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Optimal Stopping Problems

ä (Xj)j≥0 is a Markov chain

ã on a filtered probability space (Ω,F , (Fj )j≥0,Px )

ã with values in (Rd ,B(Rd ))

ã starting at x under Px for some x ∈ Rd

ä Gj : Rd → R, j = 0, . . . ,J , is a set of measurable functions that
fulfill

Ex

[
sup

0≤j≤J
|Gj(Xj)|

]
<∞
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Optimal Stopping Problems

Consider the following discrete time optimal stopping problem:

Y ∗0 = sup
τ∈{0,,...,J}

Ex [Gτ (Xτ )] ,

where

ä τ is a (Fj)-stopping time with values in {1, . . . ,J }, i.e. {τ = j} ∈ Fj

Question
How to approximate Y ∗0 in the case when the expectation E[Gj(Xτ )]
cannot be computed in a closed form ?
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Dynamic Programming Principle

ä Snell-Envelope Process

Y ∗j (Xj) = sup
τ∈{j,,...,J}

E
[
Gτ (Xτ )|Xj

]
ä Continuation values

C∗j (x) := E[Y ∗j+1(Xj+1)|Xj = x ], j = 0, . . . ,J − 1

Observation

Y ∗J (XJ ) = GJ (XJ ), a.s.
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Dynamic Programming Principle

It holds

C∗J (x) = 0,
C∗j (x) = E[max(Gj+1(Xj+1),C∗j+1(Xj+1))|Xj = x ]

for j = 0, . . . ,J − 1.

Observation
The use of the DPP is relatively straightforward in low dimensions.
However, many problems arising in practice are high-dimensional !
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Dynamic Programming Principle

The family of stopping rules τ∗j , j = 0, . . . ,J , defined via

τ∗J = J ,
τ∗j = j × 1{C∗

j (Xj )≤Gj (Xj )} + τ∗j+1 × 1{C∗
j (Xj )>Gj (Xj )}

for j = 0, . . . ,J − 1 is optimal, i.e.,

Y ∗j = E[Gτ∗j
(Xτ∗j )|Xj ], j = 0, . . . ,J .
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Nested conditional expectations

ä Problem: How to approximate the nested conditional expectations
in the backward dynamic programming algorithm?

ä Naive approach: Average over simulated paths (plain Monte
Carlo) as suggested by the Law of Large Numbers.

Infeasible: Computational cost explodes rapidly with the number of
exercise dates.
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Nested conditional expectations
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Regression Methods

1 Simulate M trajectories of the process X

2 Construct estimates Ĉ1,M , . . . , ĈJ ,M recursively via backward
induction:

ä Put ĈJ ,M(x) ≡ 0

ä If an estimate Ĉj+1,M(x) is already constructed define Ĉj,M(x) as an
estimate of

E[max(Gj+1(Xj+1), Ĉj+1,M(Xj+1))|Xj = x ],

based on the sample

(X (m)
j , Ĉj+1,M(X (m)

j+1 )), m = 1, . . . ,M.
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Global Regression

ä Fix a vector of basis functions ψ = (ψ1, . . . , ψK )

ä Let (α̂1, . . . , α̂K ) be a solution of the least squares optimization
problem

arginf
α∈RK

M∑
m=1

[
V̂j+1,M(X (m)

j+1 )− α1ψ1(X (m)
j )− . . .− αKψK (X (m)

j )
]2

with V̂j+1,M(x) = max
{

Gj+1(x), Ĉj+1,M(x)
}

ä Define the approximation

Ĉj,M(x) = α̂1ψ1(x) + . . .+ α̂KψK (x), x ∈ Rd
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Global Regression

ä Define a design K × K matrix B with entries

Bp,q =
1
M

M∑
m=1

ψp(X (m)
j )ψq(X (m)

j )

ä Define a K -dimensional vector b with entries

bp =
1
M

M∑
m=1

ψp(X (m)
j )V̂j+1,M(X (m)

j+1 )

Theorem

Ĉj,M(x) = (B−1b)>ψ(x)
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Local Regression

ä Fix a number l ∈ N and a point x ∈ Rd

ä Fix a function (kernel) K ≥ 0 on Rd with supp K ⊂ [−1,1]d

ä Let Qx ,M be a polynomial in Rd of degree l which solves the
optimization problem

inf
quadr. pol. q

M∑
m=1

[
V̂j+1,M(X (m)

j+1 )− q(X (m)
j − x)

]2
K

X (m)
j − x

h



ä Define Ĉj,M(x) = Qx ,M(0)
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Local Regression

Introduce a vector S = (Su)|u|≤l with

Su =
1

Mhd

M∑
m=1

V̂j+1,M(X (m)
j+1 )

X (m)
j − x

h

u

K

X (m)
j − x

h


Let Z (z) = (zu)|u|≤l be the vector of all monomials of order less than or
equal to l and the matrix Γ = (Γu1,u2)|u1|,|u2|≤l be defined as

Γu1,u2 =
1

Mhd

M∑
m=1

X (m)
j − x

h

u1+u2

K

X (m)
j − x

h

 .

It holds
Ĉj,M(x) = Z>(0)Γ−1S

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 18.09.2012 13 / 33



Value Function Estimates

There are two possibilities to estimate Y ∗0 = Y ∗0 (x)

1 Put

Ỹ0,M := max
{

G0(x), Ĉ0,M(x)
}
, x ∈ Rd .

2 Consider a suboptimal stopping rule

τ̂M = min
{

0 ≤ j ≤ J : Ĉj,M(Xj) ≤ Gj(Xj)
}

and define Ŷ0,M as a Monte Carlo estimate of

E[Gτ̂M (Xτ̂M )|X0 = x ], x ∈ Rd

based on a new independent set of trajectories.

Question
Which estimate is better ?
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Lower Estimates

ä Ŷ0,M is low biased estimate, i.e.,

E[Ŷ0,M ] = E[Gτ̂M (Xτ̂M )|X0 = x ] ≤ Y ∗0

ä Both estimates converge to Y ∗0 , provided Ĉj,M → C∗j as M →∞

Observation

As was observed by practitioners Ŷ0,M has rather stable behavior with
respect to Ĉ0(x), . . . , ĈJ−1(x), i.e., even rather poor estimates of
continuation values may lead to a good estimate Ŷ0,M .
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Convergence of value function estimates

Question

Are the convergence rates of Ŷ0,M faster than those of Ỹ0,M?

Answer
They are always faster and may even not depend on the convergence
rates of Ĉk ,M(x)

In fact

ä The convergence rates of Ỹ0,M coincide with ones of Ĉ0,M
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Stoppong Boundary Assumptions

Assume that there exist constants A0,k > 0, δ0 > 0 and α > 0 such that

P
(

0 < |C∗j (Xj)−Gj(Xj)| ≤ δ
)
≤ A0,kδ

α

for all δ < δ0 and j = 0, . . . ,J − 1.

Remark
This assumption provides a characterization of the behavior of the
process X near the exercise boundary ∂E , where

E :=
{

(j , x) : Gj(x) ≥ C∗j (x)
}
.
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Convergence Rates (Upper Bounds)

Theorem
Suppose that there exist constants A1, A2 and a positive sequence γM
such that for any δ > δ0 > 0

P⊗M
x0

(
sup
x∈X
|Ĉj,M(x)− Cj(x)| ≥ δγ−1/2

M

)
≤ A1 exp(−A2δ),

where the set X ⊂ Rd fulfills P(Xj ∈ X ) = 1 , j = 0, . . . ,J − 1. If the
stopping boundary assumption (SBA) is fulfilled then

0 ≤ Y ∗0 − E⊗M
x0

[Ŷ0,M ] ≤ A

[J−1∑
l=0

A0,l

]
γ
−(1+α)/2
M

with some constant A depending only on α, A1 and A2.
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Convergence Rates (Upper Bounds)

Theorem
Suppose that there exist constants A1, A2 and a positive sequence γM
such that for any δ > δ0 > 0

P⊗M
x0

(
sup
x∈X
|Ĉj,M(x)− Cj(x)| ≥ δγ−1/2

M

)
≤ A1 exp(−A2δ),

where the set X ⊂ Rd fulfills P(Xj ∈ X ) = 1 , j = 0, . . . ,J − 1. It holds

P⊗M
x0

(
|Ỹ0,M − Y ∗0 | ≥ δγ

−1/2
M

)
≤ A1 exp(−A2δ),

i.e.,
|Ỹ0,M − Y ∗0 | = OP(γ

−1/2
M )
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Convergence Rates (Low Bounds)

Theorem

Let J = 2. Fix a function G : Rd → {0,1} and let Pα be a class of
measures such that the SBA is fulfilled with some α > 0. For any
positive sequence γM satisfying γ−1

M = o(1), M−1γM = O(1) there exist
Pα,γ ⊂ Pα such that for any stopping rule τ̂M and any estimators
{Ĉj,M} measurable w.r.t. F⊗M

sup
P∈Pα,γ

P⊗M

(
sup
x∈Rd

|Ĉj,M(x)− Cj(x)| ≥ δγ−1/2
M

)
> 0

and

sup
P∈Pα,γ

{
sup

τ∈{0,...,J}
EP[G(Xτ )]− EP⊗M [EP G(Xτ̂M )]

}
≥ Aγ−(1+α)/2

M .
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Convergence Rates (α =∞)

If α =∞, i.e.,

P
(
0 < |Cj(Xj)−Gj(Xj)| ≤ δ0

)
= 0

for some δ0 > 0 and j = 0, . . . ,J − 1, then

0 ≤ Y ∗0 − EP⊗M
x

[Ŷ0,M ] ≤ A4 exp(−A5δ0γM)

with some constant A4 and A5.

Remark
The convergence rates are exponential in γM . So, even the use of
inaccurate estimates {Ĉk} would not have dramatic impact on the
quality of Ŷ0,M in this case.
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Convergence Rates (α =∞)

ä Consider a two-period stopping problem with

C∗0(x) = E[G1(X1)|X0 = x ],

where G1 is positive and monotone increasing function.

ä Define

G0(x) =

{
C∗0(x0) + δ0, x < x0,

C∗0(x0)− δ0, x ≥ x0.

with some x0 and δ0 < C0(x0).
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Convergence Rates (α =∞)
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Convergence Rates (α =∞)

It is easy to see that

P(0 < |C∗0(X0)−G∗0(X0)| ≤ δ0) = 0

and

C = {x ∈ R : C∗0(x) ≥ G∗0(x)} = {x ∈ R : x ≥ x0}
E = {x ∈ R : C∗0(x) < G∗0(x)} = {x ∈ R : x < x0}
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Convergence of cont. values

For any β ∈ R+ and any function g on Rd denote

gx (x ′) =
∑
|s|≤bβc

(x ′ − x)s

s!
Dsg(x),

where s = (s1, . . . , sd ) is a multi-index, |s| = s1 + . . .+ sd and

Ds =
∂s1+...+sd

∂xs1
1 · . . . · ∂xsd

d
.
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Convergence of cont. values

g ∈ Σ(β,H,Rd ) ((β,H,Rd )-Hölder smooth function) if

ä g is bβc times continuously differentiable

ä for any x , x ′ ∈ Rd

|g(x ′)− gx (x ′)| ≤ H‖x − x ′‖β, x ′ ∈ Rd
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Convergence of cont. values

ä Assumption
C∗j ∈ Σ(β,H,Rd ), j = 0, . . . ,J .

Proposition
There exist positive constants B1, B2 and B3 such that for any h
satisfying B1hβ <

√
| log h|/Mhd and any ζ ≥ ζ0 with some ζ0 > 0

P⊗M

(
sup
x∈A
|Ĉj,M(x)− C∗j (x)| ≥ ζ

√
| log h|
Mhd

)
≤ B2 exp(−B3ζ)

for j = 0, . . . ,J − 1.
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Convergence of cont. values

Corollary

We get with h = M−1/(2β+d) and any ζ ≥ ζ0 > 0

P⊗M

(
sup
x∈A
|Ĉk ,M(x)− C∗k (x)| ≥ ζ log1/2 M

Mβ/(2β+d)

)
≤ B2 exp(−B3ζ)

for j = 0, . . . ,J − 1.
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Numerical example: Bermudan max call

ä Consider d identically distributed assets with dividend yield δ

ä The risk-neutral dynamic of assets is given by

dXk (t)
Xk (t)

= (r − δ)dt + σdWk (t), k = 1, ...,d ,

where Wk (t), k = 1, ...,d , are independent one-dimensional
Brownian motions and r , δ, σ are constants.

ä At any time t ∈ {t0, . . . , tJ } the holder of the option may exercise it
and receive the payoff

Gj(Xj) = e−rtj (max(X1(tj), ...,Xd (tj))− κ)+

with Xj = (X1(tj), ...,Xd (tj))
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Numerical example: Bermudan max call

ä Estimate all c.v. via DPP and Nadaraya-Watson estimator:

Ĉj,M(x) =

∑M
m=1 V (m)

j+1 K ((x − X (m)
j )/h)∑M

m=1 K ((x − X (m)
j )/h)

with

V (m)
j+1 = max

{
G(X (m)

j+1 ), Ĉj+1,M(X (m)
j+1 )

}
, j = 0, . . . ,J − 1,

where K is a kernel and h is a bandwidth.
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Numerical example: Bermudan max call

ä The first estimate for the price of the option at time t0 = 0:

Ỹ0,M :=
1
M

M∑
m=1

V (m)
1

ä Construct stopping a policy τ̂ via

τ̂ (n) = min
{

1 ≤ j ≤ J : Ĉj,M(X (M+n)
j ) ≤ Gj(X

(M+n)
j )

}

ä The second estimate

Ŷ0,M =
1
N

N∑
n=1

Gτ̂ (n)(X
(M+n)
τ̂ (n)

)
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Numerical example: Bermudan max call
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