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Optimal stopping problems

Consider an optimal stopping problem:

Y ∗ = sup
τ∈T ([0,T ])

E [Zτ] ,

where

ä (Zt)t≥0 is a process on the probability space (Ω,(Ft)t≥0,P), s. t.
E[supt∈[0,T ] |Zt |]<∞,

ä T ([0,T ]) is the set of stopping times with values in [0,T ].

Question
How to approximate Y ∗ in the case when the expectation E[Zτ] cannot
be computed in a closed form ?
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Dual approach

Consider a martingale (Mt)t≥0 with M0 = 0 adapted to the filtration
(Ft)t≥0. We have

Y ∗ = sup
τ∈T [0,T ]

E [Zτ−Mτ]≤E sup
t∈[0,T ]

[Zt −Mt ] .

Observation
The r.h.s. with an arbitrary martingale gives an upper bound for Y ∗.

It can be shown

Y ∗ = inf
M∈A

E sup
t∈[0,T ]

[Zt −Mt ] , (1)

where A is the set of all adapted martingales starting at 0.
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Dual approach

Question
What martingales do solve (1) and is the solution unique ?

! One solution of (1) is M∗ - the Doob martingale of the Snell
process

Y ∗
t = sup

τ∈T [t ,T ]
E[Zτ|Ft ],

i.e., M∗
t is an (Ft)-martingale which satisfies

Y ∗
t =Y ∗

0 +M∗
t −A∗

t , t ∈ [0,T ]

with M∗
0 :=A∗

0 := 0.

! There are many martingales solving (1) and some of solutions are
“better” than others.
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Dual approach

Note that
Y ∗ = sup

t∈[0,T ]
[Zt −M∗

t ] , a.s.

Hence M∗ also solves the penalized optimization problem

inf
M∈A

E

[
sup

t∈[0,T ]
(Zt −Mt)

]
+λ

√√√√Var

[
sup

t∈[0,T ]
(Zt −Mt)

] (2)

for any λ> 0 and M∗ is a “good” solution of (1).

Observation
In fact, even the problem (2) has infinitely many solutions.
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Dual approach

ä Let M be an adapted martingale with M0 = 0.

ä Simulate a set of trajectories

(Z (1)
t ,M(1)

t ), . . . ,(Z (n)
t ,M(n)

t ), t ∈ [0,T ].

ä Define Z (j)(M)= sups∈[0,T ](Z
(j)
s −M(j)

s ), j = 1, . . . ,n.

Monte Carlo estimate

Yn(M)= 1
n

n∑
j=1

Z (j)(M),

has the variance Var(Z (M))/n.

Observation
To speed up the convergence of Yn(M) we would like to have
martingales M with a smaller variance of Z (M)= sups∈[0,T ](Zs −Ms).
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Penalized empirical dual approach

Let M ⊂A be a family of adapted martingales with M0 = 0. Consider

Mn = arginf
M∈M

(
1
n

n∑
j=1

Z (j)(M)+λ
√

Vn(M)

)
, λ> 0,

where Z (j)(M)= sups∈[0,T ](Z
(j)
s −M(j)

s ) and

Vn(M)= 1
n(n−1)

∑
1≤i<j≤n

(Z (i)(M)−Z (j)(M))2.

Question
How large are the variance of Z (Mn)=E[supt∈[0,T ](Zt −Mn,t)] and the
bias E[Z (Mn)]−Y ∗?
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Penalized empirical dual approach

ä (Ψ,%) is a metric space.

ä M = {M(ψ) : ψ ∈Ψ} is a family of adapted continuous martingales
such that

sup
ψ,φ∈Ψ

√〈M(ψ)−M(φ)〉T
%(ψ,φ)

<C, a.s.

ä A set Ψ∗ ⊂Ψ such that

Y ∗ = sup
t∈[0,T ]

(Zt −Mt(ψ)), a.s., for any ψ ∈Ψ∗

is not empty.
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Penalized empirical dual approach

ä (Ψn,%) is a sequence of finite-dimensional approximating spaces (
sieves) such that for any n ∈N and some ψ∗ ∈Ψ∗ there exists an
element πnψ

∗ in Ψn satisfying %(ψ∗,πnψ
∗)→ 0 as n →∞.

Theorem
Denote

Cn =
∫ 1

0
ε−1Jn(ε)dJn(ε)

with

Jn(δ)=
∫ δ

0

√
log[1+N(ε,Ψn,%)]dε.

Then

E[Z (Mn)]−Y ∗ P−→ 0, Var(Z (Mn))
P−→ 0, n →∞,

provided Cn/
p

n =O(1).
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Martingales via martingale representations

Zt =G(t ,Xt), t ∈ [0,T ]

G : [0,T ]×Rd →R is a Hölder function
Xt is a d-dimensional Markov process solving the system of
SDE’s:

dXt = µ(t ,Xt)dt +σ(t ,Xt)dWt , X0 = x

Theorem
If Mt is square integrable and is adapted to the filtration generated by
Wt , then there is a square integrable (row vector valued) process
Ht = (H1

t , . . . ,Hm
t ) satisfying

Mt =
∫ t

0
HsdWs.
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Martingales via martingale representations

Under some conditions we have Hs =ψ(s,Xs) and

Mt =Mt(ψ)=
∫ t

0
ψ(s,Xs)dWs

for some ψ satisfying
∫ T

0 E[|ψ(s,Xs)|2]ds <∞.

Define
M =

{
M(ψ), ψ ∈ L2,P([0,T ]×Rd )

}
Lemma

√
〈M −M ′〉T ≤

p
T sup

(s,x)∈[0,T ]×Rd
|ψ(s,x)−ψ′(s,x)| :=

p
T ·%(ψ,ψ′)

with Mt =Mt(ψ), M ′
t =Mt(ψ

′), ψ,ψ′ ∈ L2,P([0,T ]×Rd )∩C([0,T ]×Rd ).
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Martingales via martingale representations

Introduce a linear sieve

Ψ̃K = {β1φ1 + . . .+βKφK :β1, . . . ,βK ∈R},

where φ1, . . . ,φK ∈ L2,P([0,T ]×Rd )∩C([0,T ]×Rd ).

Define

MK = {
Mt(ψ) :ψ ∈ Ψ̃K

}
.

Set

Mn = arg inf
M∈MKn

(
1
n

n∑
j=1

Z (j)(M)+ (Å+λn)
√

Vn(M)

)
,

where Kn →∞ as n →∞.
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Martingales via martingale representations

Observation
For many linear sieves it holds

log[1+N(ε,Ψ̃K ,%)].K d+1 log(1/ε), ε→ 0

Theorem
With probability at least 1−δ

E[Z (Mn)]−Y ∗ . an,
√

V (Mn). an,

where an = infψ∈Ψ̃Kn ,ψ∗∈Ψ̃∗ ‖ψ−ψ∗‖∞, provided λn =√
2log(2/δ)/

p
n

and K d+1
n /

p
n =O(1) for n →∞.
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Andersen-Broadie dual approach

Discrete time optimal stopping problems: 0= t0 < t1 < . . . < tL =T

Y ∗ = sup
τ∈{t0,...,tL}

E [Zτ] ,

Lemma
It holds

M∗
tj+1

−M∗
tj =Y ∗

tj+1
−E[Y ∗

tj+1
|Fti ], j = 0, . . . ,L−1.

Replace Y ∗ by its approximation Y obtained, for example, using a
regression approach.
Find an approximation M of M∗ using sub-simulation and the
formula

Mtj+1 −Mtj =Ytj+1 −E[Ytj+1 |Fti ].
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Comparison with the standard approach

Our new approach
is directly applicable in the case of continuous time optimal
stopping problems,
delivers “true” upper bound without use of sub-simulation, thus
resulting in a non-nested Monte Carlo,
does not exclusively concentrate on finding Doob martingale and
takes advantage of the richness of the class A ∗ of adapted
martingales satisfying

Y ∗
t = sup

t∈[0,T ]
(Zt −Mt), a.s.,

the variance of the r.v Z (Mn)= sups∈[0,T ](Zs −Mn,s) is, with high
probability, bounded by a multiple of

inf
M∈M ,M ′∈A ∗

d(M ,M ′),

where d is a deterministic metric on A .
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Penalization vs. No peanlization

Question
What happens if we do not penalize by empirical variance?

Consider a class of processes Zt defined as

Zt =
∫ t

0
f (s,Ws)dWs +

∫ t

0
g(s,Ws)ds, t ≥ 0,

where (Wt)t≥0 is the standard Brownian motion and f , g are two
functions satisfying∫ T

0
E |f (s,Ws)|2 ds <∞,

∫ T

0
E |g(s,Ws)|ds <∞.
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Penalization vs. No peanlization

Observation
If g ≥ 0, then the process Zt is uniformly integrable submartingale and

Y ∗ = sup
τ∈T ([0,T ])

E [Zτ]=E
[∫ T

0
g(s,Ws)ds

]
.

ä Take T = 1, f (s,x)= sin4(x) and g(s,x)= x2, then Y ∗ = 1/2.

ä Consider a set of functions on [0,T ]×R :

(φ1(t ,x), . . . ,φ7(t ,x))= {
1,x , tx ,sin(x),cos(x),sin(2x),cos(2x)

}
.

ä Define a sieve Ψ̃ via

Ψ̃= {β1φ1 + . . .+β7φ7 :β1, . . . ,β7 ∈R}.
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Penalization vs. No peanlization

ä Simulate n paths of the Brownian motion Wt on [0,T ]

ä Consider two optimization problems

ψn = arginf
ψ∈Ψ̃

{
1
n

n∑
j=1

Z (j)(ψ)

}
and

ψn,λ = arginf
ψ∈Ψ̃

{
1
n

n∑
j=1

Z (j)(ψ)+ λ

n(n−1)
∑

1≤i<j≤n
(Z (i)(ψ)−Z (j)(ψ))2

}
with

Z (j)(ψ)= sup
t∈[0,T ]

[
Z (j)

t −
∫ t

0
ψ(s,W (j)

s )dW (j)
s

]
,

Z (j)
t =

∫ t

0
f (s,W (j)

s )dW (j)
s +

∫ t

0
g(s,W (j)

s )ds.
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Penalization vs. No peanlization

The histograms of the standard deviations of the r.v. Z (ψn,2) (left) and
Z (ψn) (right) based on 1000 realizations of the solutions ψn,2 and ψn

λ = 2
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D
en

si
ty

0.075 0.080 0.085 0.090 0.095

0
20

40
60

80
10

0

λ = 0

sd(Z)

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 06.10.2012 19 / 19



Bibliography

Belomestny, D. (2012).
Solving optimal stopping problems by empirical dual optimization
and penalization, to appear in Annals of Applied Probability .

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 06.10.2012 19 / 19


