4. COMPLEXES AND CELL HOMOLOGY

Problem 1 (5-lemma). Consider a commutative diagram

The lines of the diagram are exact, q and s are isomorphisms, p is an epimorphism, and t is a monomorphism. Prove that r is an isomorphism.
Problem 2 (Bockstein's construction). Let $0 \rightarrow A \xrightarrow{p} B \xrightarrow{q} C \rightarrow 0$ is an exact sequence of complexes with the differentials $\partial_{A}, \partial_{B}$ and ∂_{C}, respectively. Let $c \in C_{i}$ be such that $\partial_{C} c=0$. The map $q: B_{i} \rightarrow C_{i}$ is onto, so take $b \in B_{i}$ such that $q(b)=c$. Denote $\beta=\partial_{B} b \in B_{i-1}$; then $q(\beta)=p\left(\partial_{C} c\right)=0$; hence, there exists $\alpha \in A_{i-1}$ such that $p(\alpha)=\beta$. (a) Prove that $\partial_{A} \alpha=0$. (b) Prove that the homology class $[\alpha] \in H_{i-1}(A)$ is well-defined, that is, does not depend on the choice of b (which is not unique). (c) Prove that [α] depends only on $[c] \in H_{i}(C)$; this defines a $\operatorname{map} \delta_{i}: H_{i}(C) \rightarrow H_{i-1}(A)$. (d) Prove that the sequence $\cdots \rightarrow H_{i}(A) \xrightarrow{p_{*}} H_{i}(B) \xrightarrow{q_{*}} H_{i}(C) \xrightarrow{\delta} H_{i-1}(A) \rightarrow \ldots$ is exact.
Problem 3. Let $A \xrightarrow{p} B \xrightarrow{q} C \rightarrow 0$ be an exact sequence of Abelian groups. Prove that for any Abelian group G the sequence $A \otimes G \xrightarrow{p \otimes \text { id }} B \otimes G \xrightarrow{q \otimes \text { id }} C \otimes G \rightarrow 0$ is exact. Show that the similar statement for an exact sequence $0 \rightarrow A \xrightarrow{p} B \xrightarrow{q} C$ may be not true.
Problem 4. Let $\ldots \xrightarrow{\partial_{i+1}} C_{i} \xrightarrow{\partial_{i}} C_{i-1} \xrightarrow{\partial_{i-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \longrightarrow 0$ be a chain complex of free Abelian groups. Consider a sequence $\cdots \stackrel{\partial_{i+1}^{*}}{\leftarrow} C_{i}^{*} \stackrel{\partial_{i}^{*}}{\leftarrow} C_{i-1}^{*} \stackrel{\partial_{i-1}^{*}}{\stackrel{\partial_{2}}{\rightleftarrows}} \cdots \stackrel{\partial_{1}^{*}}{\leftarrow} C_{0}^{*} \longleftarrow 0$ where $C_{i}^{*}=\operatorname{Hom}\left(C_{i}, \mathbb{Z}\right)$. (a) Prove that this is a cochain complex. (b) Prove that if $H_{i}(C)=\mathbb{Z}^{\beta_{i}} \oplus G_{i}$ where G_{i} is finite, then $H^{i}\left(C^{*}\right)=\mathbb{Z}^{\beta_{i}} \oplus G_{i}^{\prime}$ where G_{i}^{\prime} is finite, too. Show that G_{i} and G_{i}^{\prime} may be not isomorphic.
Problem 5. For the following spaces find CW-complexes homeomorphic to them and compute their homology with the coefficients in \mathbb{Z} and $\mathbb{Z} / 2 \mathbb{Z}$. If two spaces X and Y and a map $f: X \rightarrow Y$ are given then do this for both spaces and compute the homomorphism $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$. (a) X is a sphere with g handles; (b) X is the Klein bottle with g handles; (c) X is $\mathbb{R} P^{2}$ with g handles; (d) X is the sphere with g handles and n holes; Y is the sphere with g handles, $f: X \rightarrow Y$ is the natural embedding. (e) $X=S^{n}, Y=\mathbb{R} P^{n}, f: X \rightarrow Y$ is the universal cover. (f) $X=S^{2 n+1}=\left\{\left.\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n}| | z_{0}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1\right\}, Y=\mathbb{C} P^{n}, f: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ is $f\left(z_{0}, \ldots, z_{n}\right)=\left[z_{0}: \cdots: z_{n}\right]$ (the generalized Hopf bundle). (g) $X=S^{3}=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}$; the group $\mathbb{Z} / p \mathbb{Z}=\left\{\zeta^{m} \stackrel{\text { def }}{=} e^{2 \pi i m / p} \mid m=0, \ldots, p-1\right\}$ is acting on X by the maps $\zeta^{m}(z, w)=\left(\zeta^{m} z, \zeta^{q m} w\right)$ where p and q are coprime; Y is the orbit space for this action (called the (p, q)-lens, $L(p, q)$), and $f: X \rightarrow Y$ is the map sending every point to its orbit. (h) $X=S^{\infty}$ is the set of sequences $\left(x_{1}, \ldots, x_{n}, \ldots\right)$, such that in every sequence there are finitely many nonzero elements, and the sum of their squares is $1 ; Y=\mathbb{C} P^{\infty}$ (what is it?), $f: S^{\infty} \rightarrow \mathbb{C} P^{\infty}$ is the inifinity-dimensional analog of the Hopf bundle. (i) $Y=G(2,4, \mathbb{R})$ (the set of 2-dimensional subspaces in \mathbb{R}^{4}), $X=G_{+}(2,4, \mathbb{R})$ (the set of oriented 2-dimensional subspaces in $\left.\mathbb{R}^{4}\right), f: X \rightarrow Y$ is forgetting the orientation.

