Lecture 4: Nonlinear analysis of combinatorial problems

Yurii Nesterov, CORE/INMA (UCL)

September 12, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- 1 Boolean quadratic problem
- 2 Simple bounds
- 3 SDP-relaxation and its quality
- 4 General constraints
- **5** Generating functions of integer sets

- 6 Knapsack volume
- 7 Fast computations
- 8 Further extensions

Boolean quadratic problem

Let
$$Q = Q^T$$
 be an $(n \times n)$ -matrix.

Maximization: find $f^*(Q) \equiv \max_{x} \{ \langle Qx, x \rangle : x_i = \pm 1, i = 1 \dots n \}.$ **Minimization:** find $f_*(Q) \equiv \min_{x} \{ \langle Qx, x \rangle : x_i = \pm 1, i = 1 \dots n \}.$

Clearly
$$f^*(-Q) = -f_*(Q)$$
.

Trivial Properties

- Both problems are NP-hard.
- They can have up to 2^n local extremums.

Very often we are happy with approximate solutions

Upper bound. For any $x \in \mathbb{R}^n$ with $x_i = \pm 1$, we have $||x||^2 = n$. Therefore,

$$f^*(Q) \leq \max_{\|x\|^2=n} \langle Qx, x \rangle = n \cdot \lambda_{\max}(Q).$$

Lower bounds. 1. If $Q \succeq 0$, then

$$f^*(Q) = \max_{|x_i| \leq 1} \langle Qx, x \rangle \geq \max_{\|x\|^2 = 1} \langle Qx, x \rangle = \lambda_{\max}(Q).$$

2. Consider random x with **Prob** $(x_i = 1) =$ **Prob** $(x_i = -1) = \frac{1}{2}$. Then

$$f^*(Q) \geq E_x(\langle Qx, x \rangle) = \sum_{i,j=1}^n Q_{i,j}E_x(x_ix_j)$$
$$= \sum_{i=1}^n Q_{i,i} = \operatorname{Trace}(Q).$$

Example: $Q = ee^{T}$, Trace $(Q) = \lambda_{max}(Q) = n$. In both cases, relative quality is n.

For Boolean $x \in \mathbb{R}^n$, we have $\langle Qx, x \rangle = \sum_{i,j=1}^n Q_{i,j} x_i x_j \le \sum_{i,j} |Q_{i,j}| \stackrel{\text{def}}{=} ||Q||_1.$

How good is it?

Random hyperplane technique. (Krivine 70's, Goemans, Williamson 95) Let us fix $V \in M_n$. Consider the random vector

 $\xi = \operatorname{sgn}\left[V^{T}u\right]$

with random $u \in \mathbb{R}^n$, uniformly distributed on the unit sphere. ([\cdot] denotes component-wise operations.)

Lemma 1: $E(\xi_i\xi_j) = \frac{2}{\pi} \arcsin \frac{\langle v_i, v_j \rangle}{\|v_i\| \cdot \|v_j\|}$. **Lemma 2:** For $X \succeq 0$, we have $\arcsin[X] \succeq X$. **Proof:** $\arcsin[X] = X + \frac{1}{6}[X]^3 + \frac{3}{40}[X]^5 + \ldots \succeq X$.

Quality of polyhedral bound $(Q \succeq 0)$

Let
$$Q = V^T V$$
 (this means that $Q_{i,j} = \langle v_i, v_j \rangle$). Then
 $f^*(Q) \ge E(\langle Q\xi, \xi \rangle) = \frac{2}{\pi} \sum_{i,j=1}^n Q^{(i,j)} \arcsin\left(\frac{Q^{(i,j)}}{\sqrt{Q^{(i,j)}Q^{(i,j)}}}\right) \stackrel{\text{def}}{=} \frac{2}{\pi}\rho.$
Denote $D = \operatorname{diag}(Q)^{-1/2}$. Then $\rho \ge \langle Q, DQD \rangle_M.$
Denote $S_1 = \langle Q, I_n \rangle_M, S_2 = \sum_{i \ne j} |Q_{i,j}|.$ Then $S_1 + S_2 = ||Q||_1.$
Thus,

$$\langle Q, DQD
angle_M = S_1 + \sum_{i \neq j} rac{(Q_{i,j})^2}{\sqrt{Q_{i,i}Q_{j,j}}} \ge S_1 + rac{S_2^2}{\sum\limits_{i \neq j} \sqrt{Q_{i,i}Q_{j,j}}}$$

= $S_1 + rac{S_2^2}{\left(\sum\limits_{i=1}^n \sqrt{Q_{i,i}}\right)^2 - S_1} \ge S_1 + rac{S_2^2}{nS_1 - S_1} = \|Q\|_1 - S_2 + rac{S_2^2}{(n-1)(\|Q\|_1 - S_2)}.$

The minimum is attained for $S_2 = \|Q\|_1 \cdot (1 - \frac{1}{\sqrt{n}})$. Thus,

$$\|Q\|_1 \ge f^*(Q) \ge \langle Q, DQD \rangle_M \ge \frac{2}{1+\sqrt{n}} \|Q\|_1.$$

It is better than the eigenvalue bound!

For
$$X, Y \in M_n$$
, we have
 $\langle XY, Z \rangle_M = \langle X, ZY^T \rangle_M = \langle Y, X^T Z \rangle_M.$
Denote $1_n^k : (1_n^k)_j = \pm 1, j = 1 \dots n, k = 1 \dots 2^n.$
Then $\langle Q1_n^k, 1_n^k \rangle = \langle Q, 1_n^k (1_n^k)^T \rangle_M.$ Therefore
 $f^*(Q) = \max_{X \in \mathcal{P}_n} \langle Q, X \rangle_M,$
where $\mathcal{P}_n \stackrel{\text{def}}{=} \operatorname{Conv} \{ 1_n^k (1_n^k)^T, k = 1 \dots 2^n \}.$ Note that:
• The complete description of \mathcal{P}_n is not known.
• For $X \in \mathcal{P}_n$ we have: $X \succeq 0$, and $d(X) = 1_n$. Thus,
 $f^*(Q) \leq \max\{ \langle Q, X \rangle_M : X \succeq 0, d(X) = 1_n \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Dual Relaxation (Shor)

Problem:
$$f^*(Q) = \max_x \{ \langle Qx, x \rangle : x_i^2 = 1, i = 1...n \}.$$

Its Lagrangian is $\mathcal{L}(x,\xi) = \langle Qx, x \rangle + \sum_{i=1}^n \xi_i (1 - (x_i)^2).$ Therefore
 $f^*(Q) = \max_x \min_{\xi} \mathcal{L}(x,\xi) \le \min_{\xi} \max_x \mathcal{L}(x,\xi)$
 $= \min_{\xi} \{ \langle 1_n, \xi \rangle : Q \le D(\xi) \} \stackrel{\text{def}}{=} s^*(Q).$

Note: Both relaxations give exactly the same upper bound:

$$s^{*}(Q) = \min_{\xi} \max_{X \succeq 0} \{ \langle 1_{n}, \xi \rangle + \langle X, Q - D(\xi) \rangle_{M} \}$$

=
$$\max_{X \succeq 0} \min_{\xi} \{ \langle 1_{n} - D(X), \xi \rangle + \langle X, Q \rangle_{M} \}.$$

=
$$\max_{X \succeq 0} \{ \langle X, Q \rangle_{M} : d(X) = 1_{n} \}.$$

Any hope? (Looks as an attempt to approximate Q by $D(\xi)$.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We have seen that $f^*(Q) \ge \frac{2}{\pi} \arcsin[V^T V]$ with $d(V^T V) = 1_n$. Let us show that

$$f^*(Q) = \max_{\|V_i\|=1} \frac{2}{\pi} \langle Q, \arcsin[V^T V] \rangle_M.$$

Proof: Choose arbitrary *a*, ||a|| = 1. Let x^* be the global solution.

Define
$$v_i = a$$
 if $x_i^* = 1$, and $v_i = -a$ otherwise.
Then $V^T V = x^*(x^*)^T$ and $\frac{2}{\pi} \arcsin[V^T V] = x^*(x^*)^T$.
Since $\{X = V^T V : d(X) = 1_n\} \equiv \{X \succeq 0 : d(X) = 1_n\}$, we get
 $f^*(Q) = \max_{X \succeq 0} \{\frac{2}{\pi} \langle Q, \arcsin[X] \rangle_M : d(X) = 1_n\}.$

Corollary: $s^*(Q) \ge f^*(Q) \ge \frac{2}{\pi}s^*(Q)$.

Relative accuracy does not depend on dimension!

Consider two problems:

 $\phi^* = \max\{\langle Qx, x \rangle : [x]^2 \in \mathcal{F}\}, \phi_* = \min\{\langle Qx, x \rangle : [x]^2 \in \mathcal{F}\},\$ where \mathcal{F} is a bounded closed convex set.

Trigonometric form:

$$egin{aligned} \phi^* &= \max\{rac{2}{\pi}\langle D(d)QD(d), rcsin[X]
angle: \ &X \succeq 0, \ d(X) = 1_n, \ d \ge 0, \ [d]^2 \in \mathcal{F}\}, \ \phi_* &= \min\{rac{2}{\pi}\langle D(d)QD(d), rcsin[X]
angle: \ &X \succeq 0, \ d(X) = 1_n, \ d \ge 0, \ [d]^2 \in \mathcal{F}\}. \end{aligned}$$

Relaxations:

Define the support function $\xi(u) = \max\{\langle u, v \rangle : v \in \mathcal{F}\}$, and $\psi^* = \min\{\xi(u) : D(u) \succeq Q\}, \quad \psi_* = \max\{-\xi(u) : Q + D(u) \succeq 0\},$ $\tau^* = \xi(d(Q)), \quad \tau_* = -\xi(-d(Q)).$

Simple relations: $\psi_* \leq \phi_* \leq \tau^* \leq \phi^* \leq \psi^*$.

Denote $\psi(\alpha) = \alpha \psi^* + (1 - \alpha)\psi_*$, and $\beta^* = \frac{\psi^* - \tau^*}{\psi^* - \psi_*}$, $\beta_* = \frac{\tau_* - \psi_*}{\psi^* - \psi_*}$. Theorem. 1. Let

$$\begin{aligned} \alpha^* &= \max\{\frac{2}{\pi}\omega(\beta_*), 1 - \beta^*\}, \text{ and } \alpha_* = \min\{1 - \frac{2}{\pi}\omega(\beta^*), \beta_*\}, \\ \text{where } \omega(\alpha) &= \alpha \arcsin(\alpha) + \sqrt{1 - \alpha^2} \quad (\ge 1 + \frac{1}{2}\alpha^2). \\ \text{Then } \quad \psi_* &\le \phi_* \le \psi(\alpha_*) \le \psi(\alpha^*) \le \phi^* \le \psi^*. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

2.
$$0 \leq \frac{\phi^* - \psi(\alpha^*)}{\phi^* - \phi_*} \leq \frac{24}{49}.$$

3. Define $\bar{\alpha} = \frac{\alpha^*(2 - \alpha_*) - \alpha_*}{1 + \alpha^* - 2\alpha_*}$. Then $\frac{|\phi^* - \psi(\bar{\alpha})|}{\phi^* - \phi_*} \leq \frac{12}{37}$.

Example. Let $\beta > 0$. Consider the problem

$$\phi^* = \max_{x} \{ \langle Qx, x \rangle : [x]^2 = 1_n, \langle c, x \rangle = \beta \},$$

$$\phi_* = \min_{x} \{ \langle Qx, x \rangle : [x]^2 = 1_n, \langle c, x \rangle = \beta \}.$$

Natural relaxation:

$$\psi^* = \max_X \{ \langle Q, X \rangle : d(X) = 1_n, X \succeq 0, \langle Xc, c \rangle = \beta^2 \},$$

$$\psi_* = \min_X \{ \langle Q, X \rangle : d(X) = 1_n, X \succeq 0, \langle Xc, c \rangle = \beta^2 \}.$$

Denote by v any vector with $[v]^2 = 1_n$.

Assumptions: 1. There exists a unique v_* such that $\langle c, v_* \rangle = \beta$. 2. There exist v_- and v_+ such that $0 < \langle c, v_- \rangle < \beta < \langle c, v_+ \rangle$.

Note: in this case $\phi^* = \phi_*$ (unique feasible solution).

Consider the polytope $\mathcal{P}_n = \text{Conv} \{ V_i = v_i v_i^T, i = 1, ..., 2^n \}$. **Lemma.** Any V_i is an extreme point of \mathcal{P}_n . Any pair V_i , V_j is connected by an edge.

Note:

1. In view of our assumption $\exists \tilde{V} \in \mathcal{P}_n$:

$$\tilde{V} = \alpha \mathbf{v}_{-} \mathbf{v}_{-}^{T} + (1 - \alpha) \mathbf{v}_{+} \mathbf{v}_{+}^{T}, \ \alpha \in (0, 1), \quad \langle \tilde{V} \mathbf{c}, \mathbf{c} \rangle = \beta^{2}.$$

2. $\mathcal{P}_n \subset \{X : d(X) = 1_n, X \succeq 0\}.$

Conclusion: We can choose $Q: \psi^* > \phi^*$.

Since $\psi_* \leq \phi_*$, the relative accuracy of ψ^* is $+\infty$.

Reason of the troubles: We intersect edges of \mathcal{P}_n .

This cannot happen if $\beta = 0$.

Further developments

- Boolean quadratic optimization with *m* homogeneous linear equality constraints (accuracy O(ln m)).
- Quadratic maximization with quadratic inequality constraints (accuracy O(ln m)).

Main bottleneck: absence of cheap relaxations.

Generating functions of integer sets

1. Primal generating functions.

For set $S \subset Z^n$, define $f(S, x) = \sum_{\alpha \in S} x^{\alpha}$, where $x^{\alpha} = \prod_{i=1}^n x_i^{\alpha_i}$.

f(*S*, 1_n) = *N*(*S*), the *integer volume* of *S*. Can be used for *counting* problems.

Sometimes have *short representation*.

Example: $S = \{x \in Z : x \ge 0\}$. Then $f(S, x) = \frac{1}{1-x}$. **2.1. Characteristic function** of the set $X \subset Z^n$ is defined as

$$\psi_X(c) = \sum\limits_{x \in X} e^{\langle c, x
angle}$$
, if $X
eq \emptyset$, and 0 otherwise.

• For counting problem, we have $\mathcal{N}(X) = \psi_X(0)$.

We can be approximate the optimal value of an optimization problem over X:

$$\mu \ln \psi_X \left(\frac{1}{\mu}c\right) \ge \max_x \{\langle c, x \rangle : x \in X(y)\}$$
$$\ge \mu \ln \psi_X \left(\frac{1}{\mu}c\right) - \mu \ln \mathcal{N}(X), \ \mu > 0.$$

2.2. Generating function of family $\mathcal{X} = \{X(y), y \in \Delta\} \subset Z^m$ is

defined as $g_{\mathcal{X},c}(v) = \sum_{y \in \Delta} \psi_{X(y)}(c) \cdot v^{y}$. Dual *counting function:* $f_{\mathcal{X}}(v) = g_{\mathcal{X},0}(v)$. **Hope:** short representation. **NB:** Constructed by set *parameters*.

Example

Let $a \in Z_{+}^{n}$. Consider the Boolean knapsack polytope $B_{2}^{1_{n}}(b) = \{x \in \{0,1\}^{n} : \langle a, x \rangle = b\}.$ **Goal:** Compute $\mathcal{N}(B_a^{1_n}(b))$ for a given $b \in Z_+$. (It is NP-hard.) Consider the function $f(z) = \prod_{i=1}^{n} (1 + z^{a^{(i)}})$, where $z \in \mathcal{C} \stackrel{\text{def}}{=} \{ z \in \mathcal{C} : |z| = 1 \}.$ We will see later, that $f(z) \equiv \sum_{b=0}^{\|a\|_1} \mathcal{N}(B^{1_n}_a(b)) z^b$, $z \in \mathcal{C}$, where $||a||_1 \stackrel{\text{def}}{=} \sum_{i=1}^{n} |a^{(i)}|.$ Thus, we need to compute the coefficient of z^b in polynomial f(z). For that, we compute all previous coefficients.

Direct computation: $O(n ||a||_1) \Rightarrow O(||a||_1 \cdot \ln ||a||_1 \cdot \ln n).$

Notation: $B^u_a(b) = \{x \in Z^n : 0 \le x \le u, \langle a, x \rangle = b\}.$

Consider the family $\mathcal{B}_{a}^{u} = \{B_{a}^{u}(b)\}_{b \in \mathbb{Z}_{+}}$. Its counting function is $f_{\mathcal{B}_{a}^{u}}(z) \stackrel{\text{def}}{=} \sum_{b=0}^{\infty} \mathcal{N}(B_{a}^{u}(b)) \cdot z^{b}, \quad z \in \mathcal{C}.$

Since u is finite, this is a polynomial of degree $\langle a, u \rangle$.

Lemma.
$$f_{\mathcal{B}_a^u}(z) = \prod_{i=1}^n \left(\sum_{k=0}^{u^{(i)}} z^{ka^{(i)}}\right)$$

Proof. For n = 1 it is evident.

Denote $a_{+} = (a, a^{(n+1)})^{T} \in Z_{+}^{n+1}$, and $u_{+} = (u, u^{(n+1)})^{T} \in Z_{+}^{n+1}$. For any $b \in Z_{+}$ we have $\mathcal{N}(B_{a_{+}}^{u_{+}}(b)) = \sum_{k=0}^{u^{(n+1)}} \mathcal{N}(B_{u}^{a}(b-k \cdot a^{(n+1)})).$

Hence, in view of the inductive assumption, we have

$$f_{\mathcal{B}_{a_{+}}^{u_{+}}}(z) = \sum_{b=0}^{\infty} \mathcal{N}(B_{a_{+}}^{u_{+}}(b)) \cdot z^{b}$$

$$= \sum_{b=0}^{\infty} \left(\sum_{k=0}^{u^{(n+1)}} \mathcal{N}(B_{u}^{a}(b-ka^{(n+1)})) \right) \cdot z^{b}$$

$$= \sum_{b=0}^{\infty} \mathcal{N}(B_{u}^{a}(b)) \sum_{k=0}^{u^{(n+1)}} z^{b+ka^{(n+1)}}$$

$$\left(u^{(n+1)} - (u^{(n+1)}) \right)$$

$$= f_{\mathcal{B}_a^u}(z) \cdot \left(\sum_{k=0}^{u^{(n+1)}} z^{ka^{(n+1)}}\right). \quad \Box$$

Lemma. Let polynomial f(z) be represented as a product of several polynomials: $f(z) = \prod_{i=1}^{n} p_i(z), \quad z \in C.$

Then its coefficients can be computed by FFT in

$$O(D(f) \ln D(f) \ln n)$$

arithmetic operations, where $D(f) = \sum_{i=1}^{n} D(p_i)$.

Corollary. All $\langle a, u \rangle$ coefficients of the polynomial $f_{\mathcal{B}_a^u}(z)$ can be computed by FFT in

$$O(\langle a, u \rangle \ln \langle a, u \rangle \ln n)$$
 a.o.

Unbounded knapsack

$$\begin{array}{ll} \text{Consider} & f_{\mathcal{B}^\infty_a}(z) = \sum\limits_{b=0}^\infty \mathcal{N}(\mathcal{B}^\infty_a(b)) \cdot z^b \ \equiv \ \prod\limits_{i=1}^n \frac{1}{1-z^{a^{(i)}}} \ , \\ \text{where} \ z \in \mathcal{C} \setminus \{1\}. \end{array}$$

Note:

1. The coefficients of the polynomial $g(z) = \prod_{i=1}^{n} (1 - z^{a^{(i)}})$ can be computed by FFT in $O(||a||_1 \ln ||a||_1 \ln n)$ a.o.

2. After that, the first b + 1 coefficients of the generating function $f_{\mathcal{B}_a^{\infty}}(z)$ can be computed in $O(b \min\{\ln^2 b, \ln^2 n\})$ a. o.

Generating functions of knapsack polytopes

For *characteristic function* $\psi_X(c) = \sum_{v \in X} e^{\langle c, y \rangle}$ of set X, define its potential function: $\phi_{\mathbf{X}}(\mathbf{c}) = \ln \psi_{\mathbf{X}}(\mathbf{c})$. Note that $\xi_X(c) \stackrel{\text{def}}{=} \max_{v \in X} \langle c, y \rangle \leq \phi_X(c) \leq \xi_X(c) + \ln \mathcal{N}(X).$ Hence, $\xi_X(c) < \mu \phi_X(c/\mu) < \xi_X(c) + \mu \ln \mathcal{N}(X), \quad \mu > 0.$ For a family of bounded knapsack polytopes $\mathcal{B}_a^u = \{B_a^u(b)\}_{b \in \mathbb{Z}_+}$, the generating function looks as follows: $g_{\mathcal{B}_a^u,c}(z) = \sum_{b=0}^{\infty} \psi_{B_a^u(b)}(c) \cdot z^b \equiv \sum_{b=0}^{\infty} \exp(\phi_{B_a^u(b)}(c)) \cdot z^b, \quad z \in \mathcal{C}.$ Short representation: $g_{\mathcal{B}_a^u,c}(z) = \prod_{i=1}^n \left(\sum_{k=0}^{u^{(i)}} e^{kc^{(i)}} z^{ka^{(i)}} \right).$ Unbounded case: $g_{\mathcal{B}^{\infty}_{a},c}(z) = \left[\prod_{i=1}^{n} (1 - e^{c^{(i)}} z^{a^{(i)}})\right]^{-1}$. ・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

Solving integer knapsack

 $f^* = \max_{x \in \mathbb{Z}^n} \{ \langle c, x \rangle : \langle a, x \rangle = b \} = \xi_{B^\infty_a(b)}(c).$ Find Since f^* is an integer value, we need accuracy less than one. Note that $\mathcal{N}(B^{\infty}_{a}(b)) \leq \prod_{i=1}^{n} \left(1 + \frac{b}{a^{(i)}}\right) \leq (1+b)^{n}$. Thus, if we take $\mu < \frac{1}{n} \ln(1+b)$, then $-1 + \mu \phi_{B^{\infty}(b)}(c/\mu) < f^* \leq \mu \phi_{B^{\infty}(b)}(c/\mu).$ For finding coefficient $\psi_{B^{\infty}_{2}(b)}(c/\mu) = \exp\{\phi_{B^{\infty}_{2}(b)}(c/\mu)\}$, we need • Compute coefficients of $f(z) = \prod_{i=1}^{n} (1 - e^{c^{(i)}/\mu} \cdot z^{a^{(i)}}).$ • Compute first b + 1 coefficients of the function $g(z) = \frac{1}{f(z)}$. This can be done in $O(||a||_1 \cdot \ln ||a||_1 \cdot \ln n + b \cdot \ln^2 n)$ operations of exact real arithmetics.

Problem: count the number of integer points in the set

 $X = \{x \in Z^n : 0 \le x \le \beta \cdot 1_n, Ax = b \in R^m\},$ where $|A_{i,j}| \le \alpha$. **Dual counting:** $O(mn \cdot (1 + \alpha\beta \cdot n)^m)$ a.o. **Full enumeration:** $O(mn \cdot (1 + \beta)^n)$ a.o. For fixed *m*, the first bound is polynomial in *n*.