Правильные многогранники (по Шлефли).

Терминология и обозначения. Многогранником в \mathbb{R}^n называется выпуклая оболочка конечного набора точек или, что то же самое, ограниченное пересечение конечного числа замкнутых полупространств¹. Под размерностью многогранника понимается размерность наименьшего аффинного пространства, в котором он содержится. Группой многогранника M называется группа всех биективных отображений $M \cong M$, индуцированных ортогональными преобразованиями $\mathbb{R}^n \to \mathbb{R}^n$. Всякая последовательность длины n, состоящая из вершины, примыкающего к ней ребра, примыкающей к нему двумерной грани, ..., примыкающей к ней (n-1)-мерной грани, называется ϕ лагом в M. Многогранник называется nравильным, если его группа транзитивно действует на его флагах. Для правильного многогранника $P \subset \mathbb{R}^n$ обозначим через $\ell(P)$ длину его ребра, через r(P) — радиус описанного шара, через $\ell(P) = \ell^2/4r^2$ — квадрат отношения длины ребра к диаметру описанного шара.

 $\Gamma_{7/2}$ (звезда). Покажите, что все вершины правильного многогранника P, соединённые ребром с заданной вершиной $p \in P$, лежат в одной гиперплоскости, образуя в ней правильный многогранник St(P), размерности на 1 меньше, чем P (он называется звездой многогранника P).

 $\Gamma_7 \stackrel{1}{\sim} 2$ (символ). Определим *символ Шлефли* правильного многогранника $P \subset \mathbb{R}^n$ по индукции как последовательность из (n-1) натуральных чисел $\mathbf{v}(P) = (v_1(P), v_2(P), \dots, v_{n-1}(P))$, в которой $v_1(P)$ это число рёбер у двумерной грани многогранника P, а $(v_2(P), \dots, v_{n-1}(P)) = \mathbf{v}(\mathrm{St}(P))$ это символ звезды $\mathrm{St}(P)$ многогранника P. Найдите символы: а) додекаэдра и икосаэдра в \mathbb{R}^3 б) октаплекса в \mathbb{R}^4 в) правильного n-мерного симплекса \mathbf{r}) n-мерного куба д) n-мерного кокуба.

 $\Gamma_7\frac{1}{2}\diamond 3^*$. Убедитесь, что выпуклая оболочка вершин стандартного 4-мерного куба, вершин 4-мерного кокуба, гомотетичного стандартному с коэффициентом 2, и всех точек, которые можно получить всевозможными чётными перестановками координат из точек ($\pm \tau$, ± 1 , $\pm \tau^{-1}$, 0), где $\tau = (1 + \sqrt{5})/2$, является правильным многогранником с символом (3, 3, 5).

 Γ_7 ½
\$4. Выразите $\ell(\operatorname{St}(P))$ через $\ell(P)$ и $\nu_1(P)$, и покажите, что

$$\varrho(P) = 1 - \frac{\cos^2(\pi/\nu_1(P))}{\varrho(\operatorname{St}(P))}$$

зависит только от символа $\boldsymbol{v}(P)$ многогранника P.

 $\Gamma_7^{1/2} \diamond 5^*$ (двойственность). Покажите, что для правильного многогранника $P \subset \mathbb{R}^n$ с центром в нуле многогранник $P^* = \{ \xi \in \mathbb{R}^{n*} \mid \forall v \in P \; \xi(v) \geqslant -1 \}$ тоже правильный с центром в нуле, и для каждого k имеется оборачивающая включения биекция между k-мерными гранями многогранника P и (n-k-1)-мерными гранями многогранника P^* .

 $\Gamma_7\frac{1}{2}$ \$6. Покажите, что символ $\nu(P^*)$ это прочтённый справа налево символ $\nu(P)$.

 $\Gamma_7\frac{1}{2}$ \$7 (классификация правильных многогранников по Шлефли). Покажите, что символы всех правильных многогранников $P \subset \mathbb{R}^n$ содержится в списке:

- а) (ν), где $\nu \geqslant 3$ любое натуральное для n=2
- б) (3, 3), (3, 4), (4, 3), (3, 5), (5, 3) для n = 3
- в) (3, 3, 3), (3, 3, 4), (4, 3, 3), (3, 4, 3), (3, 3, 5), (5, 3, 3) для n = 4
- г) $(3, \ldots, 3), (3, \ldots, 3, 4), (4, 3, \ldots, 3)$ для $n \geqslant 5$

и для каждого элемента списка имеется единственный с точностью до подобия правильный многогранник с таким символом.

 $\Gamma_7\frac{1}{2}$ \diamond 8. Сколько движений в группах 4-мерных правильных многогранников с символами (3, 4, 3), (3, 3, 5) и (5, 3, 3)? Попытайтесь явно перечислить все эти движения.

¹Эквивалентность этих двух определений известна как *теорема Минковского – Вейля*. Она будет в своё время доказана на лекции.

 $^{^{2}}$ Транью многогоранника M называется непустое пересечение M с любой такой гиперплоскостью, что M целиком находится в одном из замкнутых полупространств, ею ограничиваемых.

Персональный табель		Листок $7\frac{1}{2}$ (необязательный)
_	(напишите свои имя, отчество и фамилию)	

№	дата сдачи	имя и фамилия принявшего	подпись принявшего
1			
2a			
б			
В			
Г			
Д			
3			
4			
5			
6			
7a			
б			
В			
Г			
8			