Теория Галуа І

- ▶ Начиная с этого листка можно пользоваться основной теоремой теории Галуа.
 - Задача 4.1. Пусть L/K расширение Галуа.
 - а) Если $\operatorname{Gal}(L/K) = \mathbb{Z}/2$ (и $\operatorname{char} K \neq 2$), то $L = K(\sqrt{a})$.
 - б) Если $\operatorname{Gal}(L/K) = \mathbb{Z}/p$ (и $K \ni \zeta_p$, a $\operatorname{char} K \neq p$), то $L = K(\sqrt[p]{a})$.
 - УКАЗАНИЕ. При действии образующей σ группы Галуа элемент $\sqrt[p]{a}$ должен домножаться на ζ_p . Как получить элемент с таким свойством из базиса $\alpha, \sigma\alpha, \sigma^2\alpha, \dots$?
 - **Задача 4.2.** Пусть L поле разложения неприводимого над K (char $K \neq 2, 3$) многочлена 3 степени с диксриминантом D. Найдите группу Галуа расширения а) $L/K(\sqrt{D})$; б) L/K.
 - **Задача 4.3.** Пользуясь предыдущими задачами, объясните, как решать кубическое уравнение в радикалах. (Выписывать явную формулу до конца не обязательно.)
 - **Задача 4.4.** Вспомнив, что $S_4/V_4\cong S_3$, придумайте подходящие многочлены от x_1,\ldots,x_4 , инвариантные относительно действия V_4 , и объясните, как решать уравнения 4 степени.

* * *

- **Задача 4.5.** Найдите группу Галуа расширения $\mathbb{Q}(\sqrt{n} + \sqrt{m})/\mathbb{Q}$ и все его подрасширения.
- **Задача 4.6.** Пусть n_1, \ldots, n_k такой набор целых чисел, что никакое из непустых подмножеств не дает в произведении полный квадрат.
- а) Докажите, что степень расширения $\mathbb{Q}(\sqrt{n_1},\ldots,\sqrt{n_k})$ равна 2^k , найдите его группу Галуа, опишите все подрасширения. (Удобно доказывать все сразу, используя индукцию по k и предыдущую задачу.)
- 6) $\mathbb{Q}(\sqrt{n_1},\ldots,\sqrt{n_k}) = \mathbb{Q}(\sqrt{n_1}+\ldots+\sqrt{n_k}).$
- **Задача 4.7.** Найдите все подрасширения а) $K(\sqrt[n]{a})/K$, если char $K=0, K\ni \zeta_n$; б) $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$; в) $\mathbb{Q}(\sqrt[4]{-1})/\mathbb{Q}$.