4. Геометрия комплексных чисел и кватернионов

Задача Дня. *Расслоение Хопфа*. Разбейте пространство, из которого выбросили одну прямую, на попарно зацепленные окружности.

- **4.1.** Комплексным числам a и b соответствуют векторы \overrightarrow{OA} и \overrightarrow{OB} . Выразите скалярное произведение $(\overrightarrow{OA}, \overrightarrow{OB})$ через a и b с помощью сложения, умножения и сопряжения.
- 4.2. а) Отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника равны, если и только если диагонали четырехугольника перпендикулярны.
- b) *Теорема Наполеона*. Если на сторонах произвольного треугольника, как на основаниях, построить во внешнюю сторону правильные треугольники, то их центры образуют правильный треугольник.
- 4.3. а) Композиция поворотов плоскости поворот или параллельный перенос.
- b) Композиция поворотов пространства (с различными осями) винтовое движение.
- 4.4. а) Дробно-линейным отображением плоскости можно перевести любые три различные точки в любые другие три различные точки, и такое отображение единственно.
- b) Дробно-линейным отображением переведите внутренность единичной окружности $\{z\in\mathbb{C}:|z|<1\}$ на верхнюю полуплоскость $\{z\in\mathbb{C}:\operatorname{Im} z>0\}.$
- с) Найдите все дробно-линейные отображения верхней полуплоскости на себя.
- d) Инверсия сохраняет двойные отношения точек на окружностях или прямых.
- е) Кватернионным дробно-линейным отображением можно перевести любые три различные точки в любые другие три различные точки. Единственно ли такое отображение?
- f) Кватернионным дробно-линейным отображением переведите множество $\{q \in \mathbb{H} : |q| = 1, q \neq 1\}$ в множество $\{q \in \mathbb{H} : \operatorname{Re} q = 0\}$.
- g) Построенное отображение переводит окружности в окружности или прямые.
- h) Для каждого $q \in \mathbb{H}$, |q| = 1, множество $S_q := \{q \cdot (\cos t + i \sin t) : t \in \mathbb{R}\}$ окружность.
- і) Любую пару различных окружностей вида S_q можно непрерывно продеформировать в любую другую пару, так чтобы в процессе деформации окружности не пересекались.

Сданные решения

4.5. В скольких точках могут пересекаться две окружности на $\mathbb{C}P^2$?

Абрамов 1.1ab, 2.12abd, 3.1ab2a
Гацолаева 1.2а
Дмитриенко 1.13ac4a,2.12ab,3.1ab+.2a
Елшин 1.1аb3с
Замятин 1.123ac4bc 2.12a-d
Kаратушин $1.1a\frac{\pm}{2}$
Киселёв 1.1ab234a5ab,2.12a–d34a,3.2a
Краснов 1.1аb2а4с, 3.2а
Лагуновская 1.1а∓b, 2.34аb
Малахов 1.1ab3c, 2.12abd
Мещихин 1.2а3с
Неугодов 1.1аb3с4а
Пашментов 1.1ab
Сеилов 1.1с
Халайджи Саша 1.1а2b
Худяков 1.1аb
Шевцов $1.1a2a\pm b3a\pm c\pm$

Акимова 1.12ab4, 2.1 Герасимова 1.1ab2 Думанский **ЗД** І Ерошенко 1.1-1.4 Измаилов 1abc±2a34abc± Карпушкин 1.1аbc+.3с Коваленко 1.2b, 2.12a-c34ab, 3.2a Кравцов $1.1bc\pm2a3a\pm c\pm4ab\pm c\pm5a$ Литвинов 1.1а⇒b2a Маслов 1.1ab2, 2.1 Михайлов $1.1ab2a\pm b\mp 3b4b\mp ,2.12ab,3.12a$ Никитин 1.1ab, 3.1b Райко 1.1ab234ab±c, 2.12a-d34a Трифонов $1.1abc\pm 23ac4a, 2.1$ Халайджи Леша 1.2b Шайдуров 1.12а3ас4с, 3.3с Шлыков 1.1ab

Буря 1.1ab2a3b4a, 2.2a-d, 3.2a Гринько 1.1ab23c4ab Елишев 1.1ab2a3c4c, 2.1 Жукова $1.1a\frac{\pm}{2}b\pm$ Ильин 1.12b3ab, 2.12ab Кельвич 1.1 Королев 1.1ab Круль 1.12ab34a, 2.12a-f, 3.12a Лященко 1.1ab, 2.12a-c Матушкин 1.12a4, 2.2a-e34 Молоков $1.4c\pm,2.2.a\pm c\pm d\pm ef\pm,3$ ДШ Новак $1.1a\Rightarrow b$, $3.2ab\pm$ Сангаджиев (?) 1.1ab

Шарипова 1.123ас4,2.12а-е34а,3.3с

Федоров 1.4с

Хачатурян 1.1аb

Шуклин 1.1ab2a