2,$ то индекс A равен нулю.

Задача 8*. В условиях предыдущей задачи заменим $\dim M > 2$ на $\dim M = 2$. Что тогда можно сказать про $\operatorname{ind} A$?

Задача 9*. Вычислите топологический индекс оператора Дирака

$$\mathbb{D}: \Gamma(M, S^+) \longrightarrow \Gamma(M, S^-)$$

(то есть выражение в правой части формулы Атьи-Зингера, применённой к данному оператору).