3. π_n AND THE HOPF BUNDLE

Problem 1. (a) Let X be a CW-complex. Prove that $\pi_k(X) = \pi_k(\operatorname{sk}_{k+1}(X))$. (b) Prove that $\pi_k(S^n)$ is trivial for any k < n.

Problem 2. Prove that (a) $\pi_1(S^1 \vee S^n) = \mathbb{Z}$, (b) $\pi_n(S^1 \vee S^n)$ is a direct sum of countably many copies of the group \mathbb{Z} . (c) Describe the natural action of π_1 on π_n .

Let $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\} \subset \mathbb{C}^2$. The map $p: S^3 \to \mathbb{C}P^1$ given by the formula p(z, w) = [z:w] is called the Hopf bundle.

Problem 3. Prove that the Hopf bundle is indeed a fiber bundle with the fiber S^1 . In particular, for any $[z:w] \in \mathbb{C}P^1$ the set $p^{-1}([z:w])$ is homeomorphic to a circle.

Problem 4. (a) Prove that the sets $A = \{[z : w] \in \mathbb{C}P^1 \mid |w/z| \leq 1\}$ and $B = \{[z : w] \in \mathbb{C}P^1 \mid |w/z| \geq 1\}$ are homeomorphic to disks with the common boundary $C = \{[z : w] \in \mathbb{C}P^1 \mid |w/z| = 1\}$. Prove that $\mathbb{C}P^1$ is homeomorphic to S^2 . (b) Prove that $p^{-1}(A)$ and $p^{-1}(B)$ are homeomorphic to solid tori $S^1 \times D^2$ and $p^{-1}(C)$ is homeomorphic to the torus $S^1 \times S^1$.

Problem 5. (a) Prove that there exists a homeomorphism between the 2-disk D and the set $Q = \{(z, w) \in S^3 \mid w \in [0, 1]\}$ mapping ∂D to $p^{-1}([1:0]) \subset Q$. (b) Prove that for any $a \neq [1:0]$ the intersection $Q \cap p^{-1}(a)$ contains exactly one point.

SU(2) is the group of matrices $\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$ where $|a|^2 + |b^2| = 1$.

Problem 6. (a) Prove that the standard (linear) action of SU(2) on \mathbb{C}^2 maps $S^3 \subset \mathbb{C}^2$ to itself. (b) Prove that for any $A \in SU(2)$ and $x \in S^3$ one has p(Ax) = Ap(x) where Ap(x) means the standard (projective) action of A on $p(x) \in \mathbb{C}P^1$. (c) Prove that the action of SU(2) on $\mathbb{C}P^1$ is transitive: for any $u, v \in \mathbb{C}P^1$ there is $A \in SU(2)$ such that A(u) = v. (d) Prove using 6(c) and 5(b) that any two fibers of the Hopf bundle are like two links of an anchor chain: for any $u \in \mathbb{C}P^1$ there exists $D_u \subset S^3$ homeomorphic to the 2-disk D, such that the homeomorphism maps $p^{-1}(u) \subset D_u$ to ∂D and for any $v \neq u$ the intersection $D_u \cap p^{-1}(v)$ is one point.

Let $e_0 \stackrel{\text{def}}{=} \{[1:0:0]\} \subset \mathbb{C}P^2, e_1 \stackrel{\text{def}}{=} \{[x_0:1:0]\} \subset \mathbb{C}P^2, e_2 \stackrel{\text{def}}{=} \{[x_0:x_1:1]\} \subset \mathbb{C}P^2 \text{ be affine charts in } \mathbb{C}P^2.$

Problem 7. (a) Define in $\mathbb{C}P^2$ a cell space where e_0 , e_1 and e_2 are cells of dimension 0, 2 and 4, respectively. Prove that $e_0 \cup e_1$ is homeomorphic to S^2 . (b) Let $\chi_2 : D^4 \to S^2$ be the characteristic map of the cell e_2 . Prove that $\chi_2|_{\partial D^4} : S^3 \to S^2$ is the Hopf bundle.