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Stochastic Processes

Definition (Brownian Motion)
Wt has the properties:

ä Wt is a continuous stochastic process
ä W0 = 0
ä Wt ∼ N (0, t)
ä For any sequence of time points t0 < . . . < tn, the increments

Wtk −Wtk−1 , k = 1, . . . ,n, are independent

Remark
Brownian motion is the main building block for constructing other
stochastic processes
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Stochastic Prozesses

Algorithm (Simulation of Brownian Motion)
ä Initialization: t0 = 0,W0 = 0
ä W0 = 0
ä For j = 1,2, . . . ,n :

ã tj = tj−1 + ∆t
ã simulate Z ∼ N (0,1)
ã Wj = Wj−1 + Z

√
∆t

ä W0,Wt1 , . . . ,Wtn
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Stochastic Differential Equations

Definition
Itô-SDE is the integral equation of the form:

Xt = Xt0 +

∫ t

t0
a(s,Xs) ds +

∫ t

t0
b(s,Xs) dWs.

Differential symbolic form:

dXt = a(t ,Xt )dt + b(t ,Xt )dWt

Solutions of SDE are called stochastic diffusions or Itô processes. The
term a(Xt , t) is called a drift, and b(Xt , t) is called a diffusion term.
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Stochastic Differential Equations

Algorithm (Simulation of a diffusion process via Euler scheme)

Let yj be an approximation for Xtj

ä Start: t0 = 0, y0 = X0, W0 = 0
ä W0 = 0
ä For j = 1,2, . . . ,N :

ã tj = tj−1 + ∆t
ã simulate Z ∼ N (0,1)
ã yj+1 = yj + a(tj , yj )∆t + b(tj , yj )Z

√
∆t

ä y0, y1, . . . , yN
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Monte Carlo Methods for Pricing European Options

Let St be stock price and let r be an interest rate

ä A fair price of European Option with Payoff Ψ is given by

V = EQ[Ψ(ST )|S0],

where Q is a risk-neutral martingale measure, i.e., exp(−rt)St is
a Q-Martingale (EQ[exp(−rT )ST |Ft ] = exp(−rt)St ).

Aim
We would like to compute the value of the European option

V (S0) = EQ[Ψ(ST )|S0]
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Monte Carlo Methods for Pricing European Options

Algorithm

ä Simulate N values of stock at time T under the risk neutral
measure Q, all starting from S0, so we obtain S(1)

T , . . . ,S(N)
T

ä Compute the values of payoff Ψ(ST ) to get Ψ(S(n)
T ), n = 1, . . . ,N

ä Build the mean value:

V̂ =
1
N

N∑
n=1

Ψ(S(n)
T )
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Precision

Let

V̂ =
1
N

N∑
n=1

Ψ
(

S(n)
T

)
,

Ŝ2 =
1

N − 1

N∑
n=1

(
Ψ
(

S(n)
T

)
− V̂

)2
.

Due to the central limit theorem:

V̂ − E[V̂ ] ∼ N (0, Ŝ2/N), N >> 1.

The standard deviation of V̂ approximately behaves like Ŝ/
√

N. In
order to minimize the s.d. one can

ä either reduce Ŝ (variance reduction)
ä or increase N (more simulations)
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Precision

Bias

E[V̂ ]− V

Example
The Euler scheme leads to a bias. While for GBM the use of the
scheme:

Stj+1 = Stj exp((r − σ2/2)∆t + σ∆W )

leads to exact results, the Euler scheme

Stj+1 = Stj (1 + r∆t + σ∆W )

is biased.

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 18.09.2012 9 / 10



Precision

Question
Where should one invest more computational efforts ?

ä variance reduction
ä simulation of more paths N
ä bias reduction, i.e., increase the number of steps

Remark
The advantage of Monte Carlo methods is that the MC error is
basically independent of the dimension
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