Определители в геометрии.

 Γ 6 \diamond 1. Векторы $e_1 = \overrightarrow{AD}$, $e_2 = \overrightarrow{AB}$, $e_3 = \overrightarrow{AA}_1$, направленные вдоль выходящих из вершины A рёбер параллелепипеда $ABCDA_1B_1C_1D_1$ в евклидовом пространстве \mathbb{R}^3 имеют матрицу Грама

$$((e_i, e_j)) = \begin{pmatrix} 2 & -2 & 3 \\ -2 & 5 & -4 \\ 3 & -4 & 5 \end{pmatrix}.$$

б) объём тетраэдра A_1C_1BD Найдите: а) расстояние и угол между прямыми CC_1 и B_1D_1 в) площадь треугольника B_1D_1C .

 Γ 6 \diamond 2. В евклидовом пространстве \mathbb{R}^3 найдите: а) угол и расстояние между прямой, лежащей в плоскости XOZ и задаваемой там уравнением 2x - 3z = 5, и прямой, заданной уравнением 3y + 2z = 7 в плоскости YOZ б) расстояние от точки (-2, 1, -1) до плоскости, пересекающей координатные оси при x=3, y=5, z=2 в) угол между плоскостью, параллельной оси OX и пересекающей координатную плоскость YOZ по прямой z + 2y = 8, и плоскостью, параллельной оси OZ и пересекающей координатную плоскость XOY по прямой 5y - x = 1. r) объём правильного октаэдра, описанного около единичной сферы.

 Γ 6 \diamond 3. Справедливы ли в евклидовом координатном пространстве \mathbb{R}^3 соотношения:

- a) $[[a,b],[a,c]] = \det(a,b,c) \cdot a$ 6) [a,[b,c]] = [[a,b],c] + [b,[a,c]] B) $[a,[b,c]] = (b,a) \cdot c (c,a) \cdot b$ r) $([u,v],[v,w]) = \det\begin{pmatrix} (u,v) & (u,w) \\ (v,v) & (v,w) \end{pmatrix}$
- Г6 4. Найдите объём правильного четырёхмерного симплекса, вписанного в шар радиуса 1.
- Г6\$5. Найдите объём правильного четырёхмерного кокуба, описанного вокруг шара радиуса 1. $\Gamma 6 \diamond 6^*$. Найдите (четырёхмерный) объём октаплекса из задачи $\Gamma 5 \diamond 12$.
- Γ 6 \diamond 7. Найдите минимум $\int_{-1}^{1} f^2(x) dx$ по всем многочленам f степени k со старшим коэффициентом 1 для a) k = 2 б) k = 3 в^{*}) любого k.
- Γ 6 \diamond 8. Покажите, что расстояние от конца вектора v до векторного подпространства, порождённого линейно независимыми векторами w_1, w_2, \dots, w_k , равно $\Gamma(v, w_1, w_2, \dots, w_k)/\Gamma(w_1, w_2, \dots, w_k)$, где через $\Gamma(u_1,u_2,\ldots,u_m)\stackrel{\text{def}}{=}\det\left((u_i,u_j)\right)$ обозначен определитель Грама векторов u_1,u_2,\ldots,u_m .
- $\Gamma 6 \diamond 9^*$. Для произвольных k точек p_1, p_2, \ldots, p_k евклидова пространства \mathbb{R}^n образуем симметричную $k \times k$ матрицу $D_{p_1,p_2,...,p_k} \stackrel{\text{def}}{=} (|p_i p_j|^2)$ квадратов расстояний между ними и обозначим через $C_{p_1,p_2,...,p_k}$ матрицу размера $(k+1) \times (k+1)$, получающуюся из матрицы $D_{p_1,p_2,...,p_k}$ приписыванием строки единиц сверху, столбца единиц слева и нуля в левом верхнем углу. Покажите, что а) $\Gamma\left(\overline{p_0p_1},\overline{p_0p_2},\cdots,\overline{p_0p_n}\right) = \frac{(-1)^{n+1}}{2^n} \det C_{p_0,p_1,...,p_n}$ (внимание: размер у матриц разный!)
 - 6) (n+1) точек p_0,p_1,\ldots,p_n лежат в одной гиперплоскости $\Longleftrightarrow\det \mathcal{C}_{p_0,p_1,\ldots,p_n}=0$

 - в) (n+1) точки p_0, p_1, \dots, p_n лежат на сфере или в гиперплоскости \iff $\det D_{p_0, p_1, \dots, p_{n+1}} = 0$ г) квадрат радиуса шара, описанного около симплекса $[p_0, p_1, \dots, p_n]$, равен $-\frac{1}{2} \frac{\det D_{p_0, p_1, \dots, p_n}}{\det C_{p_0, p_1, \dots, p_n}}$.
- $\Gamma 6 \diamond 10^*$. Пусть задана симметричная матрица $D = \left(d_{ij}^2\right)$ размера $(n+1) \times (n+1)$, в которой все числа $d_{ii} = 0$, но числа $d_{ij} = d_{ji} > 0$ при $i \neq j$. Покажите, что симплекс $[p_0, p_1, \dots, p_n]$ с предписанными длинами сторон $|p_ip_j|=d_{ij}$ существует, если и только если при каждом $r=2,\ 3,\ \dots$, (n+1) все главные миноры порядка r в матрице D отличны от нуля и имеют знак $(-1)^{r-1}$.

¹Т. е. определители квадратных подматриц, главная диагональ которых является подмножеством главной диагонали исходной матрицы.

(напишите свои имя, отчество и фамилию)

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1a			
б			
В			
2a			
б			
В			
Г			
3a			
б			
В			
Г			
4			
5			
6			
7a			
б			
В			
8			
9a			
б			
В			
Г			
10			