6. MAYER-VIETORIS SEQUENCE

The following is for the students who solved Problem 4.2 (the Bockstein's exact sequence) or are ready to believe its statement.

Let $X=A \cup B$ be a CW-space, $A, B \subset X$ be its CW-subspaces (unions of cells that are CW-spaces) such that $A \cap B$ is a CW-subspace of both A and B. Let $u_{A}: A \rightarrow X, u_{B}: B \rightarrow X, w_{A}: A \cap B \rightarrow A$ and $w_{B}: A \cap B \rightarrow B$ be tautological embeddings. Denote by $Z(Y)$ the cell complex of a CW-space Y.

Problem 1. Prove that $0 \rightarrow Z(A \cap B) \xrightarrow{w_{A} \oplus\left(-w_{B}\right)} Z(A) \oplus Z(B) \xrightarrow{u_{A}+u_{B}} Z(A \cup B) \rightarrow 0$ is an exact sequence of complexes. The corresponding exact sequence of cell homology (see Problem 4.2) is called the Mayer-Vietoris sequence.

The Mayer-Vietoris sequence for singular homology is a bit more tricky: fix a barycentric subdivision of the standard simplex: $\Delta_{n}=\bigcup_{\sigma \in \Sigma_{n+1}} \Delta_{n, \sigma}$; here Σ_{n+1} is the permutation group of $0,1, \ldots, n$, and $\Delta_{n, \sigma} \stackrel{\text { def }}{=}\left\{\left(x_{0}, \ldots, x_{n}\right) \in\right.$ $\left.\Delta_{n} \mid x_{\sigma(0)} \leq \cdots \leq x_{\sigma(n)}\right\}$. For every σ fix an affine map $w_{n, \sigma}: \Delta_{n} \rightarrow \Delta_{n, \sigma}$, sending the vertex $x_{i}=1$ of Δ_{n} (where $i=0, \ldots, n)$ to the vertex of $\Delta_{n, \sigma}$ where $x_{j}=1 /(i+1)$ if $j \in\{\sigma(0), \ldots, \sigma(i)\}$, and $x_{j}=0$ otherwise. Define the homomorphism $\beta_{n}: C_{n}(X) \rightarrow C_{n}(X)$ by $\beta_{n}(f)=\sum_{\sigma \in \Sigma_{n+1}}(-1)^{\operatorname{sign}(\sigma)} f \circ w_{\sigma}$.

Problem 2*. Prove that β_{n} is a morphism of complexes, and $\left(\beta_{n}\right)_{*}: H_{n}(X) \rightarrow H_{n}(X)$ is trivial (here $H_{n}(X)$ is the singular homology of X).

Let $X=A \cup B$ where $A, B \subset X$ are open; denote by $C_{n}^{A, B}(X)$ the subcomplex of $C_{n}(X)$ spanned by singular simplices $f: \Delta_{n} \rightarrow X$ where $f\left(\Delta_{n}\right) \subset A$ or $f\left(\Delta_{n}\right) \subset B$.

Problem 3*. (a) Prove that the inclusion $\iota: C^{A, B}(X) \rightarrow C(X)$ is a morphism of complexes, and ι_{*} is trivial on homology - hence, the homology of $C^{A, B}(X)$ is the same as the singular homology of X. (b) Let $w_{A}: C(A \cap B) \rightarrow$ $C(A), w_{B}: C(A \cap B) \rightarrow C(B), u_{A}: C(A) \rightarrow C^{A, B}(X)$ and $u_{B}: C(B) \rightarrow C^{A, B}(X)$ be tautological inclusions. Prove that $0 \rightarrow C(A \cap B) \xrightarrow{w_{A} \oplus\left(-w_{B}\right)} C(A) \oplus C(B)^{u_{A}+u_{B}} C^{A, B}(X) \rightarrow 0$ is an exact sequence of complexes. The corresponding exact sequence of singular homology is called the Mayer-Vietoris sequence.

Problem 4. Compute the Mayer-Vietoris sequence with (a) $X=S^{n}, A$ and B are the upper and the lower half-sphere, respectively. (b) A and B are two cylinders glued together by the bases to form $X=\mathbb{T}^{2}$. (c) A and B are two cylinders glued together by the bases to form the Klein bottle.
Problem 5. Let $X=\Sigma Y$ be the suspension. Use the Mayer-Vietoris sequence to express $H_{*}(X)$ via $H_{*}(Y)$.
Problem 6. Let $X=S^{3}, K \subset S^{3}$ be a knot, A be its thin tubular neighbourhood, and B be the closure of $X \backslash A$. Compute the Mayer-Vietoris sequence of (X, A, B) if K is (a) an unknot, (b) a trefoil.
Problem 7. Look in Wikipedia (or elsewhere) when Leopold Vietoris was born, and when he died.

