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Main problem with the Rational Choice

Rational choice assumption is introduced for better
understanding and predicting the human behavior.

It forms the basis of Neoclassical Economics (1900).

The player (Homo Economicus ≡ HE) wants to maximize his
utility function by an appropriate adjustment of the
consumption pattern.

As a consequence, we can speak about equilibrium in
economical systems.

Existing literature is immense. It concentrates also on ethical,
moral, religious, social, and other consequences of rationality.

(HE = super-powerful aggressively selfish immoral
individualist.)

NB: The only missing topic is the Algorithmic Aspects of
rationality.



What do we know now?

Starting from 1977 (Complexity Theory, Nemirovski & Yudin),
we know that optimization problems in general are unsolvable.

They are very difficult (and will be always difficult) for
computers, independently on their speed.

How they can be solved by us, taking into account our natural
weakness in arithmetics?

NB: Mathematical consequences of unreasonable assumptions can
be disastrous.

Perron paradox: The maximal integer is equal to one.
Proof: Denote by N the maximal integer. Then

1 ≤ N ≤ N2 ≤ N.
Hence, N = 1.



What we do not know

In which sense the human beings can solve the optimization
problems?

What is the accuracy of the solution?

What is the convergence rate?

Main question: What are the optimization methods?

NB:

Forget about Simplex Algorithm and Interior Point Methods!

Be careful with gradients (dimension, non-smoothness).



Outline

1 Intuitive optimization (Random Search)

2 Rational activity in stochastic environment
(Stochastic Optimization)

3 Models and algorithms of rational behavior



Intuitive Optimization

Problem: min
x∈Rn

f (x), where x is the consumption pattern.

Main difficulties:

High dimension of x (difficult to evaluate/observe).

Possible non-smoothness of f (x).

Theoretical advice: apply gradient method
xk+1 = xk − hf ′(xk).

(In the space of all available products!)

Hint: we live in an uncertain world.



Gaussian smoothing

Let f : E → R be differentiable along any direction at any x ∈ E .
Let us form its Gaussian approximation

fµ(x) = 1
κ

∫
E

f (x + µu)e−
1
2‖u‖

2

du,

where κ
def
=
∫
E

e−
1
2
‖u‖2

du = (2π)n/2.

In this definition, µ ≥ 0 plays a role of the smoothing parameter.

Why this is interesting? Define y = x + µu. Then

fµ(x) = 1
µnκ

∫
E

f (y)e
− 1

2µ2 ‖y−x‖2

dy . Hence,

∇fµ(x) = 1
µn+2κ

∫
E

f (y)e
− 1

2µ2 ‖y−x‖2

(y − x) dy

= 1
µκ

∫
E

f (x + µu)e−
1
2
‖u‖2

u du
(!)
= 1

κ

∫
E

f (x+µu)−f (x)
µ e−

1
2
‖u‖2

u du.



Properties of Gaussian smoothing

If f is convex, then fµ is convex and fµ(x) ≥ f (x).

If f ∈ C 0,0, then fµ ∈ C 0,0 and L0(fµ) ≤ L0(f ).

If f ∈ C 0,0(E ), then, |fµ(x)− f (x)| ≤ µL0(f )n1/2.

Random gradient-free oracle:

Generate random u ∈ E .

Return gµ(x) = f (x+µu)−f (x)
µ · u.

If f ∈ C 0,0(E ), then Eu(‖gµ(x)‖2
∗) ≤ L2

0(f )(n + 4)2.



Random intuitive optimization

Problem: f ∗
def
= min

x∈Q
f (x) , where Q ⊆ E is a closed convex

set, and f is a nonsmooth convex function.

Let us choose a sequence of positive steps {hk}k≥0.

Method RSµ: Choose x0 ∈ Q.

For k ≥ 0: a). Generate uk .

b). Compute ∆k = 1
µ [f (xk + µuk)− f (xk)].

c). Compute xk+1 = πQ (xk − hk∆kuk).

NB: µ can be arbitrary small.



Convergence results

This method generates random {xk}k≥0. Denote SN =
N∑

k=0

hk ,

Uk = (u0, . . . , uk), φ0 = f (x0), and φk
def
= EUk−1

(f (xk)), k ≥ 1.

Theorem: Let {xk}k≥0 be generated by RSµ with µ > 0. Then,

N∑
k=0

hk
SN

(φk − f ∗) ≤ µL0(f )n1/2 + 1
2SN
‖x0 − x∗‖2 + (n+4)2

2SN
L2

0(f )
N∑

k=0

h2
k .

In order to guarantee EUN−1
(f (x̂N))− f ∗ ≤ ε, we choose

µ = ε
2L0(f )n1/2 , hk = R

(n+4)(N+1)1/2L0(f )
, N = 4(n+4)2

ε2 L2
0(f )R2.



Interpretation

Disturbance µuk may be caused by external random factors.

For small µ, the sign and the value of ∆k can be treated as
an intuition.

We use a random experience accumulated by a very small
shift along a random direction.

The reaction steps hk are big. (Emotions?)

The dimension of x slows down the convergence.

Main ability: to implement an action, which is absolutely opposite
to the proposed one. (Needs training.)

NB: Optimization method has a form of emotional reaction.

It is efficient in the absence of stable coordinate system.



Optimization in Stochastic Environment

Problem: min
x∈Q

[ φ(x) = E (f (x , ξ)) ≡
∫
Ω

f (x , ξ) p(ξ) dξ ], where

f (x , ξ) is convex in x for any ξ ∈ Ω ⊆ Rm,

Q is a closed convex set in Rn,

p(ξ) is the density of random variable ξ ∈ Ω.

Assumption: We can generate a sequence of random events {ξi}:
1
N

N∑
i=1

f (x , ξi )
N→∞→ E (f (x , ξ)), x ∈ Q.

Goal: For ε > 0 and φ∗ = min
x∈Q

φ(x) find x̄ ∈ Q: φ(x̄)− φ∗ ≤ ε.

Main trouble: For finding δ-approximation to φ(x), we need
O
((

1
δ

)m)
computations of f (x , ξ) .



Stochastic subgradients (Ermoliev, Wetz, 70’s)

Method: Fix some x0 ∈ Q and h > 0. For k ≥ 0, repeat:

generate ξk and update xk+1 = πQ (xk − h · f ′(xk , ξk)).

Output: x̄ = 1
N+1

N∑
k=0

xk .

Interpretation: Learning process in stochastic environment.

Theorem: For h = R
L
√
N+1

we get E (φ(x̄))− φ∗ ≤ LR√
N+1

.

NB: This is an estimate for the average performance.

Hint: For us, it is enough to ensure a Confidence Level β ∈ (0, 1]:

Prob [ φ(x̄) ≥ φ∗ + εVφ ] ≤ 1− β,
where Vφ = max

x∈Q
φ(x)− φ∗.

In the real world, we always apply solutions with β < 1.



What do we have now?

After N-steps we observe a single implementation of the random
variable x̄ with E (φ(x̄))− φ∗ ≤ LR√

N+1
.

What about the level of confidence?

1. For random ψ ≥ 0 and T > 0 we have

E (ψ) =
∫
ψ =

∫
ψ≥T

ψ +
∫

ψ<T

ψ ≥ T · Prob [ψ ≥ T ].

2. With ψ = φ(x̄)− φ∗ and T = εVφ we need

1
εVφ

[E (φ(x̄))− φ∗] ≤ LR
εVφ
√
N+1
≤ 1− β.

Thus, we can take N + 1 = 1
ε2(1−β)2

(
LR
Vφ

)2
.

NB: 1. For personal needs, this may be OK. What about β → 1?

2. How we increase the confidence level in our life?

Ask for advice as many persons as we can!



Pooling the experience

Individual learning process (Forms opinion of one expert)

Choose x0 ∈ Q and h > 0. For k = 0, . . . ,N repeat

generate ξk , and set xk+1 = πQ(xk − hf ′(xk , ξk)).

Compute x̄ = 1
N+1

N∑
k=0

xk .

Pool the experience:

For j = 1, . . . ,K compute x̄j . Generate the output x̂ = 1
K

K∑
j=1

x̄j .

Note: All learning processes start from the same x0.



Probabilistic analysis

Theorem. Let Zj ∈ [0,V ], j = 1, . . . ,K be independent random

variables with the same average µ. Then for ẐK = 1
K

K∑
j=1

Zj

Prob
[
Ẑk ≥ µ+ ε̂

]
≤ exp

(
− 2ε̂2K

V 2

)
.

Corollary.

Let us choose K = 2
ε2 ln 1

1−β , N = 4
ε2

(
LR
Vφ

)2
, and h = R

L
√
N+1

.

Then the pooling process implements an (ε, β)-solution.

Note: Each 9 in β = 0.9 · · · 9 costs 4.6
ε2 experts.



Comparison (ε is not too small ≡ Q is reasonable)

Denote ρ = LR
Vφ

Single Expert (SE) Pooling Experience (PE)

Number of experts 1 2
ε2 ln 1

1−β
Length of life ρ2

ε2(1−β)2
4ρ2

ε2

Computational efforts ρ2

ε2(1−β)2
8ρ2

ε4 ln 1
1−β

Reasonable computational expenses (for Multi-D Integrals)

Number of experts does not depend on dimension.

Differences

For low level of confidence, SE may be enough.

High level of confidence needs independent expertise.

Average experience of young population has much higher level
of confidence than the experience of a long-life wizard.

In PE, the confidence level of “experts” is only 1
2 (!).



Why this can be useful?

Understanding of the actual role of existing social an political
phenomena (education, medias, books, movies, theater,
elections, etc.)

Future changes (Internet, telecommunications)

Development of new averaging instruments
(Theory of expertise: mixing opinion of different experts,
competitions, etc.)



Conscious versus subconscious

NB: Conscious behavior can be irrational.

Subconscious behavior is often rational.

Animals.

Children education: First level of knowledge is subconscious.

Training in sport (optimal technique ⇒ subconscious level).

Examples of subconscious estimates:

Mental “image processing”.

Tracking the position of your body in space.

Regular checking of your status in the society (?)

Our model: Conscious behavior based on dynamically updated
subconscious estimates.



Model of consumer: What is easy for us?

Question 1: 123 ∗ 456 = ?

Question 2: How often it rains in Belgium?

Easy questions:

average salary,

average gas consumption of your car,

average consumption of different food,

average commuting time,

and many other (survey-type) questions.

Main abilities of anybody:

1. Remember the past experience (often by averages).

2. Estimate probabilities of some future events, taking into
account their frequencies in the past.

Guess: We are Statistical Homo Economicus? (SHE)



Main features of SHE

Main passion: Observations.

Main abilities:

Can select the best variant from several possibilities.

Can compute average characteristics for some actions.

Can compute frequencies of some events in the past.

Can estimate the “faire” prices for products.

As compared with HE: A huge step back in the computational
power and informational support.

Theorem: SHE can be rational.

(The proof is constructive.)



Consumption model

Market

There are n products with unitary prices pj .

Each product is described by the vector of qualities aj ∈ Rm.

Thus, a
(i)
j is the volume of quality i in the unit of product j .

Consumer SHE

Forms and updates the personal prices y ∈ Rm for qualities.

Can estimate the personal quality/price ratio for product j :
πj(y) = 1

pj
〈aj , y〉.

Has standard σi for consumption of quality i ,
m∑
i=1

σiyi = 1.

Denote A = (a1, . . . , an), σ = (σ1, . . . , σm)T , π(y) = max
1≤j≤n

πj(y).



Consumption algorithm (CA) for kth weekend

For Friday night, SHE has personal prices yk , budget λk , and
cumulative consumption vector of qualities sk ∈ Rm, s0 = 0.

1 Define the set Jk = {j : πj(yk) = π(yk)}, containing the
products with the best quality/price ratio.

2 Form partition xk ≥ 0:
n∑

j=1
x

(j)
k = 1, and x

(j)
k = 0 for j 6∈ Jk .

3 Buy all products in volumes X
(j)
k = λk · x

(j)
k /pj , j = 1, . . . , n.

4 Consume the bought products: sk+1 = sk + AXk .

5 During the next week, SHE watches the results and forms the
personal prices for the next shopping.

NB: Only Item 5 is not defined.



Updating the personal prices for qualities

Define ξi = σiy
(i)
k , the relative importance of quality i ,

m∑
i=1

ξi = 1.

Denote by ŝk = 1
k sk the average consumption.

Assumption. 1. During the week, SHE performs regular detections

of the most deficient quality by computing ψk = min
1≤i≤m

ŝ
(i)
k /σi .

2. This detection is done with random additive errors. Hence, we
observe

Eε

(
min

1≤i≤m

{
ŝ

(i)
k
σi

+ εi

})
.

Thus, any quality has a chance to be detected as the worst one.

3. We define ξi as the frequency of detecting the quality i as the
most deficient one with respect to ŝk .

This is it. Where is Optimization? Objective Function, etc.?



Algorithmic aspects

1. If εi are doubly-exponentially i.i.d. with variance µ, then

y
(i)
k = 1

σi
exp

{
− s

(i)
k

kσiµ

}
/

m∑
j=1

exp

{
− s

(j)
k

kσjµ

}
Therefore, yk = arg min

〈σ,y〉=1
{〈sk , y〉+ γd(y)} ,

where γ = kµ, d(y) =
m∑
i=1

σiy
(i) ln(σiy

(i)) (prox-function).

2. AXk = λkA
[
xk
p

]
≡ λkgk , where gk ∈ ∂π(yk) (subgradient).

3. Hence, sk is an accumulated model of function π(y).

Hence, CA is a primal-dual method for solving the (dual) problem

min
y≥0

{
π(y) ≡ max

1≤i≤m
1
pi
〈ai , y〉 : 〈σ, y〉 = 1

}
.



Comments

1. The primal problem is
max
u,τ
{τ : Au ≥ τσ, u ≥ 0, 〈p, u〉 = 1}.

We set uk = [xk/p] and approximate u∗ by averaging {uk}.
2. No “computation” of subgradients (we just buy).
Model is updated implicitly (we just eat).

3. CA is an example of unintentional optimization.
(Other examples in the nature: Fermat principle, etc.)

4. SHE does not recognize the objective. However, it exists.
SHE is rational by behavior, not by the goal (which is absent?).

5. Function π(y) measures the positive appreciation of the market.
By minimizing it, we develop a pessimistic vision of the world.
(With time, everything becomes expensive.)

6. For a better life, allow a bit of irrationality. (Smooth objective,
faster convergence.)



Conclusion

1. Optimization patterns are widely presented in the social life.
Examples:

Forming the traditions (Inaugural Lecture)

Efficient collaboration between industry, science and
government (Lecture 1)

Local actions in problems of unlimited size (Lecture 3).

2. The winning social systems give better possibilities for rational
behavior of people. (Forget about ants and bees!)

3. Our role could be the discovering of such patterns and helping
to improve them by an appropriate mathematical analysis.
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Thank you for your attention!
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