3. π_{n} AND THE HOPF BUNDLE

Problem 1. (a) Let X be a CW-complex. Prove that $\pi_{k}(X)=\pi_{k}\left(\operatorname{sk}_{k+1}(X)\right)$. (b) Prove that $\pi_{k}\left(S^{n}\right)$ is trivial for any $k<n$.
Problem 2. Prove that (a) $\pi_{1}\left(S^{1} \vee S^{n}\right)=\mathbb{Z}$, (b) $\pi_{n}\left(S^{1} \vee S^{n}\right)$ is a direct sum of countably many copies of the group \mathbb{Z}. (c) Describe the natural action of π_{1} on π_{n}.

Let $S^{3}=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\} \subset \mathbb{C}^{2}$. The map $p: S^{3} \rightarrow \mathbb{C} P^{1}$ given by the formula $p(z, w)=[z: w]$ is called the Hopf bundle.

Problem 3. Prove that the Hopf bundle is indeed a fiber bundle with the fiber S^{1}. In particular, for any $[z: w] \in \mathbb{C} P^{1}$ the set $p^{-1}([z: w])$ is homeomorphic to a circle.
Problem 4. (a) Prove that the sets $A=\left\{[z: w] \in \mathbb{C} P^{1}| | w / z \mid \leq 1\right\}$ and $B=\left\{[z: w] \in \mathbb{C} P^{1}| | w / z \mid \geq 1\right\}$ are homeomorphic to disks with the common boundary $C=\left\{[z: w] \in \mathbb{C} P^{1}| | w / z \mid=1\right\}$. Prove that $\mathbb{C} P^{1}$ is homeomorphic to S^{2}. (b) Prove that $p^{-1}(A)$ and $p^{-1}(B)$ are homeomorphic to solid tori $S^{1} \times D^{2}$ and $p^{-1}(C)$ is homeomorphic to the torus $S^{1} \times S^{1}$.

Problem 5. (a) Prove that there exists a homeomorphism between the 2-disk D and the set $Q=\left\{(z, w) \in S^{3} \mid\right.$ $w \in[0,1]\}$ mapping ∂D to $p^{-1}([1: 0]) \subset Q$.(b) Prove that for any $a \neq[1: 0]$ the intersection $Q \cap p^{-1}(a)$ contains exactly one point.
$\mathrm{SU}(2)$ is the group of matrices $\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ where $|a|^{2}+\left|b^{2}\right|=1$.
Problem 6. (a) Prove that the standard (linear) action of $S U(2)$ on \mathbb{C}^{2} maps $S^{3} \subset \mathbb{C}^{2}$ to itself. (b) Prove that for any $A \in \mathrm{SU}(2)$ and $x \in S^{3}$ one has $p(A x)=A p(x)$ where $A p(x)$ means the standard (projective) action of A on $p(x) \in \mathbb{C} P^{1}$. (c) Prove that the action of $\mathrm{SU}(2)$ on $\mathbb{C} P^{1}$ is transitive: for any $u, v \in \mathbb{C} P^{1}$ there is $A \in \mathrm{SU}(2)$ such that $A(u)=v$. (d) Prove using $6(\mathrm{c})$ and $5(\mathrm{~b})$ that any two fibers of the Hopf bundle are like two links of an anchor chain: for any $u \in \mathbb{C} P^{1}$ there exists $D_{u} \subset S^{3}$ homeomorphic to the 2-disk D, such that the homeomorphism maps $p^{-1}(u) \subset D_{u}$ to ∂D and for any $v \neq u$ the intersection $D_{u} \cap p^{-1}(v)$ is one point.

Let $e_{0} \stackrel{\text { def }}{=}\{[1: 0: 0]\} \subset \mathbb{C} P^{2}, e_{1} \stackrel{\text { def }}{=}\left\{\left[x_{0}: 1: 0\right]\right\} \subset \mathbb{C} P^{2}, e_{2} \stackrel{\text { def }}{=}\left\{\left[x_{0}: x_{1}: 1\right]\right\} \subset \mathbb{C} P^{2}$ be affine charts in $\mathbb{C} P^{2}$.
Problem 7. (a) Define in $\mathbb{C} P^{2}$ a cell space where e_{0}, e_{1} and e_{2} are cells of dimension 0,2 and 4 , respectively. Prove that $e_{0} \cup e_{1}$ is homeomorphic to S^{2}. (b) Let $\chi_{2}: D^{4} \rightarrow S^{2}$ be the characteristic map of the cell e_{2}. Prove that $\left.\chi_{2}\right|_{\partial D^{4}}: S^{3} \rightarrow S^{2}$ is the Hopf bundle.

