Матрицы

- **A7** \diamond 1. В \mathbb{Q}^4 найдите размерность и какой-либо базис у суммы и пересечения подпространств:
 - а) Span((1,1,1,1), (1,-1,1,-1), (1,3,1,3)) и Span((1,2,0,2), (1,2,1,2), (3,1,3,1))
 - 6) Span (1,1,0,0), (0,1,1,0), (0,0,1,1) μ Ann (1,0,1,0), (0,2,1,1), (1,2,1,2)
 - в) Ann ((1,1,0,0),(0,1,1,0)),(0,0,1,1)) и Ann ((1,2,0,2),(1,2,1,2),(3,1,3,1))
- **A7** \diamond 2. Выясните, является ли сумма подпространств $U, W \subset \mathbb{k}^n$ прямой, и если да, найдите проекции стандартных базисных векторов \mathbb{k}^n на каждое из подпространств вдоль другого.
 - а) U задано уравнением $x_1+x_2+\cdots=x_n=0$, а W- системой $x_1=x_2=\cdots=x_n$
 - 6) $U = \operatorname{Span}((1, 1, 1, 1), (-1, -2, 0, 1)), W = \operatorname{Span}((-1, -1, 1, -1), (2, 2, 0, 1)) \times \mathbb{Q}^4$.
- **A7** \diamond 3. На какую матрицу и с какой стороны надо умножить прямоугольную матрицу, чтобы a) её i-тая и j-тая строки поменялись местами δ) её i-тая строка умножилась на λ δ в) к её i-той строке прибавилась j-тая, умноженная на λ δ г) то же, но со столбцами.
- A7 \diamond 4 (теорема о ранге). Покажите, что у любой матрицы $A \in \operatorname{Mat}_{m \times n}(\mathbb{k})$ размерность линейной оболочки её столбцов¹ в \mathbb{k}^m .
- A7\$5. Покажите, что каждая матрица ранга 1 а) является произведением столбца на строку 6) пропорциональна своему квадрату, буде она квадратная.
- A7 \diamond 6. Докажите для любых матриц $A \in \operatorname{Mat}_{k \times \ell}, B \in \operatorname{Mat}_{\ell \times m}, C \in \operatorname{Mat}_{m \times n}$ неравенства:
 - a) $\operatorname{rk}(AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$ 6) $\operatorname{rk}(AB) + \operatorname{rk}(BC) \leqslant \operatorname{rk}(ABC) + \operatorname{rk}(B)$ B) $\operatorname{rk}(A) + \operatorname{rk}(B) \leqslant \operatorname{rk}(AB) + \ell$.
- **A7** \diamond 7. Есть 7 одинаковых банок, каждая на $\%_{10}$ заполнена краской одного из семи цветов радуги 2 . Можно ли переливая краску из банки в банку и равномерно размешивая содержимое получить хоть в одной из банок колер, в котором все 7 красок смешаны в равной пропорции?
- **A7<8** (коммутатор). Разность [A,B] = AB BA называется коммутатором квадратных матриц $A,B \in \operatorname{Mat}_n(\Bbbk)$. Докажите, что для любых $A,B,C \in \operatorname{Mat}_n(\Bbbk)$ выполняются правила Лейбница: a) [A,BC] = [A,B]C + B[A,C] 6) [A,[B,C]] = [[A,B],C] + [B,[A,C]].
- A7 \diamond 9. Выразите $(A + B)^n$ через $A^i B^j$, если a) [A, B] = 0 б *) [A, B] = B в *) [A, B] = A.
- $A7 \diamond 10^*$ (лемма Барта). Пусть rk [A, B] = 1. Покажите, что у A и B есть общий собственный вектор³.
- A7 \diamond 11 (след). Сумма диагональных элементов tr $A \stackrel{\text{def}}{=} \sum a_{ii}$ называется *следом* квадратной матрицы A. Покажите, что \mathbf{a}) $\forall A, B \in \operatorname{Mat}_n(\mathbb{k})$ tr[A, B] = 0 $\mathbf{6}$) $\forall A \in \operatorname{Mat}_n(\mathbb{k})$ и $\forall C \in \operatorname{GL}_n(\mathbb{k})$ tr $(C^{-1}AC) = \operatorname{tr}(A)$ \mathbf{b}) если $\operatorname{tr}(AX) = 0$ $\forall X \in \operatorname{Mat}_n(\mathbb{k})$ с tr X = 0, то $A = \lambda E$ для некоторого $\lambda \in \mathbb{k}$.
- A7 \diamond 12 (нильпотентные матрицы). Матрица $A \in \operatorname{Mat}_n(\Bbbk)$ называется *нильпотентной*, если $A^n = 0$ для некоторого $n \in \mathbb{N}$. Покажите, что если A нильпотентна, то матрицы $E \pm A$ обратимы.
- A7 \diamond 13. Нильпотентна ли сумма A+B нильпотентных матриц A и B? Докажите, что да, если а) [A,B]=0 6^*) [A,[A,B]]=[B,[B,A]]=0.
- A7 \diamond 14. Решите в $\mathrm{Mat}_2(\Bbbk)$ уравнения а) $X^2=0$ б) $X^3=0$ в) $X^2=X$ г) $X^2=E$ д) $X^2=-E$.
- A7 \diamond 15. Пусть матрица A диагональна, и все её диагональные элементы различны. Покажите, что любая матрица, коммутирующая с A, имеет вид f(A) для некоторого $f(x) \in \mathbb{k}[x]$.
- A7 \diamond 16. Покажите, что $\forall A \in \mathrm{Mat}_n(\Bbbk) \quad \exists f \in \Bbbk[x] : f(A) = 0$.
- A7 \diamond 17. Для ненулевого $a \in \mathbb{C}$ вычислите: a) $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1}$ 6) $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}^{-1}$ в) $\begin{pmatrix} a & 1 & 1 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}^{-1}$.
- **A7** \diamond **18**. Напишите явную формулу для (ij)-того элемента матрицы, обратной к верхнетреугольной матрице (h_{ij}) с единицами по главной диагонали⁴.
- **А7** \diamond **19**. Пусть квадратные матрицы A, B, C, D обратимы. Явно вычислите $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1}$.

 $^{^{1}}$ эти размерности называются *рангом* и обозначается rk A

²в каждой банке — свой цвет и все цвета разные

 $^{^3}$ т. е. такой столбец $v\in\mathbb{C}^n$, что $Av=\lambda v$ и $Bv=\mu v$ для некоторых $\lambda,\mu\in\mathbb{C}$ (мы считаем, что $A,B\in\mathrm{Mat}_n(\mathbb{C})$)

 $^{^4}$ найдите ответ, пригодный и для матриц с элементами из 4 некоммутативного кольца

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1a			
6			
В			
2a			
6			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			

otbet k 33, A7\$19: $\left(\begin{array}{cc} (A - BD^{-1}C)^{-1} & (C - DB^{-1}A)^{-1} \\ (B - AC^{-1}D)^{-1} & (D - CA^{-1}B)^{-1} \end{array}\right).$