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Foreword

The present booklet is a compilation of the lecture notes given as

handouts to students taking the Topology-I course that I taught in the

fall semester of 2015 in the framework of the Math in Moscow program.

Actually, it is a rewritten version of the booklet of the same title, jointly

authored by Victor Prasolov and myself. The sequence of lectures remains

almost the same, the exercises are practically unchanged, but the exposi-

tion within each lecture has been severely revised, new figures have been

added.

The resulting course is a one-semester introduction to topology, em-

phasizing the geometric and algebraic aspects. What material will be

covered? We shall give a brief answer to that question here, together with

a few comments about why we chose that particular material.

In this course, we work mainly with classical subsets of Euclidean

spaces (graphs, surfaces, polyhedra, CW-spaces, etc.) rather than with

abstract topological spaces. We do not strive for maximal generality,

because we regard Topology more as a tool (used in other mathematical

disciplines) than an object of study for its own sake. We do introduce the

notion of topological space (in Lecture 2) and prove the basic theorems

of general topology (after having proved them in the particular case of

subsets of Euclidean space in Lecture 1), but we do not go deeply into

the theory. We follow that up (Lecture 3) with the main constructions

used in topology (Cartesian product, quotient space, wedge, join, cone,

suspension, simplicial and CW-spaces, etc.).

The first topological object that we study thoroughly are (triangulable)

surfaces (Lectures 4 and 5). We classify them up to homeomorphism, using

the above-mentioned constructions and the first serious invariant in the

course—the Euler characteristic.

Next (Lecture 6), we introduce the notion of homotopy, which plays a

deciding role in the evolution of topology towards algebra, from “point set
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topology” to “homotopical topology” (aka “algebraic topology”). Here the

second important invariant in our course, the degree of circle maps, makes

its appearance.

This invariant is immediately applied outside of topology, to the theory

of vector fields (which are not topological objects, they live in the theory of

differential equations). This is done in Lectures 7 and 8, which culminate

in the beautiful Poincaré–Hopf theorem, proved here for surfaces. In the

proof, two invariants—the index of a vector field (defined via the degree of

circle maps) and the Euler characteristic—unexpectedly come together.

The remaining topological objects studied in the course are plane

curves, covering spaces, and knots. In the study of plane curves (Lec-

ture 9), two more invariants appear: the winding number (also defined via

the degree of circle maps), which allows to prove the Whitney–Graustein

theorem on the classification of regular curves, and the degree of a point

with respect to a curve, which is the simplest example of a finite type

invariant (in the sense of Vassiliev), and is used here to prove the so-

called “fundamental theorem of algebra” (algebraic equations always have

roots).

The study of covering spaces is precluded by the introduction (Lec-

ture 10) of the fundamental group π1(X), whose main role in this course

is to show how an algebraic object can almost entirely govern a complicated

geometric situation, and allows to prove deep facts about covering spaces

my means of short and simple algebraic arguments. But before using

π1(X) to classify covering spaces (Lecture 11), we use it to prove the

Brouwer fixed point theorem in dimension two. For the students, this is a

first occasion to come in contact with the category theory language: the

functoriality of the fundamental group is precisely what reduces the proof

of Brouwer’s deep geometric theorem to almost trivial algebra.

The final (12-th) lecture is a brief survey of knot theory, a classical

branch of topology which experienced a striking revival at the end of the

20-th century. After introducing the geometry, arithmetic, and combina-

torics of knots and links, we show how the Conway axioms can be used

to compute the Alexander–Conway polynomial of knots, thus introducing

the students “diagrammatic combinatorics”, a new type of mathematical

argumentation, particularly popular today in mathematical physics.

In accord with our general philosophy—topology as a tool, study of

concrete objects—the ability of using topological methods to solve prob-

lems is essential. Solving the problems, much more than memorizing the

theory, is the way to really master topology.
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This booklet would never have been published without the help of a

number of colleagues and friends. I am particularly grateful to Victor

Prasolov, who was the leading force in the development of this course, to

Mikhail Panov, who produced most of the illustrations, to Serge Lvovsky

for careful and precise editing, to Victor Shuvalov for reformatting the

original TEX file. I am also grateful to the numerous students who took

the course, pointed out errors and showed, by their reactions, whether or

not the exposition was adequate.



Lecture 1

The topology of subsets of R
n

The basic material of this lecture should be familiar to you from

Advanced Calculus courses, but we shall revise it in detail to ensure that

you are comfortable with its main notions (the notions of open set and

continuous map) and know how to work with them.

1.1. Continuous maps

“Topology is the mathematics of continuity”

Let R be the set of real numbers. A function f : R → R is called

continuous at the point x0 ∈ R if for any ε > 0 there exists a δ > 0 such

that the inequality

|f(x0)− f(x)| < ε

holds for all x∈R whenever |x0 − x|<δ. The function f is called contin-

uous if it is continuous at all points x∈R.

This is basic one-variable calculus.

Let R
n be n-dimensional space. By Or(p) denote the open ball of radius

r > 0 and center p∈Rn, i.e., the set

Or(p) := {q ∈ R
n : d(p, q) < r},

where d is the distance in Rn. A function f : Rn → R is called continu-

ous at the point p0 ∈ Rn if for any ε > 0 there exists a δ > 0 such that

f(p)∈Oε(f(p0)) for all p∈Oδ(p0). The function f is called continuous if

it is continuous at all points p∈R
n.

This is (more advanced) calculus in several variables.

A set G⊂Rn is called open in Rn if for any point g ∈G there exists

a δ > 0 such that Oδ(g)⊂G. Let X ⊂Rn. A subset U ⊂X is called open

in X if for any point u∈U there exists a δ > 0 such that Oδ(u)∩X ⊂U .
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An equivalent property: U =V ∩X , where V is an open set in Rn. Clearly,

any union of open sets is open and any finite intersection of open sets is

open. LetX and Y be subsets of R
n. A map f : X→Y is called continuous

if the preimage of any open set is an open set, i.e.,

V is open in Y =⇒ f−1(V ) is open in X.

This is basic topology.

Let us compare the three definitions of continuity. Clearly, the topo-

logical definition is not only the shortest, but is conceptually the simplest.

Also, the topological definition yields the simplest proofs. Here is an

example.

Theorem 1.1. The composition of continuous maps is a continuous

map. In more detail, if X, Y , Z are subsets of Rn, f : X → Y and

g : Y → Z are continuous maps, then their composition, i.e., the map

h= g ◦ f : X→Z given by h(x) := g(f(x)), is continuous.

Proof. Let W ⊂ Z be open. Then the set V := f−1(W ) ⊂ Y is open

(because f is continuous). Therefore, the set U := g−1(V ) ⊂X is open

(because g is continuous). But U = h−1(W ).

Compare this proof with the proof of the corresponding theorem in

basic calculus. This proof is much simpler.

The notion of open set, used to define continuity, is fundamental in

topology. Other basic notions (neighborhood, closed set, closure, interior,

boundary, compactness, path connectedness, etc.) are defined by using

open sets.

1.2. Closure, boundary, interior

By a neighborhood of a point x∈X ⊂Rn we mean any open set (in X)

that contains x.

Let A ⊂ X ; an interior point of A is a point x ∈ A which has a

neighborhood U in X contained in A. The set of all interior points of A is

called the interior of A in X and is denoted by Int(A). An isolated point

of A in X is a point a ∈A which has a neighborhood U in X such that

U ∩A= a.

A boundary point ofA inX is a point x∈X such that any neighborhood

U ∋ x in X contains points of A and points not in A, i.e., U ∩A 6= ∅ and

U ∩ (X −A) 6= ∅; the boundary of A is denoted by Bd(A) or ∂A. The

union of A and all the boundary points of A is called the closure of A in X
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and is denoted by Clos(A, X) (or Clos(A), or A, if X is clear from the

context).

Theorem 1.2. Let A⊂Rn.

(a) A is closed if and only if it contains all of its boundary points.

(b) The interior of A is the largest (by inclusion) open set contained in A.

(c) The closure of A is the smallest (by inclusion) closed set containing A.

(d) The boundary of a set A is the difference between the closure of A and

the interior of A: Bd(A)= Clos(A)− Int(A).

The proofs follow directly from the definitions, and you should remem-

ber them from the Calculus course. You should be able to write them up

without much trouble in the exercise class.

1.3. Topological equivalence

“A topologist is person who can’t tell the difference

between a coffee cup and a doughnut.”

The goal of this section is to teach you to visualize objects (geometric

figures) the way topologists see them, i.e., by regarding figures as equiva-

lent if they can be bijectively deformed into each other. This is something

you have not been taught to do in calculus courses, and it may take you

some time before you will become able to do it.

Let X and Y be “geometric figures,” i.e., arbitrary subsets of Rn. Then

X and Y are called topologically equivalent or homeomorphic if there exists

a homeomorphism of X onto Y , i.e., a continuous bijective map h : X→Y

such that the inverse map h−1 is continuous.

For the topologist, homeomorphic figures are the same figure: a circle is

the same as the boundary of a square, or that of a triangle, of a hexagon, of

an ellipse; an arc of a circle is the same as a closed interval, a 2-dimensional

disk is the same as the square, or as a triangle together with its inner points;

the boundary of a cube is the same as a sphere, or as the boundary of a

cylinder, or (the boundary of) a tetrahedron.

If a property does not change under any homeomorphism, then this

property is called topological. Examples of topological properties are

compactness and path connectedness (they will be defined later in this

lecture). Examples of properties that are not topological are length, area,
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volume, and boundedness. The fact that boundedness is not a topological

property may seem rather surprising; as an illustration, we shall prove that

the open interval (0, 1) is homeomorphic to the real line R (!)

This is proved by constructing an explicit homeomorphism h : (0, 1)→R as

the composition of the two homeomorphisms p and s shown in Figure 1.1.

0 1/2 1xx′

h(x)h(x′) R

p
p

s
s

Figure 1.1. The homeomorphism h : (0, 1)→R

For another illustration, look at Figure 1.2; you should intuitively feel

that the torus is not homeomorphic to the sphere (although we are at

present unable to prove this!). However, the ordinary torus is homeomor-

phic to the knotted torus in the figure, although they look “topologically

very different”; they provide examples of figures that are homeomorphic,

but are embedded in R3 in different ways. We shall come back to this

distinction later in the course, in particular in the lecture on knot theory.

6≈ ≈

Figure 1.2. The sphere and two tori

We conclude this lecture by studying two basic topological properties

of geometric figures that will be constantly used in this course.
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1.4. Path connectedness

A set X ⊂Rn is called path connected if any two points of X can be

joined by a path, i.e., if for any x, y ∈X there exists a continuous map

ϕ : [0, 1]→X such that ϕ(0)= x and ϕ(1)= y.

Theorem 1.3. The continuous image of a path connected set is path

connected. In more detail, if the map f : X→ Y is continuous and X is

path connected, then f(X) is path connected.

Proof. Let y1, y2 ∈ f(X). Let X1 := f−1(y1) and X2 := f−1(y2). Let

x1 and x2 be arbitrary points of X1 andX2, respectively. Then there exists

a continuous map ϕ : [0, 1]→X such that ϕ(0)= x1 and ϕ(1)= x2 (because

X is path connected). Let ψ : [0, 1]→ f(X) be defined by ψ := f ◦ϕ. Then

ψ is continuous (by Theorem 1.1), ψ(0)= y1 and ψ(1)= y2.

Thus we have shown that path connectedness is a topological property.

1.5. Compactness

A family {Uα} of open sets in X ⊂Rn is called an open cover of X if

this family covers X , i.e., if
⋃

α Uα ⊃X . A subcover of {Uα} is a subfamily

{Uαβ
} such that

⋃
β Uαβ

⊃X , i.e., the subfamily also covers X . The set X

is called compact if every open cover of X contains a finite subcover.

Note the importance of the word “every” in the last definition: a set in

noncompact if at least one of its open covers contains no finite subcover

of X . As an illustration, let us show that

the open interval (0, 1) is not compact.

Indeed, this follows from the fact that any finite subfamily of the cover{
U1, U2, . . .

}
shown in Figure 1.3 obviously does not cover (0, 1).

U1
z }| {

| {z }

U2

U3
z }| {

| {z }

U4

. . .

0 11/21/41/8

Figure 1.3. The open interval (0, 1) is not compact

Theorem 1.4. The continuous image of a compact set is compact, i.e.,

if a map f : X→ Y is continuous and X ⊂Rn is compact, then f(X) is

compact.
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Proof. Let {Vα} be an open covering of f(X). Then each Uα :=f−1(Vα)

is open in X (by the definition of continuity) and so {Uα} is an open

covering of X . But X is compact, hence {Uα} has a finite subcovering,

say
{
Uα1

, . . . , UαN

}
. Then

{
f(Uα1

), . . . , f(UαN
)
}

is obviously a finite

subcover of {Vα}.

Thus we have shown that compactness is a topological property.

Fact 1.5. A set X ⊂ Rn is compact if and only if X is closed and

bounded.

We do not give the proof of this fact because it not really topological:

the word “bounded” makes no sense to a topologist; the proof is usually

given in calculus courses.

1.6. Exercises

1.1. Using the ε-δ definition of continuity, give a detailed proof of the

fact that the composition of two continuous functions is continuous.

1.2. Let F : R2 → R. Suppose the functions f1,x0
(y) := F (x0, y) and

f2,y0
(x) := F (x, y0) are continuous for any x0, y0 ∈ R. Is it true that

F (x, y) is continuous?

1.3. Prove the four assertions (a)–(d) of Theorem 1.2.

1.4. The towns A and B are connected by two roads. Two travellers

can walk along these roads from A to B so that the distance between them

at any moment is less than or equal to 1 km. Can one traveller walk from A

to B and the other from B to A (using these roads) so that the distance

between them at any moment is greater than 1 km?

1.5. Suppose A⊂Rn and x∈Rn. The distance from the point x to the

subset A is equal to d(x, A)= inf{‖x− a‖ : a∈A}.

(i) Prove that the function f(x)= d(x, A) is continuous for any A⊂Rn.

(ii) Prove that if the set A is closed, then the function f(x) = d(x, A)

is positive for any x 6∈A.

1.6. Let X be the subset of R
2 given by the equation xy = 0 (X is

the union of two lines). Give some examples of neighborhoods: (a) of the

point (0, 0); (b) of the point (0, 1).

1.7. Describe the set of points x in R2 such that d(x, A)= 1; 2; 3, where

the set A is given by the formula:

(a) x2 + y2 = 0; (b) x2 + y2 = 2;

(c)* x2 + 2y2 = 2; (d) the square of area two.
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1.8. Let A and B be two subsets of the set X that was defined in

Exercise 1.6. Suppose that A and B are homeomorphic and A is open

in X . Is it true that B is also open in X?

1.9. Construct a homeomorphism between the boundary of the cube I3

and the sphere S2.

1.10. Construct a homeomorphism between the plane R2 and the open

disk B2 := {v∈R2 : |v|< 1}.

1.11. Construct a homeomorphism between the plane R
2 and the

sphere S2 with one point removed.



Lecture 2

Abstract topological spaces

In this lecture, we move from the topological study of concrete geomet-

rical figures (subsets of Rn) to the axiomatic study of abstract topological

spaces. What is remarkable about this approach is the simplicity of the

underlying axioms (based on the notion of open set, now an undefined

concept in the axiomatics), which nevertheless allow to generalize the deep

theorems about subsets of Rn (proved in the previous lecture) to subsets

of any abstract topological space, by reproducing the proofs practically

word for word.

2.1. Topological spaces

By definition, an (abstract) topological space (X , T = {Uα}) is a set X

of arbitrary elements x∈X (called points) and a family T = {Uα} (called

the topology of the space X) of subsets of X (called open sets) such that

(1) X and ∅ are open;

(2) if U and V are open, then U ∩V is open;

(3) if {Vβ} is any collection of open sets, then the set
⋃

β Vβ is open.

Any set X ⊂ Rn is a topological space if the family of open sets is

defined as in Section 1.1. (The proof is a straightforward exercise.) All

the definitions from Sections 1.2–1.4 are valid for any topological space

(and not only for subsets of Rn), because they only use the notion of open

set. All the theorems (and their proofs) from the previous lecture are also

valid. At this point the reader should read through these proofs again

and check that, indeed, only the properties of open sets appearing in the

axioms are used.

In order to define a topological space, we don’t have to specify all the

open sets: there is a more “economical” way of defining the topology. For

a topological space (X , T ), we say that a subset T0 ⊂T = {Uα}) is a base
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of the topology of (X , T ) if for any open set U ∈T there exists a collection

{Vβ} of open sets in T0 such that U =
⋃

β Vβ .

Clearly, any base of the topology uniquely determines the whole topol-

ogy (how?). For example, the set of all open balls in Rn is a base of the

standard topology of Euclidean space.

Examples. (1) Any set D becomes a topological space if it is supplied

with the discrete topology, i.e., if any set is declared open. Obviously, a

topology is discrete if and only if any point is an open set.

(2) Any set X supplied with only two open sets (the empty set and

X itself) is a topological space with the trivial topology.

(3) Any metric space M (see the definition in the next section) is a

topological space in the metric topology, which is given by the base of

all open balls Or(m) := {m′ : d(m′,m)<r} in M , where d is the distance

function in M .

(4) The space C[0, 1] of continuous real-valued functions on the closed

interval [0, 1]⊂R has a standard topology given by the base of open balls

Or(f) := {g : supx(|g(x)− f(x)|)<r}.

Many more nontrivial examples will be given at the end of this lecture,

in the exercise class and in subsequent lectures.

2.2. Metric spaces

A metric space is a set M supplied with a metric (or distance function),

i.e., a function d : M ×M→R such that

(1) for all x, y ∈M , d(x, y)> 0 (nonnegativity);

(2) for all x, y ∈M , d(x, y)= 0 iff x= y; (identity);

(3) for all x, y ∈M , d(x, y)= d(y, x) (symmetry);

(4) for all x, y, z ∈M , d(x, z)6 d(x, y)+ d(y, z) (triangle inequality).

The most popular example of a metric space is Euclidean space Rn

(and its subsets) with the standard metric:

d(p, q) :=

√
n∑

i=1

(xi − yi)
2, where p = (x1, . . . , xn), q = (y1, . . . , yn).

Other less familiar examples will appear in the exercise classes.

As we mentioned above, any metric space (M , d) becomes a topological

space in the metric topology. Conversely, it is not true that any topological

space (X , T ) has a metric (i.e., possesses a distance function for which the
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metric topology coincides with T ). Until the middle of the 20th century

one of the main problems of topology was to find necessary and sufficient

conditions for a topological space (X , T ) to be metrizable, i.e., for X

to have a metric such that the corresponding metric topology coincides

with T .

2.3. Induced topology

If A is a subset of a topological space X , then A acquires a topological

structure in a natural way: the topology on A is induced from X if we

declare all the intersections of open sets of X with A to be the open sets

of A. It is easy to check that A with the induced topology is indeed a

topological space (i.e., satisfies axioms (1)–(3) from Section 2.1).

It is important to note that open sets in the induced topology of A are

not necessarily open in X (in fact, in most cases they are not).

Whenever we consider a subset of a topological space, we will always

regard it as a topological space in the induced topology without explicit

mention. Speaking of open sets, however, one should always make clear

with respect to what set or subset openness is understood. Thus the open

interval (0, 1) is open on the real line, but not in the plane.

2.4. Connectedness

In the previous lecture, we defined path connectedness of subsets of Rn;

that definition remains valid, word for word, for topological spaces. Intu-

itively, pathconnectedness of a topological space means that you can move

continuously within the space from any point to any other point. But there

is another definition of connectedness based on the idea that a connected

set is “a set that consists of one piece”. The rigorous formalization of the

idea of “consisting of one piece” is as follows.

A topological space X is called connected if it is not the union of two

open, closed, nonempty, and nonintersecting sets, i.e., X =A∪B, where

A and B are both open, closed, and nonempty, implies A∩B 6= ∅.

What is the relationship between the notions of connectedness and path

connectedness?

Theorem 2.1. Any path connected topological space is connected, but

there exist connected topological spaces that are not path connected.

Proof. Suppose that the space X is path connected. Arguing by

contradiction, let us assume that it is the disjoint union of two open and

closed nonempty sets A and B. Let a ∈A, b ∈B. Then there exists a
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continuous map f : [0, 1] →X such that f(0) = a and f(1) = b. Denote

A0 := f−1(A) and B0 := f−1(B). These two sets are disjoint, open (as

inverse images of open sets) and cover the closed interval [0, 1] (because

f([0, 1])⊂X =A ∪B). We know that 1 ∈B0. Let ξ be the least upper

bound of A0. If ξ ∈A0, then A0 cannot be open, so ξ belongs to B0; but

then B0 cannot be open. A contradiction.

Concerning the converse statement, see Exercise 2.12.

Connectedness, like path connectedness, is not only a topological

property—it is preserved by any continuous maps (not only by homeo-

morphisms).

Theorem 2.2. The continuous image of a connected set is connected,

i.e., if a map f : X→ Y is continuous and X is connected, then f(X) is

connected.

Proof. We argue by contradiction: suppose that X is connected, but

f(X) is not. Then f(X)=A∪B, where both A and B are both closed and

open, and don’t intersect. Denote A′ = f−1(A) and B′ = f−1(B). Then

X =A∪B, A∩B= ∅, both A and B are open (as preimages of open sets)

and closed (as complements to open sets). But this means that X is not

connected—a contradiction.

Roughly speaking, a connected component of a nonconnected set is

just one of its many “pieces”. The formal definition is this: a connected

component of a not necessarily connected space X is any connected subset

of X not contained in a larger connected subset of X . It is easy to prove

that any connected component of a space X is both open and closed in X .

2.5. Separability

An important type of property for topological spaces comes from vari-

ous separability axioms, which specify how well it is possible to “separate”

points and/or sets (i.e., put them into nonintersecting neighborhoods).

We only define one such property, the most natural and classical one: a

topological space is said to be a Hausdorff space if any two distinct points

possess nonintersecting neighborhoods. Obviously, Euclidean space and

any of its subsets are Hausdorff, as are indeed any metric spaces (why?).

The sad fact that there exist non-Hausdorff spaces will be considered in

the exercise class.
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2.6. More examples of topological spaces

In this section, we list twelve classical mathematical objects (not neces-

sarily familiar to you) coming from completely different areas of mathemat-

ics. All of them are topological spaces. In the exercise class (and in doing

the homework assignments), you will learn how to define their topology

(by introducing an appropriate base). You will perhaps be surprised to

learn that certain objects from different parts of mathematics and physics,

which at first glance have nothing in common, turn out to be topologically

equivalent (homeomorphic).

We begin with examples coming from algebra.

(1) The group Mat(n, n) of all nondegenerate n×n matrices.

(2) The group O(n) of all orthogonal transformations of Rn.

(3) The set of all polynomials of degree n with leading coefficient 1.

The next examples come from geometry.

(4) The real projective space RPn of dimension n.

(5) The Grassmanian G(k, n), i.e., the set of k-dimensional planes

containing the origin in n-dimensional affine space.

(6) The hyperbolic plane.

The next example comes from complex analysis.

(7) The Riemann sphere C and, more generally, Riemann surfaces.

Here are some examples from classical mechanics.

(8) The configuration space of a solid rotating about a fixed point in

3-space.

(9) The configuration space of a rectilinear rod rotating in 3-space

about (a) one of its extremities, (b) its midpoint.

Here are two from algebraic geometry.

(10) The set of solutions p= (x1, . . . , x9)∈R9 of the following system

of 6 equations:

x2
1 + x2

2 + x2
3 = 1, x1x4 + x2x5 + x3x6 = 0,

x2
4 + x2

5 + x2
6 = 1, x1x7 + x2x8 + x3x9 = 0,

x2
7 + x2

8 + x2
9 = 1, x4x7 + x5x8 + x6x9 = 0.

(11) Any affine variety in the Zariski topology is a topological space.
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In conclusion, an example from dynamical systems (differential equa-

tions).

(12) The phase space of billiards on the disk.

2.7. Exercises

2.1. Prove that any constant map is continuous.

2.2. For any subsets A, B⊂Rn, define the distance between A and B

by putting d(A, B) := inf{‖a− b‖ : a∈A, b∈B}.

(a) Is it true that d(A, C)6 d(A, B)+ d(B, C)?

(b) Let A⊂ Rn be a closed subset, let C ⊂Rn be a compact subset.

Prove that there exists a point c0 ∈C such that d(A, C) = d(A, c0). Fur-

ther, prove that if the set A is also compact, then there exists a point

a0 ∈A such that d(A, C)= d(a0, c0).

2.3. Prove that any closed subspace of a compact space is compact.

2.4. Prove that the topology of Rn has a countable base (i.e., a base

consisting of a countable family of open sets).

2.5. Introduce a “natural” topology on

(a) the set Mat(m, n) of matrices of size n×m;

(b) the real projective space RP (n) of dimension n;

(c) the Grassmannian G(k, n), i.e., the set of k-dimensional planes

containing the origin of n-dimensional affine space;

(d) the set of solutions p= (x1, x2, x3, x4)∈R4 of the following system

of two equations: x2
1 + x3

2 + x4
3 + x5

4 = 1 and x1x2x3x4 =−1;

(e) the set of all polynomials of degree n with leading coefficient 1.

2.6. (a) Is the topological space GL(n) connected?

(b) Prove that the topological space SO(3) is connected.

(c) Prove that the topological space GL(3) consists of two connected

components.

2.7. (a) Prove that the function d(x, y) = max{|xi − yi|, i= 1, . . . , n}

where x= (x1, . . . , xn) and y= (y1, . . . , yn) defines a metric in Rn.

(b) Prove that d(x, y)=
n∑

i=1

|xi − yi| is a metric in R
n.

(c) Draw some ε-neighborhood of the point (0, 0, . . . , 0) in the metrics

defined in (a) and (b).

2.8. Prove that any metric space is Hausdorf and construct an example

of a non-Hausdorff space.
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2.9. Let X be a Hausdorff space. Prove that for any two distinct points

x, y ∈X there exists a neighborhood U ∋ x such that its closure does not

contain the point y.

2.10. Let C be a compact subspace of a Hausdorff space X . Let

x∈X \C. Prove that the point x and the set C have disjoint neighbor-

hoods.

2.11. Prove that any two disjoint compact subsets of a Hausdorff space

have disjoint (open) neighborhoods.

2.12. Give an example of a connected topological space which is not

path connected.



Lecture 3

Topological constructions

In this lecture, we study the basic constructions used in topology. These

constructions transform one or several given topological spaces into a new

topological space. Starting with the simplest topological spaces and using

these constructions, we can create more and more complicated spaces,

including those which are the main objects of study in topology.

3.1. Disjoint union

The disjoint union of two topological spaces X and Y , in the case

when the two sets X and Y do not intersect, is the union of the sets

X and Y with the following topology: a set W in X ∪ Y is open if the

sets W ∩X and W ∩Y are open in X and Y , respectively; if the two sets

X and Y intersect, the definition is a little trickier: first we artificially

make them nonintersecting by considering, instead of the set Y , the same

set of elements but marked, say, with a star, i.e., Y ∗ := {(y, ∗) : y ∈ Y },

and then proceed as before, declaring that a set W in X ∪ Y ∗ is open if

the sets W ∩X and W ∩Y ∗ are open in X and Y ∗, respectively. In both

cases, we obtain a topological space denoted by X ⊔Y .

This choice of topology ensures that both natural inclusionsX →֒X∪Y

(x 7→x) and Y →֒X ∪Y (y 7→ y) are continuous maps.

It is easy to see that the subsets X and Y (we do not explicitly write the

stars (if any) in Y ∗, but consider them implicitly present) are both open

and closed in X ⊔ Y , so that the set X ⊔ Y is not connected (provided

both X and Y are nonempty).

3.2. Cartesian product

Roughly speaking, the Cartesian product of two spaces is obtained by

putting a copy of one of the spaces at each point of the other space.
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More precisely, let X and Y be topological spaces; consider the set of

pairs X × Y = {(x, y) : x∈X , y ∈ Y } and make X × Y into a topological

space by defining its base: a set W ⊂X × Y belongs to the base if it has

the form W =U ×V , where U is an open set in X and V is open in Y . It

is easy to check that in this way we obtain a topological space, which is

called the Cartesian product of the spaces X and Y .

This choice of topology ensures that both natural projections X ×Y →

→X ((x, y) 7→x) and X ×Y →Y ((x, y) 7→ y) are continuous maps.

Classical examples: (i) the Cartesian product of two closed intervals is

the square; (ii) the Cartesian product of two circles is the torus; (iii) the

Cartesian product of two real lines R is the plane R
2.

Theorem 3.1. The Cartesian product of the n-disk and the m-disk is

the (n+m)-disk. The Cartesian product of Rn and Rm is Rn+m.

The proof is absolutely straightforward.

3.3. Quotient spaces

Roughly speaking, a quotient space is obtained from a given space by

identifying the points of certain subsets of the given space (“dividing” our

space by these subsets).

More precisely let X be a topological space and let ∼ be an equivalence

relation on the set X ; we then consider the equivalence classes with

respect to this relation as points of the quotient set X/∼ and introduce

a topology in this set by declaring open any subset U ⊂X/∼ such that

U∗ := {x∈ ξ : ξ ∈U} is open in X . The topological space thus obtained is

denoted by X/∼.

This choice of topology ensures that the natural projection X→X/∼
(x 7→ ξβ , where ξβ ∋x) is a continuous map.

Suppose X and Y are topological spaces, A and B are closed subspaces

of X and Y , respectively, and f : A→ B is a continuous map. (The

particular case in which f is a homeomorphism is often considered.) In the

disjoint union of X and Y , we identify all points of each set in the family

Fb := {b⊔ f−1(b) : b ∈ B}.

Then we denote the quotient space (X ∪Y )/∼, where ∼ is the equivalence

relation identifying points in each of the sets Fb, b∈B, X ∪f Y and say

that this space is obtained by attaching (or gluing) Y to X along f .
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If A is a subset of a topological spaceX , we denote byX/A the quotient

space w. r. t. the equivalence relation x∼ y iff x, y ∈A. For example, we

have D
n/∂D

n ≈ S
n.

3.4. Cone, suspension, and join

(i) Roughly speaking, the cone over a space is obtained by joining

a fixed point by line segments with all the points of the space. More

precisely, let X be a topological space; consider the Cartesian product

X × [0, 1] (called the cylinder over X) and on it, the equivalence relation

(x, 1)∼ (y, 1) for any x, y∈X ; we define the cone over X as the quotient

space of the cylinder by the equivalence relation ∼:

C(X) := (X × [0, 1])/∼.

Note that all the points (x, t) with t= 1 are identified into one point,

called the vertex of the cone. By definition, the cone over the empty set

is one point. The cone over a point is a line segment, the cone over the

circle is homeomorphic to the disk (although it is more natural to think of

it as the lateral surface of the ordinary circular cone).

(ii) Roughly speaking, the suspension over a topological space is ob-

tained by joining two fixed points by segments with all the points of the

given space. Another heuristic way of saying this is that the suspension is

a double cone (on “different sides”) over that space.

More precisely, let X be a topological space; consider the Cartesian

product X × [−1, 1] and on it, the equivalence relation

(x, 1) ≈ (y, 1) and (x, −1) ≈ (y, −1)

for any x, y ∈X ; now define the suspension over X as the quotient space

of the cylinder X × [−1, 1] by the equivalence relation ≈:

Σ(X) := (X × [−1, 1])/≈.

By definition, the suspension over the empty set is the two point set S0.

The suspension over the two point set is homeomorphic to the circle, that

over the circle is homeomorphic to the 2-sphere.

The notion of suspension is extremely important in topology, particu-

larly in algebraic topology (surprisingly, it is much more important than

that of the cone).

(iii) Roughly speaking, the join of two spaces is obtained by joining

each pair of points from the two spaces by a segment.
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More precisely, suppose that X and Y are topological spaces; con-

sider the Cartesianproduct X × [−1, 1]× Y and identify (via an equiva-

lence relation that will be denoted by ≡) all pairs of points of the form

(x1, 1, y)≡(x2, 1, y) as well as all pairs of the form (x, −1, y1)≡(x, −1, y2).

The topological space X ∗ Y thus obtained,

X ∗ Y := (X × [−1, 1]×Y )/≡,

is called the join of the spaces X and Y .

Figure 3.1. Cone and suspension. Join of two closed intervals

Theorem 3.2. The cone over the n-sphere is the (n+ 1)-disk and the

cone over the n-disk is the (n+ 1)-disk. The suspension over the n-sphere

is the (n+ 1)-sphere and the suspension over the n-disk is the (n+1)-disk.

The join of the n-disk and the m-disk is the (n+m+1)-disk. The join of

the n-sphere and the m-sphere is the (n+m+ 1)-sphere.

The proof is not difficult: one performs the construction in a Euclidean

space of the appropriate dimension; in each case the corresponding homeo-

morphism is not hard to construct, although for large values of n and m it

is difficult to visualize. The simplest (and only really “visual”) nontrivial

example is the join of two segments (which is the tetrahedron, otherwise

known as the 3-simplex); it is shown in Figure 3.1.

3.5. Simplicial spaces

A 0-simplex is a point, a 1-simplex is a closed interval, a 2-simplex is

a triangle, a 3-simplex is a tetrahedron, and so on. More generally and

precisely, we define an n-dimensional simplex σn (n-simplex for short) as

a topological space supplied with a homeomorphism

h : σn → ∆n = [e0, e1, . . . , en],
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where ∆n is the convex hull of the set of n+ 1 points consisting of the origin

0 = e0 and the endpoints e1, . . . , en of the basis unit vectors of Euclidean

space R
n. The n-simplex is of course homeomorphic to the n-disk D

n, but

it has a richer structure coming from the homeomorphism h. Namely, for

any i, 06 i6n, it has a set of i-faces, each i-face is the preimage under h

of the convex hull in Rn of i points from the set {e0, e1, . . . , en}. The

0-faces of an n-simplex are called vertices, and we often write

σn = [0, 1, . . . , n],

where by abuse of notation i, i= 0, 1, . . . , n, denotes the vertex h−1(ei).

Thus the 3-simplex possesses four 2-faces (triangles), six 1-faces (edges)

and four 0-faces (vertices). By convention, we agree that the empty set is

regarded as the (−1)-dimensional simplex. Note that the 3-simplex (as well

as its faces), inherits a linear structure from R3 by the homeomorphism

h : σ3 →∆3 ⊂R3.

We now define a finite simplicial space X (also called finite simplicial

complex ) as the space obtained from the disjoint union of a finite set of

simplices by gluing some of their faces together by homeomorphisms; it is

assumed that the attaching homeomorphisms respect the linear structure

of the faces (so that after the gluing is performed, all the simplices have

a coherent linear structure). In this course, we will not consider the

more general notion of simplicial space with a possibly infinite number

of simplices, and so will often drop the adjective finite when speaking of

finite simplicial spaces. By the dimension of a simplicial space X we mean

the dimension of the simplices of the highest dimension in X and we often

write it in the form of a superscript, writing Xn for an n-dimensional

simplicial space.

A more geometric way of defining a simplicial space is to represent it

as a subset of some Euclidean space, with the simplices being rectilinear

geometric subsets of the space. Figure 3.2 shows two such examples of

simplicial spaces, represented as lying in R3: a 2-sphere and a funny

2-dimensional simplicial space.

As the following theorem claims, any finite simplicial space X can be

represented as a subset of some Euclidean space RN in the sense specified

above—one then says that X is piecewise-linearly embedded (PL-embedded

for short) in RN .

Theorem 3.3. Any finite n-dimensional simplicial space Xn can be

PL-embedded in R2n+1.
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Figure 3.2. Two simplicial spaces as subsets of R
3

We shall not use this theorem and therefore omit its proof. The reader

may wonder where the exponent 2n+ 1 comes from; there are examples of

1-dimensional simplicial spaces (e. g. the so-called K3,3 space) that cannot

be embedded in R2.

3.6. CW-spaces

Roughly speaking, a CW-space is a space obtained by inductively

attaching k-disks (k= 0, 1, 2, . . .) along their boundaries to the (k− 1)-di-

mensional part of the previously constructed space via continuous maps of

their boundaries (these maps, as well as their images, are called k-cells).

The formal definition of CW-space (also called CW-complex) is the

following. Let X be a Hausdorff topological space such that

X =

∞⋃

i=0

X i,

where X0 is a discrete space and the space X i+1 is obtained by attaching

the disjoint union of (i+ 1)-dimensional closed discs
⊔

α∈AD
i+1
α to X i

along a continuous map
⊔

α∈A S
i
α →X i, where Si

α = ∂Di+1
α . Let us call

the image of Di+1
α and the image of the interior of Di+1

α under the natural

map to X i+1 →֒X closed cell and open cell, respectively. The space X is

called a CW-space (or CW-complex ) if the two following conditions hold:

(C) any closed cell intersects a finite number of open cells;

(W) a set C ⊂X is closed iff any intersection of C with a closed cell is

closed.

“C” is the abbreviation for “Closure Finite”, “W” is the abbreviation

for “Weak Topology”. If the number of cells is finite, then conditions (C)
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and (W) hold automatically. Since we will only be considering finite cell

spaces in this course, you can forget about conditions (C) and (W).

Note that any simplicial space can be considered as a CW-space (how?).

Simplicial spaces are easier to visualize than CW-spaces, because simplices

are simpler than cells, but CW-spaces are more economical. For example,

the 77-dimensional sphere has a CW-space structure with only two cells,

whereas the simplest simplicial structure of that sphere has hundreds of

simplices of dimensions 0, 1, 2, . . . , 77.

3.7. Exercises

3.1. Prove that Dn/∂Dn ≈ Sn.

3.2. Prove that the space S1×S1 is homeomorphic to the space obtained

by the following identification of points of the square 06 x6 1, 06 y6 1

belonging to its sides: (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y). (This space is

called the torus.)

3.3. Let I = [0, 1]. Prove that the space S1 × I is not homeomorphic to

the Möbius band.

3.4. Prove that the following spaces (supplied with the natural topol-

ogy) are homeomorphic:

(a) the set of lines in Rn+1 passing through the origin;

(b) the set of hyperplanes in Rn+1 passing through the origin;

(c) the sphere Sn with identified diametrically opposite points (every

pair of diametrically opposite points is identified);

(d) the disc D
n with identified diametrically opposite points of the

boundary sphere Sn−1 = ∂Dn.

3.5. Prove that the following spaces are homeomorphic:

(a) the set of complex lines in Cn+1 passing through the origin;

(b) the sphere S
2n+1 ⊂C

n+1 with identified points of the form λx for

every λ∈C, |λ|= 1 (for any fixed point x∈S2n+1);

(c) the disc D2n ⊂Cn with points of the boundary sphere S2n−1 = ∂D2n

of the form λx for every λ ∈ C, |λ| = 1 identified for any fixed point

x∈S2n−1.

3.6. Prove that C(Dn) ≈Dn+1 and Σ(Dn)≈ Dn+1. (Here and below

≈ denotes homeomorphisms.)

3.7. Prove that RP 1 ≈ S
1 and CP 1 ≈ S

2.

3.8. Prove that C(Sn)≈Dn+1 and Σ(Sn)≈ Sn+1.
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3.9. Is it true (for arbitrary CW-spaces) that (a) X ∗ Y ≈ Y ∗X ;

(b) (X ∗ Y ) ∗Z ≈X ∗ (Y ∗Z); (c) C(X ∗ Y )≈C(X) ∗ Y ; (d) Σ(X ∗ Y )≈

≈Σ(X) ∗ Y ?

3.10. Prove that Sn ∗ Sm ≈ Sn+m+1.

3.11. Prove that Sn+m−1 \ Sn−1 ≈Rn × Sm−1. (We suppose that the

position of Sn−1 in Sn+m−1 is standard.)

3.12. Prove that (a) the sphere S2; (b) the torus T2; (c) the real pro-

jective space RPn; (d) the complex projective space CPn are CW-spaces.

3.13. Find an example of a space consisting of cells that satisfies the

W-axiom, and does not satisfy the C-axiom and vice versa.
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Graphs

The number of this lecture is overlined, which indicates that the lecture

is optional, it should be regarded as additional reading material and a

source of problems for the exercise class. In the lecture, we study a very

simple class of topological spaces, called graphs. Roughly speaking, a

graph G is a set of points, called vertices, some pairs of which are joined

by arcs, called edges. Graphs can be defined as purely combinatorial

objects, or as topological spaces. Their simplicity is due to the fact that, as

combinatorial objects, they are finite and, as topological spaces, they have

the smallest nontrivial dimension (one). Nevertheless, they have many

surprising, beautiful, and rather intricate properties. We should also note

that at the present time graph theory plays a remarkably important role

in front-line research in many areas of mathematics.

3.1. Main definitions

The combinatorial definition of a graph is this: a (combinatorial)

graph G is pair G= (V , E) consisting of a finite set V of undefined objects,

called vertices, and a finite collection E of pairs of vertices, called edges ; if

e= {v, v′} is an edge, we say that e joins v and v′, or that v and v′ are the

endpoints of e; an edge e= {v, v′} is said to be a loop if v= v′; if there are

repetitions in the collection of edges E (i.e., there is more than one edge

joining two vertices v and v′), we say that the graph G has multiple edges.

We shall mostly be studying graphs without loops or multiple edges, and

use the term “graph” in that sense; whenever a graph will be allowed to

have loops or multiple edges, this will be explicitly mentioned.

Two combinatorial graphs are called isomorphic if there exists a bijec-

tion between the set of vertices and a bijection between the collection of

edges that preserve incidence (i.e., the endpoints of any edge correspond

to the endpoints of the corresponding edge).
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The topological definition of a graph is this: a (topological) graph G

is topological space G supplied with a finite set V of distinguished points,

called vertices, and consisting of the union of a finite number of arcs,

called edges, each arc being either a broken line joining two vertices or a

closed broken line (called a loop) containing exactly one vertex; the arcs

(including the loops) are assumed pairwise nonintersecting1. The graphs

considered in this lecture will be subsets of R2 or R3 supplied with the

topology induced from R2 or R3. Unless stated otherwise, we will assume

that they contain no loops or multiple edges.

A topological graph is said to be a realization of a combinatorial graph

if there is a bijection between vertices and a bijection between edges

preserving incidence (i.e., endpoints correspond to endpoints); in that

situation, we also say that the combinatorial graph is associated to the

topological one. It is obvious that two graphs with isomorphic associated

combinatorial graphs are homeomorphic. The converse statement is not

true (why?).

The valency of a vertex v of a graph G is the number of edges with

endpoint v (if there are loops joining v to itself, then each loop contributes 2

to the valency). A path joining two vertices v and v′ is a sequence of edges

of the form {v, v1}, {v1, v2}, . . . , {vk, v′}; if v= v′ and k > 2, then the path

is called a cycle. A graph G is connected if any two of its vertices can be

joined by a path. A graph is called a tree if it is connected and has no

cycles; the vertices of valency 1 of a tree are called leaves.

Figure 3.1 shows examples of (a) a graph with loops and multiple edges;

(b) a tree; (c) a graph without loops or multiple edges, but containing

cycles.

The three graphs appearing in the figure are subsets of the plane R2,

but there exist graphs which cannot be placed in the plane. We shall

consider them in the next section.

3.2. Planar and nonplanar graphs

A topological graph is called planar if it lies in the plane R2 (and so

its edges have no common internal points). A combinatorial graph G is

called planar if it can be realized by a planar topological graph.

1 The assumption that the arcs are polygonal (i.e., are broken lines) is purely
technical, it does not restrict (up to topological equivalence) the class of graphs
considered, but allows to prove certain statements about embedded graphs which are
very difficult to prove without this assumption.
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(a) (b) (c)

Figure 3.1. Examples of graphs

Denote by Kn the complete graph on n vertices, i.e., the graph consist-

ing of n vertices every pair of which is joined by an edge. Denote by Kn,m

the graph consisting of n+m vertices divided into two parts (n vertices

in one part and m vertices in the other), the edges of Kn,m joining each

pair of vertices from different parts. The figure below represents three

examples of the graphs defined above.

Figure 3.2. The graphs K4, K3,3, and K5

The three graphs in the figure are pictured as lying in 3-space R3.

Are they planar? The reader will easily draw a graph isomorphic to K4

embedded in the plane—so K4 is planar. Attempts to embed the graphs

K5 and K3,3 will necessarily fail (the best one can do is to draw a picture

of, say, K3,3 on the plane with only one pair of edges intersecting).

Theorem 3.1. The graphs K5 and K3,3 are not planar.

No simple proof of this beautiful fact is known. In the sections that

follow, we shall obtain two different proofs of the theorem. As usual in

mathematics, in order to prove that something is impossible (in this case,

it is impossible to embed K5 or K3,3 in R2), we need an invariant. We
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shall see in subsequent lectures that the invariant that we will use (the

Euler characteristic) has many other important applications.

3.3. Euler characteristic of graphs and planar graphs

If G is a graph (topological or combinatorial), we denote by VG and EG

the number of vertices and edges of G, respectively; we omit the sub-

script G if the graph under consideration is clear from the context.

We define the Euler characteristic of a graph G by setting

χ(G) := VG −EG .

Theorem 3.2. Two connected graphs homeomorphic as topological spaces

have the same Euler characteristic.

Two such graphs differ only by the number of vertices of valency 2, but

that does not affect the Euler characteristic.

Let G⊂ R2 be a connected planar graph. Then the connected com-

ponents of R2 \G are called faces of the planar graph G. Let us denote

by VG, EG, FG the number of vertices, edges, faces of G, respectively (we

omit the subscript G if it is clear from the context). We define the Euler

characteristic of the planar graph G⊂R2 by setting

χ(G) := VG −EG +FG .

Theorem 3.3. The Euler characteristic of any connected planar graph G

is equal to 2:

G ⊂ R
2 =⇒ χ(G) = 2.

The proof is the object of Exercise 3.13 (which relies on the next

theorem).

Theorem 3.4 (Polygonal Jordan Theorem). Let C be a closed non-self-

intersecting broken line (with a finite number of segments) on R2. Prove

that R2 \C consists of two connected components and the boundary of each

component is C.

3.4. Exercises

3.1. Is it possible to build direct roads between 53 towns so that any

town is connected exactly with 3 other towns?
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3.2. Suppose the valencies of all the vertices of a connected graph G

are even. Then there exists a path that traverses each edge of G exactly

once.

3.3. Prove that any connected planar graph (without loops and double

edges) has a vertex of degree not greater than 5.

3.4. Prove that one can color the vertices of any planar graph (without

loops) using five colors so that the ends of any edge have different colors.

3.5. Let Kn be the graph consisting of n vertices pairwise joined by

edges. Let Kn,m be the graph consisting of n+m vertices divided into

two parts (n vertices in one part and m vertices in the other), the edges

of Kn,m joining each pair of vertices from different parts.

3.6. Prove that the graphs K3,3 and K5 are not planar.

3.7. (a) Let G be a planar graph such that any face of G is bounded

by an even number of edges. Prove that one can color the vertices of G

using two colors so that the ends of any edge have different colors.

(b) Let γ be a smooth closed curve with transversal self-intersections.

Prove that γ divides the plane into domains so that one can color those

domains using two colors (two domains with a common edge must be of

different colors).

3.8. Let a, b, c, d be points of a closed non-self-intersecting broken

line C (in the plane) ordered as indicated. Suppose that points a and c

are joined by a broken line L1, points b and d are joined by a broken line L2

and both broken lines belong to the same connected component defined

by C. Prove that L1 and L2 have a common point.

3.9. Let G be a polygonal planar graph consisting of s connected

components each of which is not an isolated vertex. Let G have v vertices

and e edges. Using the polygonal Jordan theorem and induction, prove

that for any embedding of G in the plane the number of faces f is equal

to f = 1 + s− v+ e.

3.10. (a) Suppose G is a planar graph without isolated vertices, vi

is the number of its vertices of degree i, fi is the number of faces with

i edges. Prove that
∑

i(4− i)vi +
∑

j (4− j)fj = 4(1 + s)> 8, where s is

the number of connected components of G.

(b) Prove that if all faces are quadrilaterals, then 3v1 + 2v2 + v3> 8.

(c) Prove that if the boundary of any face is a cycle containing no less

than n edges, then e6n(v− 2)/(n− 2).



3.4. Exercises 33

3.11. Find and deduce the Euler Formula for convex polyhedra from the

Euler formula for planar graphs. (The Euler Formula for convex polyhedra

is a relation between numbers of vertices, edges and faces.)

3.12. With the help of Exercise 3.10 (c), give another proof of the

nonplanarity of the graphs K5 and K3,3.

3.13. Prove Theorem 3.3.



Lecture 4

Examples of surfaces

In this lecture, we will study several important examples of surfaces

(closed surfaces, as well as surfaces with holes) presented in different ways.

We will prove that the different presentations of the same surface are indeed

homeomorphic and specify their simplicial and cell space structure.

4.1. The disc D2

The standard two-dimensional disk (or 2-disk) is defined as

D
2 := {(x, y) ∈ R

2 : x2 + y2
6 1}.

Other presentation of the 2-disk (all homeomorphic to D2) are: the sphere

with one hole (SH), the square (Sq), the lateral surface of the cone (LC),

the ellipse, the rectangle, the triangle, the hexagon, etc. (see Figure 4.1).

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
1

1

x

y

D
2 SH Sq LC

Figure 4.1. Different presentations of the disk

The simplest cell space structure of the 2-disk consists of one 0-cell, one

1-cell, and one 2-cell, but of course other cell space structures are possible.

It is easy to prove that the different presentations of the disk listed

above are homeomorphic. For example, a homeomorphism of D2 onto the
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square Sq is obtained by centrally projecting concentric circles filling D2

onto the corresponding circumscribed concentric square boundaries. More

precisely, we define h : D
2 → Sq as follows: let a point P ∈ D

2 be given;

denote by CP the circle centered at the center O of the disk and passing

through P ; denote by DP the boundary of the square with sides parallel to

the sides of Sq circumscribed to CP ; then h(P ) is defined as the intersection

of the ray [OP 〉 with DP . It is easy to see that h is a homeomorphism, so

that the disk D2 and the square Sq are indeed homeomorphic.

Describing the other homeomorphisms of D2 (onto the sphere with

one round hole (SH), the lateral surface of the cone (LC), the ellipse, the

rectangle) is the object of Exercise 4.1.

4.2. The sphere S2

The standard two-dimensional sphere (or 2-sphere) is defined as

S
2 := {(x, y) ∈ R

2 : x2 + y2 = 1}.

Other presentations of the 2-sphere (all homeomorphic to S2) include:

the boundary of the cube or the tetrahedron, the disk with boundary

identified to one point D2/∂D2, the suspension over the circle Σ(S2),

the join of the circle and the 0-sphere (i.e., a pair of points) S2 ∗ S0,

the boundary of any closed convex body, the configuration space of the

3-dimensional pendulum (the line segment in R3 with one extremity fixed),

etc.
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Figure 4.2. Different presentations of the sphere

The simplest cell space structure of the 2-sphere consists of one 0-cell

and one 2-cell.
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Homeomorphisms between the various presentation of S2 listed above

are easy to construct (central projection is the main instrument here; see

Exercise 4.1).

4.3. The Möbius band Mb

The Möbius band (or Möbius strip) Mb is usually modeled by a long

rectangular strip of paper with the two short sides identified (“glued to-

gether”) after a half twist (Figure 4.3). Formally it can be defined as the

square with two opposite sides identified Sq/∼ via the central symmetry ∼.

A beautiful embedding of the Möbius strip Mb →֒R3 can be observed as

a trefoil knot spanned by a soap film; the same embedded surface can

be obtained by giving a long strip of paper three half-twists and then

identifying the short sides. An even more complicated embedding of the

Möbius strip in R3 is obtained by giving a long strip of paper a large odd

number of half-twists and then identifying the short sides.

P ′

P ∼P ′

Mb Mb →֒R
3 Sq/∼

Figure 4.3. Different presentations of the Möbius strip

Everyone knows that the Möbius strip is “one-sided” (it cannot be

painted in two colors) and is “nonorientable”. (The definition of “nonori-

entable surface” will be given below.) If you have never done this before,

try to guess what happens to the Möbius strip if you cut it along its

midline. Check the validity of your guess by using scissors on a paper

model.
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4.4. The torus T2

Topologically, the (2-dimensional) torus T2 is defined as the Cartesian

product of two circles. Geometrically, it can be presented as the set of

points (x, y, z)∈R3 satisfying the equation
(
x2 + y2 + z2 +R2 + r2

)2
− 4R2

(
x2 + y2

)
= 0.

The torus can also be presented as the square with opposite sides

identified Sq/∼ (the identifications are shown by the arrows in Figure 4.4),

as a surface embedded (in different ways) in 3-space T2 →֒R3, as a “sphere

with one handle” M2
1 , as an annulus with boundary circles (oriented in

the same direction) identified, as the configuration space of the double

pendulum with arms L> l, as the plane R
2 modulo the periodic equivalence

(x, y)∼ (x+ 1, y+ 1), etc.

T
2 ⊂R

3 Sq/∼ T
2 →֒R

3 M2
1

Figure 4.4. Different presentations of the torus

4.5. The projective plane RP
2

The projective plane RP 2 is defined as the set of straight lines l in R3

passing through the origin, with the natural topology (its base consists all

open cones around all elements l ∈ RP 2). The notion of straight line is

naturally defined in R2: a “line” is a (Euclidean) plane P passing through

the origin, its “points” are all the (Euclidean) lines l passing through the

origin and contained in P .

Each element l∈RP 2 may be specified by its homogeneous coordinates,

i.e., the three coordinates of any point (of R3) on the (Euclidean) line l

considered up to a common factor λ, so that (x : y : z) and (λx : λy : λz),

λ 6= 0, specify the same point of RP 2.

Other presentations (Figure 4.5) of RP 2 are: the disk D2 with diamet-

rically opposed boundary points identified D2/∼, the sphere S2 with all
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x
y

z

l′

l

O

Q∼Q′

P ′∼P

P

Q′

h

h

f

f

RP 2
D

2/∼ (S2 \B2)∪h Mb Mb∪f D
2

Figure 4.5. Different presentations of the projective plane

pairs of points symmetric with respect to the origin identified S2/Ant, the

sphere with a hole with a Möbius strip attached to it along the boundary

(S2 \ B2) ∪h Mb, the Möbius band with a disk glued to it along the

boundary Mb∪f D2, the square with centrally symmetric boundary points

identified, the configuration space of a rectilinear rod rotating in R3 about

a fixed hinge at its midpoint. The proof that all these presentations are

homeomorphic is pleasant and straightforward (see Exercise 4.2).

The simplest cell space structure on RP 2 consists of one cell in each

dimension 0, 1, 2 and can be easily seen on the disk model. Note that the

boundary of the 2-cell wraps around the 1-cell twice.

4.6. The Klein bottle Kl

The Klein bottle can be defined as the square with opposite sides

identified as shown by the arrows in Figure 4.6. The Klein bottle cannot

be embedded into R3 (see Exercise 4.12), and so we cannot draw a realistic

picture of it. The Klein bottle Kl is usually pictured as in Figure 4.6, but

h

h

Sq/∼ Kl Mb∪h Mb

Figure 4.6. Different presentations of the Klein bottle
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that picture is not correct: the “surface” in the figure has a self-intersection

(a little circle), so it is not homeomorphic to Kl.

Here are some other presentations of the Klein bottle: two Möbius

strips identified along their boundary circles Mb ∪h Mb, two projective

planes with holes with the boundaries of the holes identified, etc.

4.7. The disk with two holes (“pants”)

This surface is obtained from the disk D2 by removing two small open

disks from D
2; it is called pants by topologists and denoted P. It plays an

important technical role in low-dimensional topology, in particular in the

next lecture.

It is possible to construct a torus (the sphere with one handle) from

two copies of pants (glue the boundaries of the four “legs” together and

then close up the two “waists” by gluing disks to them). In a similar way,

we can construct a sphere with 2, 3, 4, . . . handles.

Different ways of presenting the disk with two holes are shown in

Figure 4.7.

Figure 4.7. Different presentations of the disk with two holes

4.8. Triangulated surfaces

The surfaces (with or without holes) described above can easily be

triangulated, i.e., supplied with the structure of a (two-dimensional) sim-

plicial space. Simple examples of triangulations are shown in Figure 4.8.

For triangulated surfaces the holes are usually chosen as the insides of

2-simplices, so that the boundaries of the holes will be triangles consisting

of three 1-simplices. Any 1-simplex which is not on part of a boundary is

the common side of two triangles (2-simplices).
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D
2

S
2 Mb T

2
RP 2

Figure 4.8. Triangulations of the disk, the sphere, the Möbius strip, the torus, and
the projective plane (left to right).

4.9. Orientable surfaces

A triangulated surface is called orientable if all its 2-simplexes can

be “oriented coherently”. We do not explain what this means because,

for topological surfaces, orientability can be defined in a simpler way: a

surface M is called orientable if it does not contain a Möbius strip, and is

called nonorientable otherwise.

It is easy to prove that the Möbius strip, the projective plane, and the

Klein bottle are nonorientable. It is intuitively clear that the disk, the

sphere, the torus, the pants are orientable, but this is not easy to prove.

(We will come back to this question in the next lecture).

4.10. Euler characteristic

Let M be a triangulated surface, for example one of the triangulated

surfaces described in Section 4.8. Then the Euler characteristic of M ,

denoted by χ(M), is defined as

χ(M) := V −E+F ,

where V is the number of vertices (0-simplices), E is the number of

edges (1-simplices), and F is the number of faces (2-simplices) in the

triangulation of the surface M .

It will be shown in the next lecture that the Euler characteristic does

not depend on the choice of triangulation, i.e., χ(M) is a topological

invariant :

M ≈ M ′ =⇒ χ(M) = χ(M ′).
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Theorem 4.1. The Euler characteristics of the disk, the sphere, the

torus, the pants, the Möbius strip, the projective plane, and the Klein

bottle are respectively equal to 1, 2, 0, −1, 0, 1, 0.

Since we know that χ(M) does not depend on the choice of triangula-

tion, to prove the theorem it suffices to compute χ(M) (using its definition)

for the triangulated surfaces described in Section 4.8.

4.11. Connected sum

Given two surfaces M1 and M2, their connected sum M1#M2 is ob-

tained by removing little open disks from each and gluing them together

along a homeomorphism of the little boundary circles of the removed disks.

In the case when M1 and M2 are triangulated, it is more convenient to

remove the interior of a 2-simplex in each surface and glue them together

along a piecewise linear homeomorphism of the boundaries of the removed

simplices.

For M1#M2 to be well-defined, we should prove that the connected

sum does not depend on the position of the removed open disks and on the

choice of the attaching homeomorphism. This can be done by a technical

argument that we omit.

T2 \B2 T2 \B2

 

T2#T2

Figure 4.9. Connected sum of two tori

Knowing the Euler characteristics of two given surfacesM1 andM2, it is

easy to compute the Euler characteristic of their connected sum M1#M2:

two faces (2-simplices) have disappeared, three edges (1-simplices) have

been identified with three other edges, three vertices (0-simplices) have

been identified with three other vertices, so that the Euler characteristic

of the connected sum is 2 less than the sum of the Euler characteristics of

the summands. We have proved the following theorem:

Theorem 4.2. χ(M1#M2)=χ(M1)+χ(M2)− 2.
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4.12. Exercises

4.1. Show that the surfaces in Figure 4.1, the surfaces in Figure 4.2,

the surfaces in Figure 4.3, are homeomorphic.

4.2. Prove that the projective plane is (a) the Möbius strip with a

disk attached; (b) the sphere S2 with antipodal points identified; (c) the

disk D2 with diametrically opposed points identified.

4.3. Prove that the Klein bottle is (a) the double of the Möbius strip;

(b) the sphere with two holes with two Möbius strips attached; (c) the

connected sum of two projective planes.

4.4. (a) Consider the topological space of straight lines in the plane.

Prove that this space is homeomorphic to the Möbius band without bound-

ary.

(b) Consider the topological space of oriented straight lines in the

plane. Prove that this space is homeomorphic to the cylinder without

boundary.

4.5. Show that a punctured tube from a bicycle tire can be turned

inside out. (More precisely, this would be possible if the rubber from

which the tube is made were elastic enough.)

4.6. (a) Polygonal Schoenflies Theorem. A closed polygonal line in the

plane bounds a domain whose closure is the disk D2.

(b) Polygonal Annulus Theorem. Two closed polygonal lines in the

plane, one of which encloses the other, bound a domain whose closure is

the annulus S1 × [0, 1].

4.7. (a) The two surfaces with holes obtained from the same closed

triangulated connected surfaces by removing different open 2-simplices

from it are homeomorphic. (b) Show that the connected sum of surfaces

is well defined.

4.8. Prove that T2#RP 2 ≈ 3RP 2.

4.9. (a) Prove that Kl#Kl is homeomorphic to the Klein bottle with

one handle attached. (b) Prove that RP 2#Kl is homeomorphic to the

projective plane with one handle attached.

4.10. Prove that if a surface M1 is nonorientable, then for any sur-

face M2 the surface M1#M2 is nonorientable.
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4.11. How many different surfaces is it possible to glue (by identifying

sides) starting with (a) a square; (b) a hexagon; (c) an octagon.

4.12. Prove that the Klein bottle cannot be embedded in R3. (Hint :

you can use the fact that the graph K3,3 cannot be embedded in R2).



Lecture 5

Classification of surfaces

In this lecture, we will present the topological classification of surfaces.

This will be done by a combinatorial argument imitating Morse theory

and will make use of the Euler characteristic.

5.1. Main definitions

In this course, by a surface we mean a connected compact topological

space M such that that any point x∈M possesses an open neighborhood

U ∋ x whose closure is a 2-dimensional disk. By a surface-with-holes

(“поверхность с краем” in Russian) we mean a a connected compact

topological space M such that any point x∈M possesses either an open

neighborhood U ∋ x whose closure is a 2-dimensional disk, or a whose

closure is the open half disk

C = {(x, y) ∈ R
2 : y > 0, x2 + y2 < 1}.

(A synonym of “surface” is “two-dimensional compact connected manifold”,

but we will use the shorter term.) In the previous lecture, we presented

several examples of surfaces and surfaces-with-holes.

It easily follows from the definitions that the set of all points of a

surface-with-holes that have half-disk neighborhoods is a finite family of

topological circles. We call each such circle the boundary of a hole. For

example, the Möbius strip has one hole, pants have three holes.

5.2. Triangulating surfaces

In the previous lecture, we gave examples of triangulated surfaces (see

Fig. 4.8). Actually, it can be proved that any surface (or any surface-with

holes) can be triangulated, but the known proofs are difficult, rather ugly,

and based on the Jordan Curve Theorem (whose known proofs are also

difficult). So we will accept this as a fact without proof.
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Fact 5.1. Any surface and any surface-with-holes can be triangulated.

To state the next fact about triangulated surfaces, we need some

definitions. Recall that a (continuous) map f : M →N of triangulated

surfaces is called simplicial if it sends each simplex of M onto a simplex

of N (not necessarily of the same dimension) linearly. Any bijective

simplicial map map f : M →N is said to be an isomorphism, and then

M and N are called isomorphic.

Suppose M is a triangulated surface, σ2 is a face of M and w is

an interior point of σ2. Then the new triangulation of M obtained by

joining w to the three vertices of σ2 is called a face subdivision of M

at σ (Fig. 5.1 (a)); the barycentric subdivision of a 2-simplex is shown in

Fig. 5.1 (c); the barycentric subdivision of M is obtained by barycentrically

subdividing all its 2-simplices. If σ1 is an edge (1-simplex) of M , then the

edge subdivision of M at σ2 is shown on Fig. 5.1 (b). If a triangulated

surface M ′ is obtained from M by subdividing some simplices of M in

some way, we say that M ′ is a subdivision of M .

→ → →

Figure 5.1. Face, edge, and barycentric subdivisions

A map f : M →N is called a PL-map if there exist subdivisions of

M ′, N ′ of M , N such that f is a simplicial map of M ′ to N ′. A

bijective PL-map f : M → N is said to be a PL-equivalence, and then

M and N are called PL-equivalent. The following statement, known as

the Hauptvermutung for surfaces, will be stated without proof.

Fact 5.2. Two surfaces are homeomorphic if and only if they are

PL-equivalent. Homeomorphic triangulated surfaces have isomorphic tri-

angulations.

If x, y are vertices of M , then the star of x, St(x), is defined as the

union of all simplices for which x is a vertex, and the link of y, Lk(y),

is the union of all 1-simplices opposite to the vertex y of the 2-simplices

forming St(x). It is easy to show that St(x) is, topologically, a 2-disk, and

Lk(y), a circle (see Figure 5.2).

In the previous lecture, orientable surfaces were defined as surfaces not

containing a Möbius strip. Now we give another (equivalent) definition of

orientability for triangulated surfaces. A simplex σ2 = [0, 1, 2] is called
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Stx Lk y

y
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 5.2. Star and link of points on a surface

oriented if a cyclic order of its vertices is chosen. Adjacent oriented

simplices are coherently oriented if their common edge acquires opposite

orientations induced by the two oriented simplices. Thus if the two sim-

plices σ2
1 = [0, 1, 2] and σ2

2 = [0, 1, 3] are coherently oriented if the cyclic

orders chosen in the two simplices are (0, 1, 2) and (1, 0, 3), respectively.

A triangulated surface is called orientable if all its 2-simplices can be

coherently oriented.

It is not hard to prove that a surface is orientable if and only if it does

not contain a Möbius strip.

5.3. Classification of orientable surfaces

The main result of this section is the following theorem.

Theorem 5.3 (Classification of orientable surfaces). Any orientable sur-

face is homeomorphic to one of the surfaces in the following list

S
2, S

1 × S
1 (torus), (S1 × S

1)#(S1 × S
1) (sphere with 2 handles), . . .

. . . , (S1 × S
1)#(S1 × S

1)# . . .#(S1 × S
1) (sphere with k handles), . . .

Any two (different) surfaces in the list are not homeomorphic.

Proof. In view of Fact 5.1, we can assume that M is triangulated and

take the double baricentric subdivision M ′′ of M . In this triangulation,

the star of a vertex of M ′′ is called a cap, the union of all faces of M ′′

intersecting an edge of M but not contained in the caps is called a strip,

and the connected components of the union of the remaining faces of M ′′

are called patches.

Consider the union of all the edges of M ; this union is a graph (de-

noted G). Let G0 be a maximal tree of G. Denote by M0 the union of
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, , , . . .

, . . .

1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k1 2 k

, . . .

Figure 5.3. The orientable surfaces

all caps and strips surrounding G0. Clearly M0 is homeomorphic to the

2-disk (why?). If we successively add the strips and patches from M −M0

to M0, obtaining an increasing sequence

M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mp = M ,

we shall recover M .

Let us see what happens when we go from M0 to M1.
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Figure 5.4. Caps, strips, and patches
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If there are no strips left1, then there must be a patch (topologically,

a disk), which is attached along its boundary to the boundary circle Σ0

of M0; the result is a 2-sphere and the theorem is proved.

Suppose there are strips left. At least one of them, say S, is attached

along one end to Σ0 (because M is connected) and its other end is also

attached to Σ0 (otherwise S would have been part of M0). Denote by K0

the closed collar neighborhood of Σ0 in M0 (i.e., the union of all simplices

having at least one vertex on Σ0). The collar K0 is homoeomorphic

to the annulus (and not to the Möbius strip) because M is orientable.

Attaching S to M0 is the same as attaching another copy of K0 ∪S to M0

along Σ′

0. But K ∪ S is homeomorphic to the disk with two holes (what

we have called “pants”), because S has to be attached in the orientable

way in view of the orientability of M (for that reason the twisting of the

strip shown in Figure 5.5 (a) cannot occur). Thus M1 is obtained from M0

by attaching the pants K ∪S by the waist (which is Σ′

0), and M1 has two

boundary circles (Figure 5.5 (b)).
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Figure 5.5. Adding pants along the legs

Now let us see what happens when we pass from M1 to M2.

If there are no strips left, there are two patches that must be attached

to the two boundary circles of M1, and we get the 2-sphere again.

1 Actually, this case cannot occur, but it is more complicated to prove this than to
prove that the theorem holds in this case.



5.3. Classification of orientable surfaces 49

Suppose there are patches left. Pick one, say S, which is attached

at one end to one of the boundary circles, say Σ1 of M1. Two cases are

possible: either

(i) the second end of S is attached to Σ2, or

(ii) the second end of S is attached to Σ1.

Consider the first case. Take collar neighborhoods K1 and K2 of Σ1

and Σ2; both are homoeomorphic to the annulus (because M is orientable).

Attaching S to M1 is the same as attaching another copy of K1 ∪K2 ∪S

to M1 along the two circles Σ′

1 and Σ′

2 (because the copy of K1 ∪K2 can be

homeomorphically pushed into the collars K1 and K2). But K1 ∪K2 ∪S

is obviously homeomorphic to the disk with two holes. Thus, in the case

considered, M2 is obtained from M1 by attaching pants to M1 along the

legs, thus decreasing the number of boundary circles by one.

The second case is quite similar to adding a strip to M0 (see above), and

results in attaching pants to M1 along the waist, increasing the number of

boundary circles by one.

What happens when we add a strip at the i-th step? As we have seen

above, two cases are possible: either the number of boundary circles of

Mi−1 increases by one or it decreases by one. We have seen that in the

first case “inverted pants” are attached to Mi−1 and in the second case

“upright pants” are added to Mi−1.
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Figure 5.6. Adding pants along the waist

After we have added all the strips, what will happen when we add the

patches? The addition of each patch will “close” a pair of pants either at

the “legs” or at the “waist”. As the result, we obtain a surface. Let us

prove that this surface is a sphere with m handles, m> 0.

We prove this by induction on the number k of attached pants. The

base of induction (k= 0) was established above. Assume that by attaching
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k− 1 pants by the waist and by the legs and patching up (attaching disks

to the free boundaries) we always obtain a sphere with some number (> 0)

of handles. Let us prove that this will be true for k pants. We will consider

two cases.

Case 1: The last pants were attached by the waist (and then the legs

were patched up). Removing the pants (together with the two patches)

from our surface M and patching up the waist W , we obtain a surface M1

constructed from k− 1 pants. By the induction hypothesis, M1 is a sphere

with m1> 0 handles. But M is obtained from M1 by removing the patch

of W and attaching pants by the waist and patching up. But then M is

obviously a sphere with the same number (m1) of handles.

Case 2: The last pants were attached by the legs (and then the waist

was patched up). Removing the pants (together with the two patches)

from our surface M and patching up the waist W , we obtain a surface M1

constructed from k− 1 pants. By the induction hypothesis, M1 is a sphere

with m2> 0 handles. But M is obtained from M1 by removing the patch

of W and attaching pants by the waist and patching up. But then M is

obviously a sphere with (m1 + 1) handles.

cup upsidedown pants

cap pants (right side up)

Figure 5.7. Constructing an orientable surface

The first part of the theorem is proved.

To prove the second part, it suffices to show that

(1) homeomorphic surfaces have the same Euler characteristic;
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(2) all the surfaces in the list have different Euler characteristics

(namely 2, 0, −2, −4, . . . , respectively).

The first statement follows from Fact 5.2. Indeed, if two surfaces are

homeomorphic, then they have isomorphic subdivisions. It is easy to verify

that the Euler characteristic does not change under subdivision. To do

that, it suffices to check that the Euler characteristic does not change

under face, edge, barycentric subdivision, which is straightforward. This

proves (1).

The second statement is proved by simple computations using the

formula for the Euler characteristic of a connected sum (Theorem 4.2).

The theorem is proved.

The genus g of an orientable surface can be defined as the number of

its handles and can be expressed in terms of the Euler characteristic in the

following way:

g(M) =
1
2

(
2−χ(M)

)
.

In fact, this has already been established in the above computation of the

Euler characteristic of orientable surfaces.

5.4. Classifying nonorientable surfaces
and surfaces-with-holes

Theorem 5.4. Any nonorientable surface is contained in the following

list:

RP 2, RP 2#RP 2, . . . , RP 2#RP 2# . . .#RP 2 (g summands), . . .

Two different surfaces in the list are not homeomorphic.

We omit the proof (similar to that of Theorem 5.3, but more compli-

cated).

The nonnegative integer g= 1−χ(N) is called the genus of the nonori-

entable surface N . Thus the genus of the Klein bottle is 1, i.e., it is equal

to its “number of handles” in a natural sense. This is also true for the the

other nonorientable surfaces (see Exercise 5.11).

We leave the statement of the classification theorem of all surfaces-

with-holes to the reader.
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5.5. Exercises

5.1. Prove that χ(mT2) = 2 − 2m and χ(nRP 2) = 2 − n. (Here the

notation nM stands for the connected sum of n copies of M .)

5.2. Prove that an orientable surface is not homeomorphic to a nonori-

entable surface.

5.3. (a) Prove that any graph has a maximal subtree. (b) Prove that

a simplicial neighborhood of a tree in a surface is homeomorphic to the

disk.

5.4. Find the Euler characteristic of the Klein bottle.

5.5. Consider the quotient space (S1 × S1)/
(
(x, y) ∼ (y, x)

)
. This

space is a surface. Which one?

5.6. Show that the standard circle can be spanned by a Möbius band,

i.e., the Möbius band can be homeomorphically deformed in 3-space so

that its boundary becomes a circle lying in some plane.

5.7. Prove that the boundary of Mb× [0, 1] is the Klein bottle.

5.8. Prove that on the sphere with g handles, the maximal number of

nonintersecting closed curves not dividing this surface is equal to g.

5.9. Can K3,3 be embedded (a) in the sphere; (b) in the torus; (c) in

the Klein bottle; (d) in the Möbius strip?

5.10. Prove that the Klein bottle cannot be embedded in R3.

5.11. Prove that T#RP 2 is homeomorphic to 3RP 2 and more generally

mT2#≈ (m+ 2)RP 2.



Lecture 6

Homotopy

The notions of homotopy and homotopy equivalence are quite fun-

damental in topology. Homotopy equivalence of topological spaces is a

weaker equivalence relation than homeomorphism, and homotopy theory

studies topological spaces up to this relation (and maps up to homotopy).

This theory constitutes the main body of algebraic topology, but we only

consider a few of its basic notions here. One of these notions is the Euler

characteristic, which is also a homotopy invariant.

6.1. Homotopic maps

Two maps f , g : X→ Y are called homotopic (notation f ≃ g) if they

can be joined by a homotopy, i.e., by a map F : X × [0, 1]→ Y such that

F (x, 0) ≡ f(x) and F (x, 1) ≡ g(x) (here ≡ means for all x ∈X). If we

change the notation from F (x, t) to Ft(x), we can restate the previous def-

inition by saying that there exists a family {Ft(x)} of maps, parametrized

by t∈ [0, 1], continiously changing from f ≡F0 to g≡F1.

It is easy to prove that

f ≃ f for any f : X→Y (reflexivity);

f ≃ g =⇒ f ≃ g for all f , g : X→Y (symmetry);

f ≃ g and g≃ h =⇒ f ≃ h for all f , g, h : X→Y (transitivity).

For example, to prove transitivity, we obtain a homotopy joining f and h

by setting

F (x, t) =

{
F1(x, 2t) for 0 6 t 6 1/2,

F (x, t) = F2(x, 2t− 1) for 1/2 6 t 6 1,

where F1, F2 are homotopies joining f and g, g and h, respectively.

Thus the homotopy of maps is an equivalence relation, so that the

set Map(X , Y ) of all (continuous) maps of X to Y splits into equivalence
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classes, called homotopy classes ; the set of these equivalence classes is

denoted [X , Y ].

6.2. Homotopy equivalence of spaces

Two spaces X and Y are called homotopy equivalent if there exist

two maps f : X→Y , g : Y →X (called homotopy equivalences) such that

f ◦ g≃ idY and g ◦ f ≃ idX .

Obviously, homeomorphic spaces are homotopy equivalent (the homo-

topy equivalences are provided by any homeomorphism and its inverse).

The converse statement is not true: for example, the point is homotopy

equivalent to the 2-disk, but these two spaces are not homeomorphic.

Thus homotopy equivalence is a weaker equivalence relation than

homeomorphism, so that homotopy classification is rougher (and hence

easier—there are less classes) than topological classification. Its importance

in topology is due to the fact that most topological invariants are homotopy

invariants (this is the case of the so-called fundamental group, homology

groups and related invariants such as the Euler characteristic).

6.3. Degree of maps of S
1 into itself

In this section we consider (continuous) maps f : S1 → S1 of the cir-

cle into itself. Examples are the maps wk : S1 → S1 given by the rule

eiϕ 7→ eikϕ, where S1 is modeled by the set of unimodular complex numbers:

S1 = {z ∈C : |z|= 1}. We are interested in the homotopy classification of

such maps taking the basepoint 1∈S1 to the basepoint 1∈S1.

Theorem 6.1. There is a natural bijection between homotopy classes

of maps of the circle into itself and the integers given by the degree deg

(defined below)

deg : [S1, S
1] −→ Z.

Proof. Consider the map exp: R→S1 given by the rule R∋ϕ 7→eiϕ∈S1.

The map exp is not a bijection; for example, it takes all points of the form

2kπ to 1∈ S1 (see Fig. 6.1 (a)). However, exp is a local homeomorphism,

i.e., any point has a neighborhood U (e. g. any open interval of length less

than 2π containing the point) such that the restriction exp |U of exp to U

is a homeomorphism.

Now any map S1 → S1 can be regarded as a map f : [0, 2π]→ S1 such

that f(0) = f(2π) = 1∈ S1. For any such map there exists a unique map

f̃ : [0, 2π] → R, called the lift of f , such that exp ◦f̃ = f and f̃(0) = 0.
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Indeed, subdivide [0, 2π] into segments [0, a1], [a1, a2], . . . , [am, 2π], so

small that none of the images of these segments covers S1; then, using

the fact that exp is homeomorphic on each segment, successively extend

the map taking the point 0∈ [0, 2π] to the point 0∈R to a map f̃ of the

whole interval [0, 2π] to R. (Look at Figure 6.1 (a).)

R

0 2π
1

0

2kπ

S1

expf

f̃

0

2kπ

w̃k(x)

f̃(x)

x 2π

G(x, t)=wk(x)+t(f̃(x)−w̃k(x))

(a) (b)

Figure 6.1. Liftings of the exponential map

We now define the degree deg([f ]) of any circle map [f ]∋ f : S1 → S1

as follows:

deg([f ]) := f̃(2π)/2π.

To prove the theorem, we must show that:

(0) f̃(2π) does not depend on the choice of points a1, . . . , am that

subdivide [0, 2π];

(1) the assignment deg : [S1, S
1]→Z is well defined, i.e., if f is homo-

topic to f ′, then deg([f ])= deg([f ′]);

(2) the assignment deg is injective, i.e., if f is not homotopic to f ′,

then deg([f ]) 6= deg([f ′]);

(3) the assignment deg is surjective, i.e., for any k ∈ Z there exists a

map f such that deg[f ] = k.

To do this, we will need a lemma.

Lemma. If f̃ : [0, 2π] → R and k = f̃(2π)/2π, then f̃ is homotopic

to w̃k, where w̃k is the lift of wk. Moreover, f will then be homotopic

to wk.

Proof. Look at Fig. 6.1 (b). The straight line is the graph of w̃k, the

curved line is a possible graph of f̃ . The arrows show how to construct a
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homotopy F joining f̃ to w̃k. The map exp ◦F is a homotopy joining f

to wk.

The lemma immediately implies items (0) and (2) above. Item (1)

(injectivity) now follows from (0) and from the fact that the assignment

f 7→ f̃(2π)/2π is continuous, i.e., small changes in f result in small changes

in the degree of f , but since the degree is an integer, sufficiently small

changes in f result in no change at all in the degree of f ! Finally,

(3) (surjectivity) is obvious: given k ∈Z, for the appropriate f we take wk.

The theorem is proved.

The geometric meaning of the degree of a map f : S1 → S1 is “the

number of times that the preimage circle wraps around the image circle”.

Thus the constant map S1 → 1 ∈ S1 has degree 0 (the preimage circle

wraps around the image circle zero times), the identity map has degree 1

(the preimage circle wraps around the image circle exactly once), the map

w−17 has degree −17 (the preimage circle wraps around the image circle

seventeen times in the negative direction (clockwise)).

Corollary 6.1. The identity map of the circle is not homotopic to the

constant map S1 → 1∈S1.

Remark. The notion of degree of a map can be generalized from maps

of the circle to itself to maps of the sphere Sn to itself for any n, and even

to arbitrary n-dimensional oriented manifolds. Although the definition is

not difficult, it is hard to prove in the general case (i.e., for any n) that

the degree is well defined and depends only on the homotopy type of the

map. To do that properly, you need homology theory, which lies outside

the scope of this course.

6.4. A fixed point theorem

The theorem proved in the previous section has numerous important

corollaries, several of which will eventually be discussed in this course.

Here we only give one illustration, namely the Brouwer Fixed Point The-

orem (for n = 2). Other more general fixed point theorems lie at the

basis of fundamental existence theorems in differential equations and their

applications to engineering and especially economics (the so-called Nash

equilibrium), but they require homology theory for their proofs.

Theorem 6.2 (Brouwer Fixed Point Theorem). Any continuous map of

the (closed) disk has a fixed point, i.e., if f : D2 →D2 is continuous, then

there exists a point x∈D2 such that f(x)= x.
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For the proof, we will need a definition and a lemma. If A is a subspace

of a topological space X , a continuous map r : X → A is said to be a

retraction if r restricted to A is the identity. If a retraction r : X →A

exists, then the subspace A is called a retract of X .

Lemma. There is no retraction of the 2-disk on its boundary circle.

Proof of the lemma. Suppose that there exists a retraction r : D
2 → ∂D

2

of the 2-disk D2 on its boundary circle S1 = ∂D2. Consider the family Ft(x)

of maps Ft : S1 → S1 given by the formula Ft(e
iϕ) = r(teiϕ). The map F0

is the constant map S1 → r(O) and the map F1 (which is homotopic to F0)

is the identity map of the circle. This contradicts Corollary 6.1.

f(x)

x

r(x)

f(y)
y = r(y)

Figure 6.2. A retraction that does not exist

Proof of the theorem. To show that the Fixed Point Theorem follows

from the lemma, assume that the theorem is false. For any x ∈D2, we

have f(x) 6= x, and so the intersection point r(x) of the ray [f(x), x) with

the boundary circle is well defined (look at Figure 6.2) and obviously the

map x 7→ r(x) is a (continuous) retraction of D2 onto its boundary circle.

But this contradicts the lemma. The theorem is proved.

6.5. Exercises

6.1. If the restrictions of a map f : X → Y to its closed subsets

X1, . . . Xk, where X1 ∪ . . .∪Xk are all continuous, then f is continuous.

6.2. (a) Prove that if a map f : X → S1 is not surjective, then f is

homotopic to the constant map.

(b) Prove that if a map f : X→ S
n is not surjective, then f is homotopic

to the constant map.

6.3. Prove that the 2-sphere with two points identified and the union

of the 2-sphere with one of its diameters are homotopy equivalent.
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6.4. Prove that the spaces S1 and S1 ⊔ [0, 1]/∼, where ∼ denotes the

identification of some point of S1 with the point 0∈ [0, 1], are homotopy

equivalent.

Here and below X ∨Y denotes the wedge of two path connected spaces

X and Y , i.e., the topological space obtained by identifying a point of X

with a point of Y in the case when this topological space is well defined.

6.5. Prove that the sphere with g handles from which a point has been

removed is homotopy equivalent to the space consisting of n circles passing

through one point, and find n.

6.6. Prove that the spaces S1 ∨S2 and R3 \ S1 are homotopy equivalent.

6.7. Let X be the space R3 from which k copies of the circle have

been removed (the circles are unknotted and unlinked, i.e., they lie in

nonintersecting balls). Prove that X is homotopy equivalent to the wedge

product of k copies of the space S1 ∨S2.

6.8. Let L be the union of two circles in R3 linked in the simplest way.

Prove that R3 \L is homotopy equivalent to the wedge S2 ∨T2.

6.9. Prove that the following assertions are equivalent:

(1) any continuous map f : Dn →Dn has a fixed point;

(2) there is no retraction r : Dn → ∂Dn;

(3) for any vector field v on Dn such that v(x)= x for all x∈ ∂Dn, there

exists a point x∈D
n such that v(x) = 0 (for n= 2 this assertion is called

“теорема о макушке” in Russian and “hedgehog theorem” in English).

6.10. Prove that A is a retract of X if and only if any continuous map

f : A→Y can be extended to X .

6.11. Prove that if any continuous map f : X →X has a fixed point

and A is a retract of X , then any continuous map g : A→A has a fixed

point.

6.12. Let S∞ be the set of all points (x1, x2, . . .), xi ∈ R, such that

only a finite number of xi are nonzero and
∑
x2

i = 1, supplied with the

natural topology. Prove that the space S∞ is contractible (i.e., homotopy

equivalent to a point). Hint : Prove that the identity map is homotopic to

the map (x1, x2, . . .) 7→ (0, x1, x2, . . .).
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Vector fields on the plane

The notion of vector field comes from mechanics and physics. Exam-

ples: the velocity field of the particles of a moving liquid in hydrodynamics,

or the field of gravitational forces in Newtonian mechanics, or the field of

electromagnetic induction in electrodynamics. In all these cases, a vector

is given at each point of some domain in space, and this vector changes

continuously as we move from point to point. In this lecture we will study

a simpler model situation: vector fields on the plane (rather than in space).

In mathematics, the notion of smooth vector field is a basic notion of

differential equations (analysis) and is not a topological notion. However,

in this lecture we will consider the more general (topological!) notion

of continuous vector field and show how the notion of degree of circle

maps can be used in this context, and so can be very efficiently applied to

differential equations.

7.1. Trajectories and singular points

A vector field V in the plane R2 is an assignment of a vector to each

point of the plane. In the coordinates x, y of R2, it may be expressed as

X = α(x, y), Y = β(x, y),

where α : R
2 →R and β : R

2 →R are real-valued functions on the plane,

(x, y) are the coordinates of the point p, and (X , Y ) are the coordinates

of the vector V (p). If the functions α and β are continuous, then the

vector field V is called continuous, and if α and β are smooth (infinitely

differentiable), then V is called smooth. We will consider only continuous

vector fields in what follows, and therefore omit the adjective “continuous”.
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A singular point p of a vector field V is a point where V vanishes:

V (p) = 0; when V is a velocity field, such a point is often called a rest

point, when V is a field of forces, it is called an equilibrium point.

A trajectory of the vector field V through the point p∈R2 is a curve

γ : R → R2 passing through p and tangent at all its points to the vector

field (more precisely, the vector V (q) is equal to the derivative dγ(t)/dt

at each point q ∈C). When we picture a vector field, instead of drawing

numerous vectors in the plane, it is much clearer to draw its trajectories.

It is a classical theorem in differential equations that the trajectories of

a smooth vector field always exist. We do not need this theorem in the

following theory, we need it only to motivate our illustrations, so will not

prove it.

7.2. Generic singular points of plane vector fields

We will now define certain types of singular points of plane vector

fields. To define these points, we will not write explicit formulas for the

vectors of the field, but instead describe the picture of its trajectories near

the singular point and give physical examples of such singularities (see

Figure 7.1).

focus node saddle center

Figure 7.1. Singular points of vector fields

A node is a singular point contained in all the nearby trajectories; if

all the trajectories move towards the point, the node is called stable and

unstable if all the trajectories move away from the point. As an example,

we can consider the gravitational force field of water droplets flowing down

the surface z= x2 + y2 near the point (0, 0, 0) (stable node) or down the

surface z=−x2 − y2 near the same point (unstable node).
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A saddle is a singular point containing two transversal trajectories,

called separatices, one of which is ingoing, the other outgoing, the other

trajectories behaving like a family of hyperbolas whose asymptotes are the

separatrices. As an example, we can consider the gravitational force field of

water droplets flowing down the surface z= x2 − y2 near the point (0, 0, 0);

here the separatrices are the bissectors of the coordinates axes Oxy.

A center is a singular point near which the trajectories behave like the

family of concentric circles centered at that point; a center is called posi-

tive if the trajectories rotate counterclockwise and negative if they rotate

clockwise. As an example, we can consider the velocity field obtained by

rotating the plane about the origin with constant angular velocity.

A focus is a singular point that resembles the node, except that the tra-

jectories, instead of behaving like the set of straight lines passing through

the point, behave as a family of logarithmic spirals converging to it (stable

focus) or diverging from it (unstable focus).

A singular point is called generic if it is of one of the three following

types described above: node, saddle, focus. Note that the center is not

generic. A vector field is called generic if it has a finite number of singular

points all of which are generic.

Remark 7.1. Let us explain informally why the term generic is used

here. Generic fields are, in fact, the “most general” ones in the sense that,

first, they occur “most often” (i.e., as close as we like to any vector field

there exists a generic one) and, second, they are “stable” (any vector field

close enough to a generic one is also generic and has the same number of

singular points). These statements are not needed in this course, so we

will not make them more precise nor prove them.

Remark 7.2. It can be proved that the saddle and the center are not

topologically equivalent to each other and not equivalent to the node or

to the focus; however, the focus and the node are topologically equivalent;

as topologists, we should not distinguish them, but we do, following

the traditions of the theory of dynamical systems (where an equivalence

relation stricter than homeomorphism is used). We do not use (an hence

do not define) this relation.

7.3. The index of plane vector fields

Suppose a (continuous but not necessarily generic) vector field V in

the plane is given. Let γ(S1) be a closed curve in the plane (i.e., γ is an

embedding (“вложение” in Russian) of S1 into R2) not passing through
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any singular points of V ; let us denote C := γ(S1). To each vector V (c),

c∈C, let us assign the unit vector of the same direction as V (c) issuing

from the origin of coordinates O ∈ R
2; we then obtain a map g : C→ S

1
1

(where S1
1 ⊂ R2 denotes the unit circle centered at O), called the Gauss

map corresponding to the vector field V and to the curve γ. Now we define

the index of the vector field V along the curve γ as the degree of the circle

map (g ◦ γ) : S1 → S1:

ind(γ, V ) := deg(g ◦ γ).

Intuitively, the index is the total number of revolutions in the positive

(counterclockwise) direction that the vector field performs when we go

around the curve once.

Remark 7.3. A simple way of computing ind(γ) is to fix a ray not

containing singular points issuing from O and count the number of times p

the endpoint of V (c) passes through the ray in the positive direction and

the number of times q in the negative one; then ind(γ)= p− q.

Theorem 7.1. Suppose that a simple closed curve C=γ(S1), γ : S1 →֒R2,

does not pass through any singular points of a vector field V and bounds a

domain that also does not contain any singular points of V . Then

ind(γ, V ) = 0.

To prove this theorem, we will need a stronger version of the Jordan

Curve Theorem, known as the Schoenflies theorem, which we state as a

fact without proof.

Fact (Schoenflies Theorem). Let C := γ(S1) be a closed curve in the

plane. Then there exists a homeomorphism h of R2 that takes the do-

main D bounded by C to the unit disk centered at the origin O.

Proof of Theorem 7.1. Let h : D→D2 be a homeomorphism given by

the Schoenflies theorem of the domain D to the unit disk centered at the

origin O. Consider the family of all circles S1
r of radius r6 1 centered at O.

Obviously,

ind(γ, V ) = ind(h−1(S1
1), V ).) (*)

The vector V (h−1(O)) is nonzero, hence for a small enough r0, all the

vectors V (s), s ∈ h−1(S1
r0

), differ little in direction from V (h−1(O)), so

that we have ind(h−1(S1
r0

), V )= 0. But then, by continuity,

ind(h−1(S1
r ), V ) = 0 for all r 6 1.

Now the theorem follows from (∗).
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Now suppose that V is a smooth plane vector field and p is a singular

point of V . Let C be a circle centered at p such that no other singular

points are contained in the disk bounded by C. Then the index of V at

the singular point p is defined as ind(p, V ) := ind(C, V ). This index is well

defined, i.e., it does not depend on the radius of the circle C (provided

that the disk bounded by C does not contain any other singular points);

this follows from the next theorem.

Theorem 7.2. Suppose that a simple closed curve γ does not pass

through any singular points of a vector field V and bounds a domain that

contains exactly one singular point a0 of V . Then ind(γ, V )= ind(a0, V ).

The proof is similar to that of Theorem 7.1 and is left as an exercise.

7.4. Exercises

7.1. On the complex plane, consider the vector field v(z) = zn/|z|n−1

for z 6= 0, v(0) = 0. Find the index of the singular point of this field (for

any integer n).

7.2. Prove that the index of the curve γ is equal to the sum of indices

of the singular points that it encircles.

7.3. Suppose that two vector fields v and w are given on a closed

non-self-intersecting curve in such a way that at any point X the vectors

v(X) and w(X) do not point in exactly opposite directions. Prove that

the indices of γ with respect to these vector fields are equal.

7.4∗. Prove that any polynomial P (z) = zn + a1z
n−1 + . . .+ an with

complex coefficients has at least one complex root.

7.5. Let us say that a vector field v is even if v(x) = v(−x) and odd if

v(x) =−v(−x). Prove that the index of the point O for an even field is

even and is odd for an odd field.

7.6. A closed self-intersecting curve divides the plane into several

regions. By choosing a point O in each region, we can assign to the region

the number of revolutions performed by the vector
−−→
OX when the point X

goes around the curve. Prove that if two regions have a common boundary,

then the two numbers for the two regions differ by 1.

7.7∗. On the boundary circles of an annulus consider a vector field

without singular points such that the vectors are tangent to the circles and

the vectors at any two corresponding points of the circles have opposite

directions. Extend this vector field to a vector field without singular points

on the entire annulus.
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7.8. Let f be a smooth function on the plane. Prove that the index of

an isolated singular point of the vector field v= gradf

(a) can be equal to 1, 0, −1, −2, . . . and

(b)* cannot be equal to the other integers.
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Vector fields on surfaces

In this lecture, we discuss vector fields on orientable surfaces. Here we

will see that there is a deep relationship between the global topological

properties of the surface and the structure of vector fields on it, namely

the (local !) characteristics of its singular points. The previous lecture will

serve as the local version of the theory.

8.1. What is a vector field on a surface?

A simple example of a vector field on a surface is the velocity field of

points on the 2-sphere rotating with constant speed around the N-S axis.

In order to define this notion mathematically in the general case, we will

assume that our (compact closed orientable) surface M is embedded in R3.

This means that M can be covered by a finite number of open disks {Uk}

each of which is the graph (“график” in Russian) of a univalent function

zk = Fk(xk, yk) with respect to an orthonormal system of coordinates

(Ok, xk, yk, zk) (called local coordinates).

Thus locally the situation here is the same as in the previous lecture:

one can define smooth vector fields, trajectories, singular points of a vector

field, generic vector fields, the index of a vector field at a singular point,

etc. However, for an arbitrary curve γ : S1 →M , the index of a vector field

Ind(V , γ) cannot be correctly defined, because the Gauss map uses the

parallel shift of vectors to a common origin, and such a shift is not well

defined on the whole surface. Nevertheless, Theorems 7.1 and 7.2 of the

previous lecture remain valid provided that they are understood locally,

i.e., as taking place in a disk Uk ⊂M .

Remark. A more appropriate setting for this lecture is the framework

of smooth surfaces (2-dimensional differentiable manifolds), where the

vector field consists of vectors lying in the so-called “tangent planes” to
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the surface. Since this notion is not known to the listeners of this course,

we have to resort the elementary approach given above, which involves no

tangent planes.

The index of a generic vector field V on a closed compact orientable

surface M is the sum of all indices for all singular points of this field (we

denote it by Ind(M , V )).

As for the case of a plane, a generic vector field on a surface M is

defined as a generic vector field on all the Uk with a finite number of

singular points, all of which are generic (i.e., are nodes, or foci, or saddles).

8.2. Two lemmas

The two following lemmas will be needed in the proof of the main result

of this lecture, the Poincaré Theorem.

Lemma 8.1. If p is a nonsingular point of a generic vector field V ,

D is a disk centered at p, and V0 is any nonzero vector, then there exists

another vector field W with the same singular points, coinciding with V

outside of D and such that W (p)=V0.

Proof. By continuity, there is a disk D0 concentric to D such that all

the vectors V (q), q ∈D0, have a direction that differs by less than 1◦ from

the direction of V (p). Let r be the radius of D0, α be the angle between

V (p) and V0, and S1
s be the circle of radius s6 r centered at p. Then

the required vector field W is obtained from V by rotating all the vectors

V (m), m∈S1
s , by the angle α(r− s)/r and replacing V (p) by V0.

Lemma 8.2. For any generic vector field V on a surface M , there is

a triangulation of M such that any open 2-simplex contains no more than

one singular point.

Proof. Since the number of singular points is finite, by slightly moving

the vertices of the triangulation, we can ensure that no singular point is a

vertex or a point of an edge of the triangulation. By performing iterated

barycentric subdivisions a sufficient number of times, we can ensure that

there is no more than one singular point in each closed 2-simplex. Then

we again slightly move the vertices of the triangulation so that no singular

point is a vertex or lies on an edge. Then each singular point will lie inside

a 2-simplex containing no other singular points.
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8.3. The Poincaré index theorem

Henri Poincaré proved the following beautiful theorem, establishing a

deep connection between the character of singular points of vector fields

and the topology (as expressed by the Euler characteristic) of the surface

on which they are defined.

Theorem 8.1. The index of any smooth generic vector field on a (closed

compact connected triangulated) orientable surface is equal to the Euler

characteristic of this surface.

Proof. The proof will be in two parts. In the first part, we will

construct a special vector field whose index is indeed equal to the Euler

characteristic of the surface. In the second part, we will prove that all

generic vector fields on a given surface have the same index.

Part 1. Let us fix a triangulation of our surface M . We will construct

a special continuous vector field on the triangulated surface with singular

points at all the vertices, at the midpoints of all the edges, and at the

barycenters of all the faces, such that the index of this vector field is

equal to the Euler characteristic of M . At the midpoint of each edge,

we place a saddle point whose ingoing separatrix goes along the edge and

whose outgoing separatrix goes to the barycenters of the two triangular

faces adjacent to the edge. At each vertex, we place an unstable node so

that the edges issuing from the vertex are covered by outgoing trajectories

of the node. At the barycenter of each face, we place a stable node so

that its ingoing trajectories include the three separatrices coming to the

barycenter from the three saddle points at the midpoints of the face’s three

sides (Fig. 8.1). Finally, it is easy to see that the vector fields already

constructed in the neighborhoods of the three types of points (vertices,

midpoints, barycenters) can be extended continuously so as to cover the

entire surface.

The index of the vector field thus constructed is obviously equal to the

Euler characteristic χ= V −E + F of the surface. Indeed, the nodes at

the vertices and the baricenters have index equal to +1, so that the nodes

contribute V + F to the index, while the saddle points have index equal

to −1, so they contribute −E, and all that adds up to χ.

Part 2. Let V1 and V2 be two generic vector fields on our surface; our

aim is to prove that they have the same index. First, by using Lemma 8.2,

we can assume that all the singular points of V1 and V2 lie inside the

2-simplices (triangles) of the triangulation, no more than one in each.
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Figure 8.1. Singular points of the special vector field

Next, by applying Lemma 8.1 at each vertex, we can assume that the

vectors V1(a) and V2(a) have the same direction at each vertex a.

Now let us fix an orientation of M . Then each edge ab acquires two

opposite orientations, ab and ba, from the two faces adjacent to it. Let a

mobile point x move from a to b and then back to a; as x moves from a

to b, consider the rotation of the vector issuing from a and equal to V1(x)

followed by the rotation of the vector issuing from a and equal to V2(x)

as the point x moves back from b to a; denote by dab the number of

revolutions performed by the vector (dab is a well defined integer, because

the two vector fields coincide at the vertices). In a similar way, we can

define dba. Obviously, dab =−dba. Summing over the set E of all edges,

we obtain ∑
(ab)∈E

(dab + dba) = 0. (∗)

Next let us look at this sum from the point of view of the set F of

faces. Let (abc)∈F , where the cyclic order a, b, c agrees with the chosen

orientation of M . Now consider the sum dab + dbc + dca; it does not change

if we first perform the rotation of all the vectors V1 and then of all the

vectors V2; therefore,

dab + dbc + dca = Ind(〈abc〉, V1)+ Ind(〈bac〉, V2)

= Ind(〈abc〉, V1)− Ind(〈abc〉, V2), (∗∗)
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where 〈abc〉 denotes the (positively oriented) closed curve bounding the

face (abc). Rewriting the sum (∗) as a sum over the faces, using (∗∗), and

Theorems 7.1 and 7.2, we obtain:

0 =
∑

(abc)∈F

(
Ind(〈abc〉, V1)− Ind(〈abc〉, V2)

)

=
∑

(abc)∈F

Ind(〈abc〉, V1)−
∑

(abc)∈F

Ind(〈abc〉, V2)

= Ind(M , V1)− Ind(M , V2).

The theorem is proved.

8.4. Applications

Here we state only two immediate applications of Poincaré’s Theorem

(there will be more in the exercise classes).

Corollary 8.1. Any generic smooth vector field on the sphere has at

least two singular points.

Corollary 8.2. Any smooth force field on the configuration space of the

pentagonal linkage with fixed hinges at the distance 3.9 from each other

and 4 mobile sides of length 1 has at least two equilibrium points.

8.5. Exercises

8.1. On the torus construct a vector field without singular points.

8.2. On the Klein bottle construct a vector field without singular

points.

8.3. On the sphere construct a vector field with one nongeneric singular

point.

8.4. On the projective plane construct a vector field with one singular

point.

8.5. On the projective plane, does there exist a vector field (a) without

any singular points, (b) with two singular points, both generic, (c) with

three singular points, all generic, (d) with 17 singular points, all generic?

8.6. On the sphere with two handles construct a vector field with one

singular point.

8.7. To each point X on the sphere S2 ⊂R3 a nonzero vector v(X) in

space is assigned. The vector depends continuously on the point of the
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sphere, but is not necessarily tangent to it. Prove that at least one of the

vectors v(X) is perpendicular to the tangent plane to the sphere at the

point X .

8.8. Let f : S2 → S2 be a continuous map. Prove that there exists a

point x∈S2 such that f(x)=±x.



Lecture 9

Curves in the plane

In this lecture, we study curves and points lying in the plane R2

and introduce two important invariants: the Whitney index (or winding

number) of a curve w(γ) and the degree of a point with respect to a curve

deg(p, γ). The Whitney index will allow us to classify curves immersed in

the plane up to regular homotopy and the degree of a point with respect to

a curve will help us prove the so-called “Fundamental Theorem of Algebra”.

9.1. Regular curves and regular homotopy

A closed curve f : S1 → R2 is called regular if it has a continuously

changing nonzero tangent vector at each point; this means that for any

s∈S1 there exists a neighborhood U ⊂ S1, s∈U , such that the restriction

f |U defines the graph of a continuously differentiable function in some

coordinate system in R2 and this graph has a nonzero tangent vector at

the point f(s). Note that a regular curve can have self-intersection points

and even “overlaps”, i.e., its image f(S1) may contain intervals that are the

image of disjoint intervals of S1, f(U)= f(V ), U ∩V = ∅.

A regular homotopy of a curve f : S1 → S2 is a homotopy of that curve

(i.e., a map F : S1 × [0, 1] → R2 satisfying F (s, 0) = f(s) for all s ∈ S1)

determining a regular curve for each t ∈ [0, 1] (i.e., the curve F (s, t0) is

regular for any fixed t0 ∈ [0, 1]). Note that the “disappearance of a little

loop”, which can occur in a homotopy (see Fig. 9.1), is impossible in a

regular homotopy (why?).

9.2. Immersed curves and regular homotopy

An immersed curve is a regular curve which is generic in the sense that

its singular points cannot be destroyed by arbitrarily small changes. The

exact definition is the following. A regular curve f : S1 →R2 is said to be
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Figure 9.1. Disappearance of a little loop

an immersion if f is not a bijection at only a finite number of points dj , and

these points are transversal double points, i.e., their preimages are pairs of

points and the two tangent vectors at each dj are linearly independent.

Our aim is to classify immersed curves in the plane up to regular

homotopy. This will be done by using an invariant defined in the next

section.

9.3. The Whitney index

The Whitney index (also called winding number) w(f) of a regular

curve f : S1 →R2 (not necessarily immersed) is defined as the degree of the

Gauss map γdf : S1 → S1 determined by the tangent vector to the curve;

this means that γdf is obtained by parallel translation of the mobile tangent

vector df(ϕ) to the origin and normalizing it, and then letting ϕ vary from 0

to 2π.

There is a simple practical method for computing w(f) for an immersed

curve f : we consider all the horizontal tangent vectors to f and assume

that there is a finite number of them, then we count the number of these

vectors of different types and combine these numbers in the appropriate

way. For the details, see the exercise class.

Clearly, the Whitney index w(f) is an invariant of regular homotopy

(because it is continuous and integer-valued).

9.4. Classification of immersed curves

In our classification we will ignore orientation, i.e., will not distinguish

a curve f from the curve f ◦ sym, where sym is the symmetry of S1

with respect to a diameter. This classification is given by the following

theorem.
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Theorem 9.1 (H. Whitney, 1928). Any immersed curve (up to orien-

tation) is regularly homotopic to exactly one of the following curves: the

“figure eight curve”, the circle, the circle with one small loop inside it, the

circle with two small loops inside it, . . . , the circle with n small loops inside

it, and so on.

, , , , , . . .

Figure 9.2. Classification of immersed curves

Proof. As usual for classification theorems, the proof is in two parts—

one geometric, the other algebraic. In the geometric part, we construct

a regular homotopy taking an arbitrary immersed curve to one of the

curves listed in the theorem; we sketch this construction below (the details

will be done in the exercise class). The second part consists in showing

that the curves in the list are pairwise nonhomotopic; this is done by

computing their Whitney indices; it turns out that they are all different

(Exercise 9.10).

Let γ be the given immersed curve. We define a simple loop ω as a part

of γ that starts and ends at a double point of γ and has no self-intersections

(however, it can intersect other parts of γ).

First we prove that any immersed curve with self-intersections has a

simple loop (Exercise 9.1).

Next we show that there is a homotopy after which all the simple loops

do not intersect other parts of γ (Exercise 9.2).

Finally we use the homotopies shown in Figure 9.3 (Exercises 9.3

and 9.4) to conclude the proof of the theorem.

  

Figure 9.3. Two useful homotopies
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Theorem 9.2 (The Whitney Theorem for the Sphere). Any immersed

curve in the sphere is regularly homotopic to the circle or to the “figure

eight curve”.

The proof is the subject of Exercise 9.6.

Note that here we do not classify “up to orientation” as in the previous

theorem, but the classification “up to orientation” will be the same (why?).

Concerning the proof, see the exercise class.

9.5. Degree of a point with respect to a curve

Consider a curve f : S1 → R2 (not necessarily regular) and a point

p∈R2 in its complement, p /∈ f(S1). Let ϕ be the angular parameter on S1

and Vϕ be the vector joining the points p and f(ϕ). As ϕ varies from 0

to 2π, the unit vector Vϕ/|Vϕ| moves along the unit circle S0 centered

at p, defining a circle map γf : S0 → S0. The degree of the point p with

respect to the curve f is defined as the degree of the circle map γ, i.e.,

deg(p, f) := deg(γf ).

It is easy to prove that deg(p, f) does not change when p varies inside

a connected component of R2 \ f(S1) (Exercise 9.7). If the point p is

“far from” f(S1) (i.e., in the connected component of R2 \ f(S1) with

noncompact closure), then deg(p, f)= 0 (Exercise 9.8).

Remark 9.1. There is a convenient method for computing the degree

of any point p in the case when the curve f is immersed: join p by a

(nonclosed) curve α not passing throuhg self-intersection points to a far

away point a and move from a to p along that curve, adding one to the

degree when you cross f(S1) in the positive direction (i.e., so that the

tangent vector looks to the right) and subtracting one when you cross

it in the negative direction. The proof of the fact that you will always

(independently of the choice of α) obtain deg(p, f) when your reach p is

the object of Exercise 9.9.

9.6. The “fundamental theorem of algebra”

The Fundamental Theorem of Algebra says that any polynomial

p(z) = anz
n + an−1z

n−1 + . . .+ a1z+ a0, an 6= 0, n > 0,

has at least one (possibly complex ) root ; here the coefficients ai may be

real or complex. We will prove this theorem assuming that an = 1 and

a0 6= 0; this does not restrict generality (why?).
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Consider the curve fn : S1 → R2 given by the formula eiϕ 7→Rn
0 e

inϕ,

where R0 is a (large) positive number that will be fixed later. Further,

consider the family of curves fp,R : S
1 →R

2 given by the formula

eiϕ 7→ p(Reiϕ), where R 6 R0.

We can assume that the origin O does not belong to fp,R0
(S1) (otherwise

the theorem is proved).

Lemma 9.1. If R0 is large enough, then deg(O, fp,R0
)= deg(O, fn)=n.

Before proving the lemma, let us show that it implies the theorem.

By the lemma, deg(O, fp,R0
) = n. Let us continuously decrease R

from R0 to 0. If for some value of R the curve fp,R(S1) passes through

the origin, the theorem is proved. So we can assume that deg(O, fp,R)

changes continuously as R→ 0; but since the degree is an integer, it

remains constant and equal to n. However, if R is small enough, the

curve fp,R(S1) lies in a small neighborhood of a0; but for such an R we

have deg(O, fp,R)= 0. This is a contradiction, because n> 1.

It remains to prove the lemma. The equality deg(O, fn) = n is obvi-

ous. To prove the other equality, it suffices to show that for any ϕ the

difference ∆ between the vectors Vp(ϕ) and Vn(ϕ) that join the origin O

with the points fp(R0e
iϕ) and fn(R0e

iϕ), respectively, is small in absolute

value (as compared to Rn
0 = |Vp(ϕ)|) if R0 is large enough. Indeed, by

the definition of degree, if the mobile vector is replaced by another mobile

vector whose direction always differs from the direction of the first one by

less than π/2, the degree will be the same for the two vectors.

Clearly, |∆|= |an−1z
n−1 + . . .+ a1z+ a0|. Let us estimate this number,

putting z=R0e
ϕ (we assume that R0> 1) and

A = max{an−1, an−2, . . . , a0}.

We have

|an−1z
n−1 + . . .+ a1z+ a0| 6 |A(Rn−1

0 +Rn−2
0 + . . .+ 1)| 6 A ·n ·Rn−1

0 .

Now if we put R0 :=K ·A, where K is a large positive number, we will

obtain

|∆| 6 nA(KA)n−1 = nKn−1An.

Let us compare this quantity to Rn
0 ; the latter equals Rn

0 =KnAn, so for

K large enough the ratio |∆|/Rn
0 is as small as we wish. This proves the

lemma and concludes the proof of the theorem.
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9.7. Exercises

9.1. Prove that any immersed curve with self-intersections has at least

one simple loop.

9.2. Prove that for any simple loop ω of an immersed curve γ there

exists a regular homotopy which changes only ω and replaces ω by a new

simple loop that does not intersect other parts of γ.

9.3. Prove that the immersed curve shown on the left in Fig. 9.3 is

regularly homotopic to the circle.

9.4. Prove that the immersed curve shown on the right in Fig. 9.3 is

regularly homotopic to the circle.

9.5. Using the results of Exercises 9.1–9.4, prove the Whitney Theorem.

9.6. Prove the Whitney Theorem for the sphere.

9.7. Prove that deg(p, f) does not change when p varies inside a

connected component of R2 \ f(S1).

9.8. Prove that if the point p is “far from” f(S1) (i.e., in the connected

component of R2 \ f(S1) with noncompact closure), then deg(p, f)= 0.

9.9. Prove that the algorithm described in Remark 9.1 finds an integer d

(which is independent of the choice of the curve α) and this integer is the

degree: deg(p, f)= d.

9.10. Compute the Whitney index of the curves shown in Figure 9.2.
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The fundamental group

The fundamental group is one of the most important invariants of

homotopy theory. It also has numerous applications outside of topology,

especially in complex analysis, algebra, theoretical mechanics, and math-

ematical physics. In our course, it will be the first example of a functor,

assigning a group to each pathconnected topological space and a group

homomorphism to each continuous map of such spaces, thus reducing

topological problems about spaces to problems about groups, which can

often be effectively solved.

10.1. Main definitions

Let M be a topological space with a distinguished point p ∈M . A

curve c : [0, 1] →M such that c(0) = c(1) = p will be called a loop with

basepoint p. Two loops c0, c1 with basepoint p are called homotopic rel

endpoints if there is a homotopy F : X × [0, 1]→ Y joining c0 to c1 such

that F (t, x)= p for all t∈ [0, 1].

Two curves c0, c1 such that c0(x)= c1(x)= p (not necessarily loops) are

called homotopic rel p if there is a homotopy H joining c0 to c1 such that

H(t, x)= p for all t∈ [0, 1].

If c1 and c2 are two loops with basepoint p, then the loop c1 · c2 given by

c1 · c2(t) :=




c1(2t) if t 6

1
2
,

c2(2t− 1) if t >
1
2
.

is called the product of c0 and c1.

Proposition 10.1. Classes of loops homotopic rel endpoints form a

group with respect to the product operation induced by ·.

Proof. First notice that the operation is indeed well defined on homo-

topy classes. For, if the paths c1, c2 are homotopic to c̃1, c̃2, respectively,
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via the maps hi : [0, 1]× [0, 1]→M , i= 1, 2, then the map h, defined by

h(t, s) :=




h1(2t, s) if t 6

1
2
,

h2(2t− 1, s) if t >
1
2

is a homotopy rel endpoints joining c1 · c2 to c̃1 · c̃2.

Obviously, the role of the unit is played by the homotopy class of the

constant map c0(t) = p. Then the inverse to c will be the homotopy class

of the map c′(t) := c(1 − t). What remains is to check the associative

law: (c1 · c2) · c3 is homotopic rel p to c1 · (c2) · c3) and to show that c · c′ is

homotopic to c0. In both cases the homotpy is done by a reparametrization

in the preimage, i.e., on the square [0, 1]× [0, 1].

For associativity, consider the following continuous map (“reparametriza-

tion”) of the square into itself

R(t, s) =





(t(1 + s), s) if 0 6 t 6 1/4,

(t+ s/4, s) if 1/4 6 t 6 1/2,

(1− 1/(1 + s)+ t/(1 + s), s) if 1/2 6 t 6 1.

Then the map c1 · (c2 · c3) ◦R : [0, 1]× [0, 1]→M provides a homotopy rel

endpoints joining the loops c1 · (c2 · c3) and (c1 · c2) · c3.

t

s

c1 c2 c3

c1 c2 c3

1

4

1

2

1

2

3

4

(c1 · c2) · c3 ≃ c1 · (c2 · c3)

Figure 10.1. Associativity of multiplication

Similarly, a homotopy joining c · c′ to c0 is given by c · c′ ◦ I, where the

reparametrization I : [0, 1]× [0, 1]→ [0, 1]× [0, 1] is defined as

I(t, s) =

{
(t, s) if 0 6 t 6 (1− s)/2, or (1 + s)/2 6 t 6 1,

((1− s)/2, s) if (1− s)/2 6 t 6 (1 + s)/2,

Notice that while the reparametrization I is discontinuous along the wedge

t= (1± s)/2, the map (c · c′) ◦ I is continuous by the definition of c′.
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The group described in Proposition 10.1 is called the fundamental group

of M at p and is denoted by π1(M , p).

It is natural to ask to what extent π1(M , p) depends on the choice of

the point p∈M . The answer is given by the following proposition.

Proposition 10.2. If p and q belong to the same path connected compo-

nent of M , then the groups π1(M , p) and π1(M , q) are isomorphic.

Proof. Let ρ : [0, 1] →M be a path connecting the points p and q.

It is natural to denote the path ρ ◦ S, where S(t) = 1 − t, by ρ−1. It

is also natural to extend the “ ·” operation to paths with different initial

points and endpoints provided the endpoint of the first factor coincides

with the initial point of the second one. With these conventions estab-

lished, let us associate to a path c : [0, 1] →M with c(0) = c(1) = p the

path c′ := ρ−1 · c · ρ with c′(0) = c′(1) = q. In order to finish the proof,

we must show that this correspondence takes paths homotopic rel p to

paths homotopic rel q, respects the group operation and is bijective up

to homotopy. These statements are proved by using appropriate rather

natural reparametrizations, as in the proof of Proposition 10.1.
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Figure 10.2. Change of basepoint isomorphism

Remark 10.1. Note that the isomorphism in Proposition 10.2 is not

canonical: it follows from the construction that different choices of the con-

necting path ρ will produce isomorphisms between π1(M , p) and π1(M , q)

which differ by an inner automorphism of either group.

If the space M is path connected, then the fundamental groups at all

of its points are isomorphic and one simply talks about the fundamental

group of M and often omits the basepoint from its notation: π1(M).

The free homotopy classes of curves (i.e., with no fixed base point)

correspond exactly to the conjugacy classes of curves modulo changing
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base point, so there is a natural bijection between the classes of freely

homotopic closed curves and conjugacy classes in the fundamental group.

A path connected space with trivial fundamental group is said to be

simply connected (or sometimes 1-connected).

Remark 10.2. Since the fundamental group is defined modulo homo-

topy, it is the same group for homotopically equivalent spaces, i.e., the

fundamental group π1(M) is a homotopy invariant.

10.2. Functoriality

Now suppose that X and Y are path connected, f : X→Y is a contin-

uous maps with and f(p) = q. Let [c] be an element of π1(X , p), i.e., the

homotopy class rel endpoints of some loop c : [0, 1]→X . Denote by f#(c)

the loop in (Y , q) defined by f#(t) := f(c(t)) for all t∈ [0, 1].

Proposition 10.3. The assignment c 7→ f#(c) is well defined on classes

of loops and determines a homomorphism (still denoted by f#) of funda-

mental groups:

f# : π1(X , p) → π1(Y , q)

(called the homomorphism induced by f), which possesses the following

properties (called functorial):

• (f ◦ g)# = f# ◦ g# (covariance);

• (idX)# = idπ1(X,p) (identity maps induce identity homomorphisms).

The fact that the construction of an invariant (here the fundamental

group) is functorial is very convenient for applications, as seen in the

following example.

Example 10.1. Let us give another proof of the Brouwer fixed point

theorem for the disk by using the isomorphisms π1(S
1)= Z and π1(D

2)= 0

(which will be established later) and the functoriality of π1(·).

We will prove (by contradiction) that there is no retraction of D2 on

its boundary S1 = ∂D2. Let r : D2 → S1 be such a retraction, let i : S1 → S2

be the inclusion; choose a basepoint x0 ∈S
1 ⊂ S

2. Note that for this choice

of basepoint we have i(x0)= r(x0)= x0. Consider the sequence of induced

maps:

π1(S
1, x0)

i∗−→ π1(D
2, x0)

r∗−→ π1(S
1, x0).

In view of the isomorphisms noted above, this sequence is actually

Z −→ 0 −→ Z.
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But such a sequence is impossible, because by functoriality we have

r∗ ◦ i∗ = (r ◦ i)∗ = id∗ = idZ .

The fundamental group behaves nicely with respect to Cartesian prod-

ucts, as the following proposition shows.

Proposition 10.4. If X and Y are path connected spaces, then

π1(X ×Y ) = π1(X)× π1(Y ).

Proof. Let us construct an isomorphism of π1(X)× π1(Y ) onto π1(X ×Y ).

Let x0, y0 be the basepoints in X and Y , respectively. For the basepoint

in X ×Y , let us take the point (x0, y0). Now to the pair of loops α and β

in X and Y let us assign the loop α× β given by α× β(t) := (α(t), β(t)).

The verification of the fact that this assignment determines a well-defined

isomorphism of the appropriate fundamental groups is quite straightfor-

ward. For example, to prove surjectivity, for a given loop γ in X × Y

with basepoint (x0, y0), we consider the two loops α(t) := (prX ◦ γ)(t) and

β(t) := (prY ◦ γ)(t), where prX and prY are the projections on the two

factors of X ×Y .

Corollary 10.1. If C is contractible, then π1(X ×C)= π1(X).

The proof is an exercise.

10.3. The Seifert–van Kampen theorem

In this section, we state without proof a classical theorem which relates

the fundamental group of the union of two spaces with the fundamental

groups of the summands and of their intersection. The result turns out

to give an efficient method for computing the fundamental group of a

“complicated” space by putting it together from “simpler” pieces.

In order to state the theorem, we need a purely algebraic notion from

group theory.

Let Gi, i= 1, 2, be groups, and let ϕi : K→Gi, i= 1, 2 be monomor-

phisms. Then the free product with amalgamation of G1 and G2 with

respect to ϕ1 and ϕ2, denoted by G1 ∗K G2 is the quotient group of the

free product G1 ∗G2 by the normal subgroup generated by all elements of

the form ϕ1(k)(ϕ2(k))
−1, k ∈K.

Theorem 10.1 (Van Kampen’s Theorem). Let the path connected space X

be the union of two path connected spaces A and B with path connected

intersection containing the basepoint x0 ∈X. Let the inclusion homomor-
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phisms

ϕA : π1(A∩B) → π1(A), ϕA : π1(A∩B) → π1(B)

be injective. Then π1(X , x0) is the amalgamated product

π1(X , x0) ∼= π1(A, x0) ∗π1(A∩B,x0) π1(B, x0)

10.4. Exercises

10.1. Prove that if C is contractible, then π1(C)= 0.

10.2. Prove that for any path connected topological space X we have

π1(Cone(X))= 0.

10.3. Prove that the fundamental group of the wedge product of

n circles is isomorphic to the free group with n generators.

10.4. Prove that the group π1(nT2) is generated by elements a1, b1, . . . ,

an, bn obeying to the unique relation

n∏

i=1

(aibia
−1
i b−1

i ) = 1.

10.5. Prove that the group π1(nRP 2) is generated by elements a1, . . . ,

an, obeying to the unique relation a2
1 . . . a

2
n = 1.

10.6. (a) Prove that if G= π1(nT2), then G/G′ ∼= Z2n. (Here G′ is the

commutant, i.e. G′ is the subgroup generated by all elements of the form

aba−1b−1 for a, b∈G.)

(b) Prove that if G= π1(nRP 2), then G/G′ ∼= Zn−1 ⊕Z2.

10.7. Prove that π1(S
n)= 0 for n> 2.

10.8. Prove that π1(CP
n)= 0.

10.9. Prove that the fundamental group of the surface nT2 with k> 1

deleted discs is the free group of rank 2n+ k− 1.

10.10. Prove that the fundamental group of the surface nRP 2 with

k> 1 deleted discs is the free group of rank n+ k− 1.

10.11. Suppose that X is the Möbius band, A is its boundary. Prove

that A is not a retract of X .

10.12. Prove that any finite and connected CW-space is homotopy

equivalent to a CW-space with only one vertex e0.



Lecture 11

Covering spaces

A covering space (or covering) is not a space, but a mapping of spaces

(usually manifolds) which, locally, is a homeomorphism, but globally may

be quite complicated. The simplest nontrivial example is the exponential

map R→ S1 discussed in Lecture 6.

11.1. Definition and examples

In this lecture, we will consider only path connected spaces with base-

point and only basepoint-preserving continuous maps (not necessarily cel-

lular). Suppose E, B are path connected topological spaces p : E→B is

a continuous map such that p−1(y) is a discrete subspace, the cardinality

of the set p−1(y) :=D is independent of y ∈B and every x ∈ p−1(y) has

a neighborhood on which p is a homeomorphism onto a neighborhood of

y ∈B, then the quadruple (p, T , B, D) is called a covering with covering

projection p, total space E, base B, and fiber D= p−1(y).

If n= |D| is finite, then (p, E, B, D) is said to be an n-fold covering.

If D is countably infinite, we say that p : E→B is a countable covering.

Examples 11.1. (i) the map w3 : S1 → S1, given by eiϕ 7→ ei3ϕ is a 3-fold

covering of the circle by the circle;

(ii) the exponential map exp: R → S1 is a countable covering of the

circle by the real line;

(iii) the map u : R2 →T2, (x, y) 7→ (2π{x}, 2π{y}), where {·} denotes

the fractional part of a real number, is a countable covering of the torus

by the plane;

(iv) the map τ : S2 →RP 2 obtained by identifying antipodal points of

the sphere is a 2-fold covering of the projective plane.
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Like any other important class of mathematical objects, covering spaces

form a category. In this category, a morphism between two covering

spaces pi : Ei →Bi, i= 1, 2, are pairs of (continuous, basepoint-preserving)

maps ϕ : B1 → B2 and Φ: E1 → E2 such that the following diagram is

commutative:

E1
Φ

//

p1

��

E2

p2

��

B1
ϕ

// B2

Compositions of morphisms and identical morphisms are defined in the

natural way. Then, obviously, an isomorphism of covering spaces is a

morphism for which Φ and ϕ are homeomorphisms. Isomorphic covering

spaces are considered identical.

If E is simply connected, then the covering p : E→B is called universal.

If f : X→B is continuous and f̃ : X→E satisfies f = p ◦F , then f̃ is

said to be a lift of f . The figure below shows the lift of a closed curve.

A homeomorphism of the total space of a covering E of E is called a

deck transformation (“монодромия” in Russian), if it is a lift of the identity

on B.

0 1

p

B

E

Figure 11.1. Lift of a closed curve



11.2. Path lifting and covering homotopy 85

11.2. Path lifting and covering homotopy

In this section, we prove two important technical assertions which

allow, given a covering space p : E → B, to lift “upstairs” (i.e., to E)

continuous processes taking place “downstairs” (i.e., in B). The underlying

idea has already been exploited when we defined the degree of circle

maps by using the exponential map (see Lecture 6), and we will now be

generalizing that idea from the case of the exponential map to arbitrary

covering spaces.

Lemma 11.1 (Path lifting lemma). Any path in the base B of a cover-

ing space p : E→B can be lifted to the total space of the covering, and

the lift is unique if its initial point in the covering is specified. More

precisely, if p : E→B is a covering space, α : [0, 1]→B is any path, and

x0 ∈ p
−1(α(0)), then there exists a unique map α̃ : [0, 1] →X such that

p ◦ α̃=α and α̃(0)= x0.

Proof. By the definition of covering space, for each point b∈α([0, 1])

there is a neighborhood Ub whose inverse image under p falls apart into

disjoint neighborhoods each of which is projected homeomorphically by p

onto Ub. The set of all such Ub covers α([0, 1]) and, since α([0, 1]) is

compact, it possesses a finite subcover that we denote by U0, U1, . . . Uk.

Without loss of generality, we assume that U0 contains b0 :=α(0) and

denote by Ũ0 the component of p−1(U0) that contains the point x0. Then

we can lift a part of the path α contained in U0 to Ũ0 (uniquely!) by means

of the inverse to the homeomorphism between Ũ0 and U0.

Now, again without loss of generality, we assume that U1 intersects U0

and contains points of α[0, 1] not lying in U0. Let b1 ∈α([0, 1]) be a point

contained both in U0 and U1 and denote by b̃1 the image of b1 under

p−1
∣∣
U0

. Let Ũ1 be the component of the inverse image of U1 containing b̃1.

We now extend the lift of our path to its part contained in U1 by using

the inverse of the homeomorphism between Ũ1 and U1. Note that the lift

obtained is the only possible one. Our construction in the case when the

path is closed (i.e., is a loop) is shown in Figure 11.1.

Continuing in this way, after a finite number of steps we will have lifted

the entire path α([0, 1]) to X , and the lift obtained will be the only one

obeying the conditions of the lemma.

Remark 11.1. Note that the lift of a closed path is not necessarily a

closed path, as we have already seen in our discussion of the degree of

circle maps.
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Note also that if all paths (i.e., maps of A= [0, 1]) can be lifted, it is

not true that all maps of any space A can be lifted (see Exercise 11.20).

Now we generalize the path lifting lemma to homotopies, having in

mind that a path is actually a homotopy, namely a homotopy of the one-

point space. This trivial observation is not only the starting point of the

formulation of the covering homotopy theorem, but also the key argument

in its proof.

Theorem 11.1 (Covering homotopy theorem). Any homotopy in the

base of a covering space can be lifted to the covering, and the homotopy is

unique if its initial map in the covering is specified as a lift of the initial

map of the given homotopy. More precisely, if p : E→B is a covering,

F : A× [0, 1]→B is any homotopy whose initial map f0(·) :=F (·, 0) pos-

sesses a lift f̃0, then there exists a unique homotopy F̃ : A× [0, 1] →X

such that p ◦ F̃ =F and F̃ (·, 0)= f̃0(·).

Proof. The theorem will be proved by reducing the theorem to the

path lifting lemma from the previous section. Fix some point α∈A. Define

αa(t) :=F (a, t) and denote by xa the point f̃0(a). Then αa is a path, and

by the path lifting lemma, there exists a unique lift α̃a of this path such

that α̃(0)= xa. Now consider the homotopy defined by

F̃ (a, t) := α̃a(t), for all a ∈ A, t ∈ [0, 1].

Then, we claim that F̃ satisfies all the conditions of the theorem, i.e., F̃

is continuous and unique. We leave this verification to the reader.

Remark 11.2. The covering homotopy theorem is not true if E→B is

an arbitrary surjection (and not a covering space). For a counterexample,

see Exercise 11.7.

11.3. Role of the fundamental group

The projection p of a covering space p : E→B induces a homomor-

phism p# : π1(E)→π1(B). We will see that when the spaces E and B are

“locally nice”, the homomorphism p# entirely determines (up to isomor-

phism) the covering space p over a given B. (What we mean by “locally

nice” will be explained below.)

More precisely, in this section we will show that, provided that the

“local nicety” condition holds, p# is a monomorphism and that, given a

subgroup G of π1(B), we can effectively construct a unique space E and

a unique (up to isomorphism) covering map p : E→B for which G is the

image of π1(E) under p#. Moreover, we will prove that there is a bijection
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between conjugacy classes of subgroups of π1(B) and isomorphism classes

of coverings, thus achieving the classification of all coverings over a given

base B in terms of π1(B).

Theorem 11.2. The homomorphism p# : π1(E) → π1(B) induced by

any (not necessarily locally nice) covering space p : E→B is a monomor-

phism.

Proof. The theorem is an immediate consequence of the covering

homotopy theorem proved in the previous section. Indeed, it suffices to

prove that a nonzero element [α] of π1(E) cannot be taken to zero by p#.

Assume that p#([α])= 0. This means that the loop p ◦α, where α∈ [α], is

homotopic to a point in B. By the homotopy lifting theorem, we can lift

this homotopy to E, which means that [α] = 0.

Now we describe the main construction of this lecture: given a space

and a subgroup of its fundamental group, we will construct the corre-

sponding covering. This construction works provided the space considered

is “locally nice” in a sense that will be specified below.

Theorem 11.3. For any “locally nice” space B and any subgroup G⊂

⊂ π1(B, b0), there exists a unique covering space p : X → B such that

p#(X)=G.

Proof. The theorem is proved by means of another trick. Let us

consider the set P (B, b0) of all paths in B issuing from b0. Two paths

αi : [0, 1]→B, i= 1, 2 will be identified (notation α1 ∼α2) if they have a

common endpoint and the loop λ given by

λ(t) =

{
α1(2t) if 0 6 t 6 1/2,

α2(2− 2t) if 1/2 6 t 6 1.

determines an element of π1(B) that belongs to G. (The loop λ can be

described as first going along α1 (at double speed) and then along α2 from

its endpoint back to b0, also at double speed.)

Denote by X := P (B, b0)/∼ the quotient space of P (B, b0) by the

equivalence relation just defined. Endow X with the “natural” topology

(the formal definition is given below) and define the map p : X →B by

stipulating that it takes each equivalence class of paths in P (B, b0) to the

endpoint of one of them (there is no ambiguity in this definition, because

equivalent paths have the same endpoint).

Then p : X→B is the required covering space. It remains to:

(o) define the topology on X ; (i) prove that p is continuous; (ii) prove that

p is a local homeomorphism; (iii) prove that p#(π1(X)) coincides with G;
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(iv) prove that p is unique. We will do this after defining what we mean

by “locally nice”.

Remark 11.3. To understand the main idea of the construction de-

scribed above, the reader should try applying it in the case G= 0 (con-

struction of the universal cover).

Remark 11.4. The above construction is not effective at all, and cannot

be used to describe the covering space obtained. However, in reasonably

simple cases it is easy to guess what the space X is from the fact that the

fundamental group of X is G and p is a local homeomorphism.

A topological space X is called locally path connected if for any point

x∈X and any neighborhood U of x there exists a smaller neighborhood

V ⊂U of x which is path connected. A topological space X is called locally

simply connected if for any point x∈X and any neighborhood U of x there

exists a smaller neighborhood V ⊂U of x which is simply connected.

Examples 11.2. (a) Let X ⊂R2 be the union of the segments
{
(x, y) : y = 1/2n, 0 6 x 6 1

}
n = 0, 1, 2, 3, . . .

and the two unit segments [0, 1] of the x-axis and y-axis (see Figure 11.2 (a)).

Then X is path connected but not locally path connected (at all points of

the interval (0, 1] of the x-axis).

(b) Let X ⊂R2 be the union of the circles
{
(x, y) : x2 + (y− 1/n)2 = 1/n2

}
n = 1, 2, 3, . . . ;

the circles are all tangent to the x-axis and to each other at the point (0, 0)

(see Figure 11.2 (b)). Then X is path connected but not locally simply

connected (at the point (0, 0)).

0 1

1

x

y

0

x

y

1

2

Figure 11.2. Not locally connected and not locally simply connected spaces
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We will now conclude the proof of Theorem 11.3, assuming that B is

locally path connected and locally simply connected.

(o) Definition of the topology in X =P (B, b0)/∼. In order to define the

topology, we will specify a base of open sets of rather special form, which

will be very convenient for our further considerations. Let U be an open

set in B and x∈X be a point such that p(x) ∈U . Let α be one of the

paths in x with initial point x0 and endpoint x1. Denote by (U , x) the

set of equivalence classes (with respect to ∼) of extensions of the path α

whose segments beyond x1 lie entirely inside U . Clearly, (U , x) does not

depend on the choice of α∈x.

We claim that (U , x) actually does not depend on the choice of the

point x in the following sense: if x2 ∈ (U , x1), then (U , x1) = (U , x2). To

prove this, consider the points b1 := p(x1) and b2 := p(x2). Join the points

b1 and b2 by a path (denoted by β) contained in U .

Let αα1 denote an extension of α, with the added path segment α1

contained in U . Now consider the path αββ−1α1, which is obviously

homotopic to αα1. On the other hand, it may be regarded as the extension

(beyond x2) of the path αβ by the path β−1α−1. Therefore, the assignment

αα1 7→αββ−1α1 determines a bijection between (U , x1) and (U , x2), which

proves our claim.

Now we can define the topology in X by taking for a base of the

topology the family of all sets of the form (U , x). To prove that this

defines a topology, we must check that that a nonempty intersection of two

elements of the base contains an element of the base. Let the point x belong

to the intersection of the sets (U1, x1) and (U2, x2). Denote V :=U1 ∩U2

and consider the set (V , x); this set is contained in the intersection of the

sets (U1, x1) and (U2, x2) (in fact, coincides with it) and contains x, so

that
{
(U , x)

}
is indeed a base of a topology on X .

(i) The map p is continuous. Take x∈X . Let U be any path connected

and simply connected neighborhood of p(x) (it exists by the condition

imposed on B). The inverse image of U under p is consists of basis open

sets of the topology of X (see item (o)) and is therefore open, which

establishes the continuity at an (arbitrary) point x∈X .

(ii) The map p is a local homeomorphism. Take any point x∈X and

denote by p|U : (U , x)→U the restriction of p to any basis neighborhood

(U , x) of x, so that U will be an open path connected and simply connected

set in B. The path connectedness of U implies the surjectivity of p|U and

its simple connectedness, the injectivity of p|U .
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(iii) The subgroup p#(π1(X)) coincides with G. Let α be a loop in B

with basepoint b0 and α̃ be the lift of α initiating at x0 (α̃ is not necessarily

a closed path). The subgroup p#(π1)(X) consists of homotopy classes of

the loops α whose lifts α̃ are closed paths. By construction, the path α̃ is

closed iff the equivalence class of the loop α corresponds to the point x0,

i.e., if the homotopy class of α is an element of G.

(iv) The map p is unique. We omit the proof of this fact here.

11.4. Regular coverings

A covering p : T→B is called regular if the subgroup p#(π1(E))⊂π1(B)

is normal.

Theorem 11.4. If p : E→B is any regular covering, then the quotient

group π(B)/p#(π1(E)) is isomorphic to the group of deck transformations

of the fiber D= p−1(b0).

Proof. There is a natural bijection between the right cosets (“правые

смежные классы” in Russian) of the subgroup p#(π1(E))⊂ π1(B) and D,

but since this subgroup is normal, these cosets forms a group that “shuffles”

the points of D, so that the quotient group π(B)/p#(π1(E)) is the group

of deck transformations of D.

11.5. Exercises

11.1. Suppose that one surface is covered by another surface. What is

the relation between their Euler characteristics, if the covering is n-fold?

11.2. Prove that the sphere with g1 handles can be covered by the

sphere with g2 handles (g1, g2> 2) iff g1 − 1 is a divisor of g2 − 1.

11.3. Construct a nonregular covering of the wedge product of two

circles.

11.4. Construct two regular coverings of the wedge product of two

circles that are not homotopy equivalent to each other.

11.5. Prove that for any n> 2 the wedge product of two circles can be

covered by the wedge product of n circles.

11.6. Prove that if the base surface of a covering p : N2 →M2 is

orientable, then so is the covering surface N2.

11.7. Let X be the union of the lateral surface of the cone and the half-

line issuing from its vertex v, and let p : X→B be the natural projection
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of X on the line B= R. Show that p : X→B does not possess the covering

homotopy property.

11.8. Let the covering surface N2 of a covering p : N2 →M2 is ori-

entable. Is it true that the base surface M2 is orientable?

11.9. Can RP 2 cover the sphere?

11.10. Can the torus T2 cover T2 by a 3-fold covering?

11.11. Can RP 2 be covered by the plane?

11.12. Construct the universal covering of the Möbius band.

11.13. Construct the universal covering of the torus T3.

11.14. Construct the universal covering of the wedge of two circles.

11.15. Construct the universal covering of the wedge S1 ∨S2.

11.16. Construct the universal covering of the sphere with g> 2 han-

dles.

11.17. Suppose some connected graph G has e edges and v vertices.

Find the fundamental group of the graph G.

11.18. Prove that any subgroup of a free group is a free group.

11.19. Prove that the free group of rank 2 contains as a subgroup the

free group of rank n for all n (including n=∞).

11.20. Give an example of a covering space p : E→B, of a space A,

and a map f : A→B that cannot be lifted to E.

11.21. Prove that the universal cover ω : U→B of any (pathconnected)

space B is the cover of any other covering of B, i.e., for any covering space

p : E→B, there exists a covering space q : U→E.



Lecture 12

Knots and links

Knot theory, which studies knots, links (“зацепления” in Russian),

and their invariants, has a long history that begins at the end of the

18th century (Vandermonde), with significant contributions by Gauss,

Poincaré, Reidemeister, Alexander, Conway, Fox. The theory flourished

at the end of the 20th century. Four Fields medalists—Jones, Witten,

Drinfeld, Kontsevich—worked in knot theory; other leading researchers are

Kauffman, Reshetikhin, Turaev, Viro, Vassiliev, Khovanov. The theory is

still going strong today.

12.1. Main definitions

A knot is a closed non-self-intersecting broken line in R3, a link is a set

of nonintersecting and non-self-intersecting broken lines in R3. Two knots

or links are called isotopic if there exists a finite sequence of ∆-moves (see

Figure 12.1) transforming one into the other.

Note that in the definition of ∆-moves the knot (link) does not intersect

the triangle ABC defining the move, except along its sides, as shown in

the figure. In the definition of ∆-moves, we include the case when the

A

B

C

 

A

B

C

A

B

C  

A

B

C

Figure 12.1. ∆-moves
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triangle ABC is degenerate; in that case the move reduces to adding or

removing a vertex.

An example of a sequence of ∆-moves changing the shape of a knot

are shown in Figure 12.2. The figure clarifies the idea that two knots are

isotopic if their practical models (made from rope) can be given the same

shape by appropriately moving the ropes.

A

B C

1 !

A

B C

1 !

A

C

1

23
5

4

Figure 12.2. A sequence of ∆-moves

Isotopy is obviously an equivalence relation, and the word “knot” is

often used in the sense of “isotopy class of knots”, we often say that two

closed broken lines are “the same knot” or “have the same knot type” if

they are isotopic. (And similarly for links.)

A knot is called trivial (or said to be the unknot) if it is isotopic to

a regular polygon. Examples of famous knots and links are shown in

Figure 12.2. In the figure the knots are presented in the form of knot

(a) (b) (c)

(d) (e) (f)

Figure 12.3. (a) unknot; (b) right trefoil; (c) eight knot; (d) Hopf link;
(e) Whitehead link; (f) Borromeo rings
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diagrams, i.e., projections of the knot on the plane in general position,

with underpass-overpass information at each double point (it shows which

one of the branches lies above the other).

There are several equivalent definitions of knot, link, and isotopy (e. g.

smooth knots or PL-knots). The definition given above is the most elemen-

tary one. Another elementary definition of knot consists in “putting each

knot in a box”, i.e., defining a knot as a broken line inside a cube joining

the centers of opposite faces of the cube, with isotopy being a sequence

of ∆-moves performed inside the cube and not moving the endpoints of

the broken line. It is easy to show that there is natural bijection between

isotopy classes of boxed knots and knot types as defined above.

12.2. The arithmetic of knots

We define the composition (also called connected sum) of two (boxed)

knots K1, K2 as the knot K1#K2 obtained by fitting the boxes together

as shown in Figure 12.4). Under the composition operation knots form a

semigroup denoted by K.

# =

Figure 12.4. Composition of two knots

A knot K is called prime if it cannot be presented as the sum of two

nontrivial knots, i.e., K =K1#K2 implies that either K1 or K2 is the

unknot.

Theorem 12.1. The semigroup K is commutative, it has no inverse

elements (i.e., K1#K2 = , where denotes the unknot, implies that

both K1 and K2 are trivial) and each nontrivial knot possesses a unique

(up to order) decomposition into prime knots.

We omit the (fairly difficult) proof of this lovely theorem, but show the

isotopy demonstrating commutativity (Figure 12.5.)
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(a) (b) (c)

(d) (e) (f)

Figure 12.5. Commutativity of the connected sum of knots

12.3. The combinatorics of knots: Reidemeister moves

The knot classification problem is a very difficult three-dimensional

geometric problem (for a detailed formulation, see Section 12.5 below),

but it has been reduced to a combinatorial two-dimensional problem by

Reidemeister. This reduction was done by means of certain modifications

of knot diagrams called Reidemeister moves; they are shown in Figure 12.6.

The first move, Ω1, is the removal (addition) of a small loop, the second

one, Ω2, is the removal (addition) of an overlap, and the third, Ω3, is the

passage of a branch of the knot over a crossing point.

↔ ↔

(1)

↔

(2)

↔

(3)

Figure 12.6. Reidemeister moves
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Theorem 12.2. If two knot (link) diagrams define isotopic knots (links),

then one can be taken to the other by a finite sequence of Reidemeister

moves.

We omit the proof, which can be obtained by a general position argu-

ment.

The Reidemeister theorem did not lead to a simple solution of the

knot classification problem, but turned out to be extremely useful in the

construction of various knot invariants.

12.4. The Alexander–Conway polynomial

The Alexander–Conway polynomial is an invariant of oriented knots

and links; it can be introduced by means of the Conway axioms: we are

given a rule that to each oriented diagram of a knot or link L assigns a

polynomial ∇L(x) and satisfies the following axioms:

I. [Invariance] ∇L(x) is an isotopy invariant.

II. [Normalization] For the unknot , ∇ (x)= 1.

III. [Skein relation] The following equality holds :

∇
( )

−∇
( )

= ∇
( )

for any three link diagrams that are identical everywhere except inside the

dotted circles, where they are as shown in the figure.

We will not prove that the Alexander–Conway polynomial exists and is

well defined by these axioms, we only present an example of its calculation.

∇
( )

= ∇
( )

−x∇
( )

= ∇( )−∇( ) = 1−1 = 0.

12.5. About the classification of knots

The solution of the knot classification problem is an algorithm that

determines whether or not two knot diagrams define the same knot. The

existence of such an algorithm was proved by S. V. Matveev a few years

ago, but the algorithm is too complicated to be implemented in a computer.

However, prime knots with a small (6 16) number of crossings have been

classified (by means of invariants more powerful than the Alexander–

Conway polynomial) and are tabulated in knot tables. A small knot table

is given below.
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01 31 41 51 52

61 62 63 71 72

73 74 75 76 77

Figure 12.7. Table of prime knots with 7 crossings or less

A particular case of the knot classification problem is the unknotting

problem: to find an algorithm that decides whether a given knot diagram is

the unknot. Such an algorithm has been constructed by Ivan Dynnikov, it

is known that it gives the correct answer for knot diagrams with 500 cross-

ings or less, but it has not been proved that it terminates with the correct

answer when there are more than 500 crossings.

These topics are the subject of ongoing research.

12.6. Exercises

12.1. Which of the knots in the picture are trivial, are trefoils, are eight

knots?

(1) (2) (3) (4)
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(5) (6) (7) (8)

12.2. Compute the Conway polynomials of the two Hopf links.

12.3. Compute the Conway polynomials of the two (right and left)

trefoils.

12.4. Compute the Conway polynomials of the eight knot (41 in the

knot table).
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