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Chapter 1

TOY GEOMETRIES AND MAIN DEFINITIONS

In this chapter, we study five toy examples of geometries (symmetries of
the equilateral triangle, the square, the cube, and the circle) and a model of
the geometry of the so-called elliptic plane. These examples are followed by
the main definition of this course: a geometry in the sense of Klein is a set
with a transformation group acting on it. We then present some useful gen-
eral notions related to transformation groups. Finally, we study the relation-
ships (called morphisms or equivariant maps) between different geometries,
thus introducing the category of all geometries. The notions introduced in
this chapter are illustrated by some problems (dealing with toy models of
geometries) collected at the end of the chapter.

But before we begin with these topics, we briefly recall some terminology
from elementary Euclidean geometry.

1.1. Isometries of the Euclidean plane and space

We assume that the reader is familiar with the basic notions and facts of
Euclidean geometry in the plane and in space. One can think of Euclidean
geometry as an axiomatic theory (not too rigorously taught in high school) or
as a small chapter of linear algebra (the plane R2 and the space R3 supplied
with the standard metric). It is irrelevant for us which of these two points
of view is adopted by the reader, and the aim of this subsection is merely to
fix some terminology common to the two approaches.

An isometry of the Euclidean plane R2 (or space R3) is a map f : R2 → R2

(respectively f : R3 → R3) which preserves the distance d between points,
i.e., d(f(P ), f(Q)) = d(P,Q) for any pair of points P,Q of the plane (resp. of
space). There are two types of isometries: those which preserve orientation
(they are called motions) and those that reverse orientation (orientation-
reversing isometries).

In the plane, examples of motions are parallel translations (determined by
a fixed translation vector) and rotations (determined by a pair (C, α), where
C is the center of rotation and α is angle of rotation. In space, examples of
motions are parallel translations and rotations (about an axis). Rotations in
space are determined by pairs (l, α), where l is the axis of rotation, i.e., a
straight line with a specified direction on it, and α is the angle of rotation;
the rotation (l, α) maps any point M in space to the point M ′ obtained by
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rotating M in the plane Π perpendicular to l by the angle α counterclockwise
if one looks at the plane from “above”, i.e., from some point of l obtained
from the point l ∩ Π by moving in the direction specified on the axis.

Examples of orientation-reversing isometries in the plane are reflections
(i.e., symmetries with respect to a line). In space, examples of orientation-
reversing isometries are given by mirror symmetries (i.e., reflections with
respect to planes) and point symmetries (i.e., reflections with respect to a
point).

All other isometries of the Euclidean plane and space are compositions of
those listed above.

The reader who feels uncomfortable with the notions mentioned in this
subsection is invited to study Appendix I at the end of the book.

1.2. Symmetries of some figures

1.2.1. Symmetries of the equilateral triangle. Consider all the isometries
of the equilateral triangle 4 = ABC, i.e., all the distance-preserving map-
pings of this triangle onto itself. (To be definite, we assume that the letters
A,B,C have been assigned to vertices in counterclockwise order.) Denote
by sA, sB, and sC the reflections in the bisectors of angles A, B, C of the
triangle. Denote by r0, r1, r2 the counterclockwise rotations about its center
of gravity by 0, 120, 240 degrees, respectively. Thus r1 takes the vertex A to
B, B to C, and C to A. These six transformations are all called symmetries
of triangle ABC and the set that they constitute is denoted by Sym(4).
Thus

Sym(4) = {r0, r1, r2, sA, sB, sC}.

There are no other isometries of4. Indeed, any isometry takes vertices to
vertices, each one-to-one correspondence between vertices entirely determines
the isometry. (For example, the correspondence A → B, B → A, C → C
determines the reflection sC .) But there are only six different ways to assign
the letters A,B,C to three points, so there cannot be more than 6 isometries
of 4.

In a certain sense, Sym(4) is the same thing as the family of all permu-
tations of the three letters A,B,C; this remark will be made precise in the
next chapter.

We will use the symbol ∗ to denote the composition (or product) of isome-
tries, in particular of elements of Sym(4), and understand expressions such



4

as r1 ∗ sA to mean that r1 is performed first, and then followed by sA. Ob-
viously, when we compose two elements of Sym(4), we always obtain an
element of Sym(4).

What element is the composition of two given ones can be easily seen
by drawing a picture of the triangle ABC and observing what happens to it
when the given isometries are successively performed, but this can also be
done without any pictures: it suffices to follow the “trajectory” of the vertices
A,B,C. Thus, in the example r1 ∗ sA, the rotation r1 takes the vertex A to
B, and then B is taken to C by the symmetry sA; similarly, B → C → B
and C → A → A, so that the vertices A,B,C are taken to C,B,A in that
order, which means that r1 ∗ sA = sB.

The order in which symmetries are composed is important, because the
resulting symmetry may change if we inverse the order. Thus, in our example,
sA ∗ r1 = sC 6= sB (as the reader will readily check), so that r1 ∗ sA 6= sA ∗ r1.
So for elements of Sym(4), composition is noncommutative.

The compositions of all possible pairs of symmetries of 4 can be conve-
niently shown in the following multiplication table:

∗ r0 r1 r2 sA sB sC
r0 r0 r1 r2 sA sB sC
r1 r1 r2 r0 sB sC sA
r2 r2 r0 r1 sC sA sB
sA sA sC sB r0 r1 r2
sB sB sA sC r2 r0 r1
sC sC sA sB r1 r2 r0

Here (for instance) the element sV at the intersection of the fifth column
and the third row is sB = r1 ∗ sA, the composition of r1 and sA in that order
(first the transformation r1 is performed, then sA).

As we noted above, composition is noncommutative, and this is clearly
seen from the table (it is not symmetric with respect to its main diagonal).

The composition operation ∗ in Sym(4) is (obviously) associative, i.e.,
(i ∗ j) ∗ k = i ∗ (j ∗ k) for all i, j, k ∈ Sym(4). The set Sym(�) contains the
identity transformation r0 (also denoted id or 1). Any element i of Sym(�)
has an inverse i−1, i.e., an element such that i ∗ i−1 = i−1 ∗ i =1.

The set Sym(4) supplied with the composition operation ∗ is called the
symmetry group of the equilateral triangle.
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1.2.2. Symmetries of the square. Consider all the isometries of the unit
square � = ABCD, i.e., all the distance-preserving mappings of the square
to itself.

A B

CD

r1

r2

SV

SH

SacSbd

Figure 1.1. Symmetries of the square

Let us denote by sH , sV , and sac, sbd the reflections in the horizontal and
vertical mid-lines, and in the diagonals AC, BD, respectively. Denote by
r0, r1, r2, r3 the rotations about the center of the square by 0, 90, 180, 270
degrees, respectively. These eight transformations are all called symmetries
of the square. We write

Sym(�) = {r0, r1, r2, r3, sH , sV , sac, sbd}.

Just as in the case of the equilateral triangle, the composition of any two
symmetries of the square is a symmetry of the square, and a multiplication
table, indicating the result of all pairwise compositions, can be drawn up:

∗ r0 r1 r2 r3 sH sV sac sbd
r0 r0 r1 r2 r3 sH sV sac sbd
r1 r1 r2 r3 r0 sac sbd sV sH
r2 r2 r3 r0 r1 sV sH sbd sac
r3 r3 r0 r1 r2 sbd sac sH sV
sH sH sbd sV sac r0 r2 r3 r1
sV sV sac sH sbd r2 r0 r1 r3
sac sac sH sbd sV r1 r3 r0 r2
sbd sbd sV sac sH r3 r1 r2 r0

Here (for instance) the element sV at the intersection of the sixth column
and the fourth row is sV = r2 ∗ sH , the composition of r2 and sH in that
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order (first the transformation r2 is performed, then sV ). Composition is
noncommutative.

Obviously, composition is associative. The set Sym(�) contains the iden-
tity transformation r0 (also denoted id or 1). Any element i of Sym(�) has
an inverse i−1, i.e., an element such that i ∗ i−1 = i−1 ∗ i =1..

The set Sym(�) supplied with the composition operation is called the
symmetry group of the square.

1.2.3. Symmetries of the cube. Let

I3 = {(x, y, z) ∈ R3| 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

be the unit cube. A symmetry of the cube is defined as any isometric mapping
of I3 onto itself. The composition of two symmetries (of I3) is a symmetry.
How many are there?

Let us first count the orientation-preserving isometries of the cube (other
than the identity), i.e., all its rotations (about an axis) by nonzero angles
that take the cube onto itself.

180◦

120◦
90◦

Figure 1.2. Rotations of the cube

There are three axes of rotation joining the centers of opposite faces,
and the rotation angles for each are π/2, π, 3π/2. There are four axes of
rotation joining opposite vertices, the rotation angles for each being 2π/3
and 4π/3. There are six axes of rotation joining midpoints of opposite edges,
with only one nonzero rotation for each (by π). This gives us a total of
(3× 3) + (4× 2) + (6× 1) = 23 orientation-preserving isometries, or 24 if we
include the identity.

There are no other orientation-preserving isometries; at this point, we
could prove this fact by a tedious elementary geometric counting argument,
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but we postpone the proof to Chapter 3, where it will be the immediate
result of more general and sophisticated algebraic method.

There are also 24 orientation-reversing isometries of the cube. Listing
them all is the task prescribed by Exercise 1.2 (see the end of the chapter),
a task which requires little more than a bit of spacial intuition.

Thus the cube has 48 isometries. All their pairwise compositions consti-
tute a multiplication table, which is a 49 by 49 array of symbols, much too
unwieldy to fit in a book page.

The set Sym(I3) of all 48 symmetries of the cube supplied with the com-
position operation is called the symmetry group of the cube; it is associative,
noncommutative, has an identity, and all its elements have inverses, just as
the symmetry groups in the two previous examples.

1.2.4. Symmetries of the circle. Let

© := {(x, y) ∈ R2| x2 + y2 = 1}
be the unit circle. Denote by Sym(©) the set of all its isometries. The
elements of Sym(©) are of two types: the rotations rϕ about the origin by
angles ϕ, ϕ ∈ [0, 2π), and the reflections in lines passing through the origin,
sα, α ∈ [0, π), where α denotes the angle from the x-axis to the line (in the
counterclockwise direction). The composition of rotations is given by the
(obvious) formula

rφ ∗ rψ = r(φ+ψ)mod 2π,

where mod 2π means that we subtract 2π from the sum φ + ψ if the latter
is greater than or equal to 2π.

The composition of two reflections sα and sβ is a rotation by the angle
|α− β|,

sα ∗ sβ = r2(α−β).

The interested reader will readily verify this formula by drawing a picture and
comparing the angles that will appear when the two reflections are composed.

The set of all isometries of the circle supplied with the composition oper-
ation is called the symmetry group of the circle and is denoted by Sym(©).
The group Sym(©) has an infinite number of elements. As before, this
group is associative, noncommutative, has an identity, and all its elements
have inverses.

1.2.5. Symmetries of the sphere. Let

S2 := {(x, y) ∈ R3| x2 + y2 + z2 = 1}
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be the unit sphere. Denote by Sym(S3) the set of all its isometries and by
Rot(S3) the set of all its rotations (by different angles about different axes
passing through the center of the sphere). Besides rotations, the transforma-
tion group Sym(S3) contains reflections in different planes passing through
the center of the sphere, its symmetry with respect to its center, and the
composition of these transformations with rotations.

Reflections in planes, unlike rotations, reverse the orientation of the
sphere. This means that a little circle oriented clockwise on the sphere (if
we are looking at it from the outside) is transformed by any reflection into
a counterclockwise oriented circle, and the picture of a left hand drawn on
the sphere becomes that of a right hand. Now a reflection in a line passing
through the sphere’s center does not reverse orientation (unlike reflections in
the plane!) because a reflection of the sphere in a line is exactly the same
transformation as a rotation about this line by 180◦. On the other hand,
a reflection of the sphere with respect to its center reverses its orientation
(again, this is not the case for reflections of the plane with respect to a point).

Note that the composition of two reflections in planes is a rotation (see
Exercise 1.11), while the composition of two rotations is another rotation (by
what angle and about what axis is the question discussed in Exercise 1.12).

The set of all isometries of the sphere supplied with the composition oper-
ation is called the symmetry group of the sphere and is denoted by Sym(S3).
The group Sym(S3) has an infinite number of elements. As before, this group
is associative, noncommutative, has an identity, and all its elements have in-
verses.

1.2.6. A model of elliptic plane geometry. Consider the set Ant(S2) of all
pairs of antipodal points (i.e., points symmetric with respect to the origin)
on the unit sphere S2); thus elements of Ant(S2) are not ordinary points,
but pairs of points. Now consider the family (that we denote O(3)) of all
isometries of the space R3 that do not move the origin 1. Clearly, any such
isometry takes pairs of antipodal points to pairs of antipodal points, thus it
maps the set X = Ant(S2) to itself.

The family O(3) of transformations of the set Ant(S2) is called the isome-
try group of the Riemannian elliptic plane. This is a much more complicated
object than the previous “toy geometries”. We will come back to its study
in Chapter 6.

1In linear algebra courses such transformations are called orthogonal and O(3) is called
the orthogonal group.
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1.3. Transformation groups

1.3.1. Definitions and notation. Let X be a set (finite or infinite) of
arbitrary elements called points. By definition, a transformation group G
acting on X is a (nonempty) set G of bijections of X supplied with the
composition operation ∗ and satisfying the following conditions:

(i) G is closed under composition, i.e., for any transformations g, g′ ∈ G,
the composition g ∗ g′ belongs to G;

(ii) G is closed under taking inverses, i.e., for any transformation g ∈ G,
its inverse g−1 belongs to G.

These conditions immediately imply that G contains the identity trans-
formation. Indeed, take any g ∈ G; by (ii), we have g−1 ∈ G; by (i), we have
g−1 ∗ g ∈ G; but g−1 ∗ g =id (by definition of inverse element), and so id∈ G.
Note also that composition in G is associative (because the composition of
mappings is always associative).

If x ∈ X and g ∈ G, then by xg we denote the image of the point x under
the transformation g. (The more usual notation g(x) is not convenient: we
have x(g ∗ h) = (xg)h, but (g ∗ h)(x) = h(g(x)), with g and h appearing in
reverse order in the right-hand side of this equality.)

1.3.2. Examples. The five toy geometries considered in the previous
section all give examples of transformation groups. The five transformation
groups Sym act (by isometries) on the equilateral triangle, the square, the
cube, the circle, and the sphere, respectively. In the last example (1.2.5), the
orthogonal group O(3) acts on pairs of antipodal points on the sphere, these
pairs being regarded as “points” of the “elliptic plane”.

More examples are given by the transformation group consisting of all
the bijections Bij(X) of any set X. By definition of transformation groups,
Bij(X) is the largest (by inclusion) transformation group acting on the given
set X. At the other extreme, any set X has a transformation group consisting
of a single element, the identity transformation.

When the set X is finite and consists of n objects, the group Bij(X) of
all its bijections is called the permutation group on n objects and is denoted
by Σn. This group is one of the most fundamental notions of mathematics,
and plays a key role in abstract algebra, linear algebra, and, as we shall see
already in the next chapter, in geometry.

1.3.3. Orbits, stabilizers, class formula. Let (X : G) be some transfor-
mation group acting on a set X and let x ∈ X. Then the orbit of x is defined
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as
Orb(x) := {xg|g ∈ G} ⊂ X,

and the stabilizer of x is

St(x) := {g ∈ G|xg = x} ⊂ G.

For example, if X = R2 and G is the rotation group of the plane about the
origin, then the set of orbits consists of the origin and all concentric circles
centered at the origin; the stabilizer of the origin is the whole group G, and
the stabilizers of all the other points of R2 are trivial (i.e., they consist of
one element – the identity id∈ G).

Suppose (X : G) is an action of a finite transformation group G on a
finite set X. Then the number of points of G is (obviously) given by

|G| = |Orb(x)| × |St(x)| (1.1)

for any x ∈ X. Now let A ⊂ X be a set that intersects each orbit at exactly
one point. Then the number of points of X is given by the formula

|X| =
∑

x∈A

|G|
|St(x)| , (1.2)

called the class formula. This formula, just as the previous one, follows
immediately from definitions.

1.3.4. Fundamental domains. If X is a subset of Rn (e.g. Rn itself) and
G is a transformation group acting on X, then a subset F ⊂ X is called a
fundamental domain of the action of G on X if

• F is an open set in X ;

• F ⋂Fg = ∅ for any g ∈ G (except g =id).;

• X =
⋃
g∈GClos(Fg), where Clos(.) denotes the closure of a set.

For example, in the case of the square, a fundamental domain of the
action of Sym(�) is the interior of the triangle AOM , where O is the center
of the square and M is the midpoint of side AB; of course Sym(�) has many
other fundamental domains. Thus fundamental domains are not necessarily
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unique. Moreover, fundamental domains don’t always exist: for instance,
Sym(S1) (and other “continuous” geometries) do not have any fundamental
domains.

1.3.5. Morphisms. According to one of the main principles of the cat-
egory approach to mathematics, as soon as an important class of objects is
defined, one must define their morphisms, i.e., the natural of class of rela-
tionships between them. Following this principle, we say any mapping of
transformation groups α : G → H is a homomorphism if α respects the
product (composition) structure, i.e.,

α(g1 ∗ g2) = α(g1) ∗ α(g2) for all g1, g2 ∈ G. (1.3)

Let us look at a few examples of homomorphisms:

(i) the mapping µ :Sym(�) → Sym(I3) obtained by placing the square
on top of the cube and extending its isometries to the whole cube in the
natural way (e.g. assigning the rotation by 90◦ about the vertical axis passing
through the centers of the horizontal faces of the cube to the 90◦ rotation of
the square);

(iv) the mapping ν :Sym(4)→Sym(©) assigning to each rotation of the
triangle the rotation of the circle by the same angle and, to the reflections
sA, sB, sC , the reflections s0, s2π/3, s4π/3 of the circle;

(iii) the mapping π :Rot(I3) → Rot(�) induced by the projection of the
cube on its bottom horizontal face Φ, i.e., assigning the identity element to
all isometries of the cube that do not map Φ to Φ, and assigning, to all the
other isometries of the cube, their restriction to Φ;

(iv) the mapping ι : S3 →Sym(4) assigning to each permutation of the
symbols A,B,C the isometry that performs that permutation of the vertices
A,B,C of the triangle.

The proof of the fact that these mappings are indeed homomorphisms,
i.e., relation (1.3) holds, is a straightforward verification left to the reader.

A homomorphism α of transformation groups is said to be a monomor-
phism if the mapping α is injective (i.e., takes different elements to different
ones). Examples of monomorphisms are the homomorphisms µ and ν above.
A homomorphism α of transformation groups is said to be an epimorphism
if α is surjective (i.e., is an onto map). An example is the mapping π above.
A homomorphism α of transformation groups is said to be an isomorphism



12

if it is both a monomorphism and an epimorphism, i.e., if the mapping α is
bijective.

Two transformation groups G and H acting on two sets X and Y (the case
X = Y is not forbidden) are called isomorphic if there exists an isomorphism
φ : G → H. If two isomorphic groups are finite, then they necessarily
have the same number of elements (but the number of points in the sets
on which they act can differ, as for example in the case of the isomorphic
groups Sym(4) and S3). Note in this context that Sym(�) and S4 are not
isomorphic, because the first of these groups consists of 8 elements, while the
second has 4! = 24.

1.3.6. Order. The order of a transformation group G is, by definition, the
number of its elements; we denote it by |G|. Thus |Sym(4)| = 6, |Sym(�)| =
8, and |Sym(©)| =∞.

The order of an element g of a transformation group G is, by definition,
the least positive integer k such that the element g ∗ g ∗ · · · ∗ g (k factors)
is the identity; this integer is denoted by ord(g); if there is no such integer,
then g is said to be of infinite order. For example, the rotation by 30◦ in
Sym(©) has order 12, while the rotation by

√
2π is of infinite order. (The

last fact follows from the irrationality of
√

2)

1.3.6. Subgroups. Many important classes of objects have naturally de-
fined “subobjects” (e.g. spaces and subspaces, manifolds and submanifolds,
algebras and subalgebras). Transformation groups are no exception: if G is
a transformation group and H is a subset of G, then H is called a subgroup
of G if H itself is a group with respect to the composition operation ∗, i.e.,
if it satisfies the two conditions

(i) H is closed under composition, i.e., g, g′ ∈ H =⇒ g ∗ g′ ∈ H;

(ii) H is closed under taking inverses, i.e., g ∈ G =⇒ g−1 ∈ G.

According to this definition, any transformation group G has at least
two subgroups: G itself and its one-element subgroup, i.e., the group {id}
consisting of the identity element. We will call these two subgroups trivial,
and all the others, nontrivial.

For example, the subset of all rotations of the group Sym(�) is a (non-
trivial) subgroup of Sym(�) (of order 4), the set consisting of the identity
element and a reflection sα is a subgroup of order 2 in Sym(©), while the
set of all rotations of Sym(©) is a subgroup of infinite order.

If g is an element of order k in a transformation group G, then the set
of k elements {g, g ∗ g, . . . , g ∗ g ∗ · · · ∗ g = id} is a subgroup of G of order
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k; it is called the cyclic subgroup of G generated by g. This terminology
is also used when g is an element of infinite order, but then the subgroup
{id, g, g ∗ g, . . . , g ∗ g ∗ · · · ∗ g, . . . } is also of infinite order.

1.4. The category of geometries

In this section, we present the main definition of this course (that of a
geometry) and define some related basic concepts.

1.4.1. Geometries in the sense of Klein. A pair (X : G), where X is a
set and G is a transformation group acting on X will be called a geometry in
the sense of Klein. The five examples in Sec.1.2 define the geometry of the
equilateral triangle, the geometry of the square, the geometry of the cube,
the geometry of Riemann’s elliptic plane. Another example is the set Bij(X)
of all bijections of any set X.

1.4.2. The Erlangen program. The idea that geometries are sets of
objects with transformation groups acting on them was first stated by the
German mathematician Felix Klein in 1872 in a famous lecture at Erlangen.
In that lecture (for an English translation, see [10]), he enunciated his views
on geometries in the framework of what became known as the “Erlangener
programme”.

There is no doubt that all the geometries known in the times of Klein
satisfy the property that he gave in his lecture, and so do all the geometries
that were developed since then. However, this property can hardly be said
to characterize geometries: it is much too broad. Thus, in the sense of the
formal definition from the previous subsection, the permutation group is a
geometry, and so is any topological space, any abstract group, even any set.

Nevertheless, we will stick to the notion of geometry given in 1.4.1 for
want of a more precise formal definition. Such a definition, if it existed,
would require supplying (X : G) with additional structures (besides the
action of G on X), but it is unclear at this time what these structures ought
to be. If one looks at such branches of mathematics as global differential
geometry, geometric topology, and differential topology, there appears to be
no consensus among the experts about where geometry ends and topology
begins in those fields.

The definition in 1.4.1 may be too broad, but it has the advantage of
being simple and leading to the definition of a very natural category.

1.4.3. Morphisms. According to the general philosophy underlying the
category language, a morphism from one geometry to another should be de-
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fined as a mapping of the set of points of one geometry to the set of points
of the other that respects the actions of the corresponding transformation
groups. More precisely, given two geometries (G : X) and (H : Y ), a mor-
phism (or an equivariant map) is any pair (α, f) consisting of a homomor-
phism of transformation groups α : G→ H and a mapping of sets f : X → Y
such that

f(xg) = (f(x))(α(g)) (1.4)

for all x ∈ X and all g ∈ G. This definition is typical of the category
approach in mathematics: at first glance, the boxed formula makes no sense
at all (no wonder category theory is called abstract nonsense), but actually
the definition is perfectly natural.

To see this, let us take any point x ∈ X and let an arbitrary transfor-
mation g ∈ G act on x, taking it to the point xg ∈ X. Under the map
f : X → Y , the point x is taken to the point f(x) ∈ Y and the point xg
is taken to the point f(xg) ∈ Y . How are these two points related? What
transformation (if any) takes f(x) to f(xg)? Clearly, if the pair of maps
(f, α) respects the action of the transformation groups in X and Y , it must
be none other than α(g), and this is precisely what the boxed formula says.

To check that the reader has really understood this definition, we suggest
that she/he prove that α(1)=1 for any morphism (f, α).

1.4.4. Isomorphic geometries. In any mathematical theory, isomorphic
objects are those which are equivalent, i.e., are not distinguished in the the-
ory. Thus isomorphic linear spaces are not distinguished in linear algebra,
sets of the same cardinality (i.e., sets for which there exists a bijective map)
are equivalent in set theory, isomorphic fields are not distinguished in abstract
algebra, congruent triangles are the same in Euclidean plane geometry, and
so on. What geometries should be considered equivalent? We hope that the
following definition will seem natural to the reader.

Two geometries (X : G) and (Y : H) are called isomorphic, if there exist
a bijection f : X → Y and an isomorphism α : G→ H such that

f(xg) = (f(x))(α(g)) for all x ∈ X and all g ∈ G.

In the definition, the displayed formula is a repetition of relation (1.4), so
it expresses the requirement that an isomorphism be a morphism (must sat-
isfy the equivariance condition, i.e., respect the action of the transformation
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groups), the conditions on α and f say that they are equivalences, so what
this definition is saying is that (X : G) and (Y : H) are the same.

At this stage we have no meaningful examples of isomorphic geometries.
They will abound in what follows. For instance, we will see (in Chapter 10)
that the Poincaré half-plane model is isomorphic to the Cayley–Klein disk
model.

1.4.5. Subgeometries. What are subobjects in the category of geometries?
The reader who is acquiring a feel for the category language should have no
difficulty in coming up with the following definition. A geometry (G : X) is
said to be a subgeometry of the geometry (H : Y ) if X is a subset of Y and
G is a subgroup of H.

A closely related definition is the following. An embedding (or injective
morphism) of the geometry (X : G) to the geometry (Y : H) is a morphism
(f, α) such that α : G→ H is a monomorphism and f : X → Y is injective.

Examples of subgeometries and embeddings of geometries can easily be
deduced from the examples of subgroups of transformation groups in Sub-
section 1.3.4.

1.5. Some philosophical remarks

The examples in Section 1.2 (square, cube, circle) were taken from ele-
mentary school geometry. This was done to motivate the choice of the action
of the corresponding transformation group. But now, in the example of the
cube, let us forget school geometry: instead of the cube I3 with its ver-
tices, edges, faces, angles, interior points and other structure, consider the
abstract set of points {A,B,C,D,A′, B′, C ′, D′} and define the “isometries”
of the “cube” as a set of 48 bijections; for example, the “rotation by 270◦”
about the vertical axis is the bijection

A 7→ B, B 7→ C, C 7→ D, D 7→ A, A′ 7→ B′, B′ 7→ C ′, D′ 7→ A′,

and the 47 other “isometries” are defined similarly. Then (still forgetting
school geometry), we can define vertices, edges (AB is an edge, but AC ′ is
not), faces, prove that all edges are congruent, all faces are congruent, the
“cube” can “rotate” about each vertex, etc.). The result is the intrinsic
geometry of the set of vertices of the cube.

This geometry is not the same as the geometry of the cube, (I3, Sym(I3)),
described in Subsection 1.2.3. Of course the group G acting in these two
geometries is the same group of order 48, but it acts on two different sets:



16

the (infinite) set of points of the cube I3 and the (finite) set of its 8 vertices
A,B,C,D,A′, B′, C ′, D′. Thus the algebra of the two situations is the same,
but the geometry is different. The geometry of the solid cube I3 is of course
much richer than the geometry of the vertex set of the cube. For example,
we can define line segments inside the cube, establish their congruence, etc.

Note also that the geometric properties of the cube I3 regarded as a
subset of Euclidean space R3 are richer than its properties coming from its
own geometry (I3 : Sym(I3)), e.g. segments of the same length inside the
cube, which are always congruent in the geometry of R3, don’t have to be
congruent in the geometry of the cube!

Another example: the set of three points {A,B,C} with two transforma-
tions, namely the identity and the “reflection”

A 7→ A, B 7→ C, C 7→ B

is of course a geometry in the sense of Klein. What should it be called? An
appropriate title, as the reader will no doubt agree, is “the intrinsic geometry
of the vertex set of the isosceles triangle”.

1.6. Problems

1.1. List all the elements (indicating their orders) of the symmetry group
(i.e., isometry group) of the equilateral triangle. List all its subgroups. How
many elements are there in the group of motions (i.e., orientation-preserving
isometries) of the equilateral triangle.

1.2. Answer the same questions as in Problem 1.1 for
(a) the regular n-gon (i.e., the regular polygon of n sides); consider the

cases of odd and even n separately;
(b) the regular tetrahedron;
(c) the cube;
(e)* the dodecahedron;
(f)* the icosahedron;
(g) the regular pyramid with four lateral faces.

1.3. Embed the geometry of the motion group of the square into the geom-
etry of the motion group of the cube, and the geometry of the circle into the
geometry of the sphere.

1.4. For what n and m can the geometry of the regular n-gon be embedded
in the geometry of the regular m-gon?
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1.5. Let G be the symmetry group of the regular tetrahedron. Find all its
subgroups of order 2 and describe their action geometrically.

1.6. Let G+ be the group of motions of the cube. Indicate four subsets of
the cube on which G+ acts by all possible permutations.

1.7. Let G be the symmetry group of the dodecahedron. Indicate subsets of
the dodecahedron on which G acts by all possible permutations.

1.8. Find a minimal system of generators for the symmetry group of
(a) the regular tetrahedron;
(b) the cube.

1.9. Describe fundamental domains of the symmetry group of
(a) the cube;
(b) the icosahedron;
(c) the regular tetrahedron.

1.10. Describe the Möbius band as a subset of RP 2.

1.11. Show that the composition of two reflections of the sphere in planes
passing through its center is a rotation. Determine the axis of rotation and,
if the angle between the planes is given, the angle of rotation.

1.12. Given two rotations of the sphere, describe their composition.
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Chapter 2

ABSTRACT GROUPS AND GROUP PRESENTATIONS

In order to study geometries more complicated than the toy models with
which we played in the previous chapter, we need to know much more about
group theory. Accordingly, in this chapter we present the relevant facts of
this theory (they will constantly be used in what follows).

The theory of transformation groups began in the work of several great
mathematicians: Lagrange, Abel, Galois, Sophus Lie, Felix Klein, Élie Car-
tan, Herman Weyl. At the beginning of the 20th century, algebraists decided
to generalize this theory to the formal theory of abstract groups. In this chap-
ter, we will study this formal theory and learn that it is not a generalization
at all: Cayley’s Theorem (which concludes this chapter) says that all abstract
groups are actually transformation groups. We will also learn that two im-
portant classes of groups (free groups and permutation groups) have certain
universality properties. Finally, we will find out how to present groups by
means of generators and relations; this allows to replace computations with
groups by games with words.

2.1. Abstract groups

2.1.1. Groups: definition and manipulation. By definition, an (abstract)
group is a set G of arbitrary elements supplied with a binary operation ∗
(usually called multiplication) if it obeys the following rules:

• (neutral element axiom) there exists a unique element e ∈ G such that
g ∗ e = e ∗ g = g for any g ∈ G;

• (inverse element axiom) for any g ∈ G there exists a unique element
g−1 ∈ G, called inverse to g, such that g ∗ g−1 = g−1 ∗ g = e;

• (associativity axiom) (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g, h, k ∈ G.

A group (G, ∗) is called commutative or Abelian if g ∗ h = h ∗ g for all
g, h ∈ G (in that case the operation is usually called a sum and the inverse
element is usually denoted by −g instead of g−1).

Note that the elements of an abstract group can be objects of any nature,
they are not necessarily bijections of something and the operation ∗ is not
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necessarily composition, while the notation g−1 for inverse elements is purely
formal, it does not mean that g−1 is the inverse of a bijection.

The three axioms for groups listed above are much stronger than neces-
sary. For example, the uniqueness condition in the inverse element axiom can
be omitted without changing the class of objects defined by these axioms.
The definition can be weakened further, but this is an not important fact
from the point of view of geometry, so we do not dwell on it further.

The group axioms have some obvious consequences that are useful when
performing calculations with elements of groups. In these calculations and
further on, we omit the group operation symbol, i.e., we write gh instead of
g ∗ h.

The first immediate consequence of the group axioms are the left and
right cancellation rules, which say that one can cancel equal terms on the
two sides of an equations, provided they both appear at the left (or at the
right) of the corresponding expression, i.e.,

∀g, h, k ∈ G gh = gk ⇐⇒ h = k, hg = kg ⇐⇒ h = k.

The implications in these formulas are two-sided; reading them from right to
left, we can say that one can multiply both sides of an equation by the same
element from the same side. The phrase in italics is of course important,
because for non-Abelian groups the cancellation of equal terms on different
side of an equation can result in a false statement.

Another simple but important consequence of the axioms is the rule for
solving linear equations, i.e.,

∀g, h, x ∈ G gx = h⇐⇒ x = g−1h, xg = h⇐⇒ x = hg−1,

which are proved by multiplying both sides by the element g−1 (it exists by
the inverse element axiom) from the left and the right, respectively, using
associativity and the neutral element axiom.

These two rules are constantly used when performing manipulations with
equations in groups, as the reader will see in solving some of the exercises at
the end of this chapter.

2.1.2. Examples of groups. It is easy to see that any transformation
group is a group. Indeed, the three axioms of abstract groups listed above,
although they do not appear explicitly in the definition of transformation
groups, hold automatically for the latter, because their elements are not
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arbitrary objects, they are bijections, the multiplication operation is not
arbitrary (it is composition): for them associativity and the neutral element
axiom hold automatically.

Here are some other important examples of groups.

(i) The standard numerical groups: the integers under addition (Z,+),
as well as the rational, real, and complex numbers under addition (Q,+),
(R,+), and (C,+); the nonzero rational, real, and complex numbers under
multiplication (Q \ {0},×), (R \ {0},×), and (C \ {0},×). Note that the
nonzero integers under multiplication are not a group (no inverse elements!),
neither are the natural numbers N under addition (for the same reason).
Another nice numerical group is formed by the unimodular complex numbers
under multiplication S1 := {z ∈ C : |z| = 1}.

(ii) The group of residues modulo m, (Zm,⊕) (also known as the
m-element cyclic group); its elements are the m infinite sets of integers that
have the same remainder under division by the natural number m; we denote
these sets by 0, 1, . . .m− 1; their sum ⊕ is defined by

i⊕ j := (i+ j)modm,

where (·)modm stands for the remainder under division by m. The sum
operation ⊕ is well-defined, i.e., does not depend on the choice of the repre-
sentatives i and j in the classes i and j. Indeed, if we take i+ rm instead of
i and j + sm instead of j, then

(i+ rm) + (j + sm) = (i+ j + (r + s)m) = (i+ j).

(iii) The group of permutations of n objects Sn: its elements are bijections of

a set of n elements that we denote by natural numbers ({1, 2, . . . n}); we will
write bijections s ∈ Sn in the form

s = [i1, i2, . . . , in], where i1 = s(1), i2 = s(2), . . . in = s(n);

multiplication in Sn is the composition of bijections. This group is extremely
important not only in geometry, but also in linear algebra, combinatorics,
representation theory, mathematical physics, etc. We will come back to per-
mutation groups later in this chapter.

(iv) The free group Fn = F(a1, . . . , an) on n generators; its elements are
equivalence classes of words and the group operation is concatenation; a
detailed definition of Fn appears in Subsection 2.6.2 below.
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(v) The group GL(n) of nondegenerate linear operators on Rn; its ele-
ments are n by n matrices with nonzero determinant and the group oper-
ation is matrix multiplication (or, which is the same thing, composition of
operators).

(vi) The groups of orthogonal and special orthogonal operators on Rn,
standardly denoted by O(n) and SO(n). We assume that the reader is famil-
iar with the groups GL(n), O(n), and SO(n) at least for n = 2 and n = 3; if
this is not the case, he/she is referred to Appendix I.

2.1.3. Order of a group and of its elements, generators. The notions of
order (of elements of a group and of the group itself) and of generator for
abstract groups are defined exactly as for transformation groups (see 1.3).
In this book, |G| denotes the order of the group G (i.e., the number of its
elements), ord(g) denotes the order of the element g ∈ G, i.e. the least
natural number k such that gk = e. For example: |Z5| = 5; |Sym(©)| =∞;
for 3 ∈ Z15, we have ord(3) = 5; for any nonzero real number x in the additive
group R, we have ord(x) =∞.

A family of generators of a group G is a (finite or infinite) set of its
elements g1, g2, . . . in terms of which any element g of G can be expressed,
i.e., written in the form g = gε11 . . . gεkk , where the εi’s equal ±1 and g+1

i

stands for gi. For example, any nonzero element of Zp, where p is prime,
constitutes a (one-element) family of generators for Zp, while Sym(©) does
not have a finite family of generators. If g is an element of order m of a group
G, then the set {g, g2, . . . gm−1, gm = e} is also a group (it is a “subgroup”
of G, see the definition in 2.3.1), and its order is m. This justifies the use of
the same term “order” for groups and their elements, i.e., for notions that
seem very different at first glance.

2.2. Morphisms of Groups

In accord with the traditions of the category language, as soon as we have
defined an interesting class of objects, in this case groups, we should define
their morphisms.

2.2.1. Definitions. Suppose (G, ∗) and (H, ?) are groups; a mapping
φ : G→ H is called a homomorphism (or a morphism of groups) if it respects
the operations, i.e., ϕ(g1 ∗ g2) = ϕ(g1) ? φ(g2)). Thus the inclusion Z → R,
n 7→ n, is a morphism, while the inclusion (Q \ {0},×)→ (Q,+) is not (the
operations are not respected, e.g. 2× 3 6= 2 + 3).
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By definition, a homomorphism ϕ is a monomorphism (respectively, an
epimorphism or an isomorphism) if the mapping ϕ is injective (resp., sur-
jective or bijective). From the point of view of abstract algebra, isomorphic
groups are identical.

2.2.2. Examples. The group Sym(4) of isometries of the equilateral
triangle is isomorphic to the permutation group S3, the group Sym(©) is
isomorphic to SO(2); there are obvious monomorphisms of the rotation group
Rot(�) into SO(2) and of Z3 into Z15; there is a no less obvious epimorphism
of Z onto Z17.

2.3. Subgroups

Worthwhile mathematical objects should not only be related by mor-
phisms, they should have naturally defined subobjects.

2.3.1. Definitions and examples. A subgroup H of a group G is a subset
of G which satisfies the group axioms. Note that in order to check that
H is a subgroup of G, it is not necessary to verify all the group axioms:
it suffices to check that H is closed under the group operation and under
taking inverses. Any group G has at least two subgroups: the one-element
subgroup consisting of the neutral element e ∈ G and the group G itself.
These two subgroups are sometimes called trivial, and of course in the study
of the structure of groups we are interested in nontrivial subgroups.

Examples: Rot(©) is a subgroup of Sym(©), the set {[1234], [2134]} is a
subgroup of Sn, the set {0, 5, 10} is a subgroup of Z15, while {0, 5, 11} is not.

2.3.2. Partition of a group into cosets. If H is a subgroup of G, then the
(left) coset gH ⊂ G, for some g ∈ G, is the set of all elements of the form
gh for h ∈ H. Right cosets Hg are defined similarly. Right cosets as well as
left cosets form a partition of the set of elements of a group, i.e., two cosets
either do not intersect or coincide.

To prove this, it suffices to show that if two cosets have a common element
g ∈ g1H ∩ g2H, then any element of g1H belongs to g2H and vice versa. So
suppose that g̃ ∈ g1H (which means that g̃ = g1h̃ for some h̃ ∈ H); we must
show that g̃ ∈ g2H, i.e., we must find an hx ∈ H such that g̃ = g2hx.

Since g ∈ g1H ∩ g2H, there exist elements h1, h2 ∈ H for which we have
g1h1 = g = g2h2, which implies that g1 = g2h2(h1)

−1. Now we can write

g̃ = g1h̃ = g2h2(h1)
−1
h̃ = g2

(
h2(h1)

−1
h̃
)

= g2hx,
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where we have defined hx as h2(h1)
−1
h̃, and since hx belongs to H (as the

product of elements of H), we have proved that g̃ ∈ g1H =⇒ g̃ ∈ g2H.
The reverse implication is proved by a symmetric argument (interchange the
indices 1 and 2).

Thus we have obtained the partition of G into left cosets. The partition
into right cosets is obtained similarly.

Note also that all cosets have the same number of elements (finite or
infinite), because there is an obvious bijection between any coset and the
subgroup H. This bijection for left cosets is given by gH 3 gh 7→ h ∈ H.

2.4. The Lagrange Theorem

The corollary to the elementary theorem proved below is the first struc-
ture theorem about abstract groups. It was proved (for transformation
groups) almost two centuries ago by Lagrange.

Theorem 2.4.1. If H is a subgroup of a finite group G, then the order
of H divides the order of G.

Proof. The cosets of H in G form a partition of the set of elements of G
(see 2.3.2) and all have the same number of elements as H. �

Corollary 2.4.2. Any group G of prime order p is isomorphic to Zp.
Proof. Let g ∈ G, g 6= e. Let m be the smallest positive integer such that

gm = e. Then it is easy to see hat H := {e, g, g2, . . . , gm−1} is a subgroup of
G. By Theorem 1, m divides p. This is impossible unless m = p, but then
H = G is obviously isomorphic to Zp. �

2.5. Quotient groups

Nice mathematical objects often have naturally defined “quotient objects”
obtained by “dividing out” the given object by some subobject (examples
that may be familiar to the reader are quotient spaces in linear algebra).
The construction of “quotient groups” along those lines works only when the
subgroup used is in a sense “nice”, and we begin by defining such subgroups.

2.5.1. Normal subgroups. A subgroup H ⊂ G is normal if gHg−1 = H
for any g ∈ G, i.e., for any h ∈ H and any g ∈ G we have g−1hg ∈ H.

An example of a normal subgroup is the set {0, 5, 10} in Z15. More
generally, any subgroup of an Abelian group is (obviously!) normal.

To see an example of a subgroup which is not normal, consider the subset
D := {e = [1, 2, 3, 4], [2, 1, 3, 4]} in the permutation group S4. The set D is
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obviously a subgroup (isomorphic to Z2) of S4, but it is not normal, because

[4, 1, 2, 3] [2, 1, 3, 4] [2, 3, 4, 1] = [1, 3, 2, 4] /∈ D.

2.5.2. Construction of quotient groups. If H is a normal subgroup of G,
there is a well-defined operation in the family of cosets: the product of two
cosets is the coset containing the product of any two elements of these cosets.
For left cosets this may be written as g1H g2H := g1g2H.

To prove that this is an operation well-defined on cosets, we must show
that if we replace g1 by another element g1 from Hg1 and replace g2 by
another element g2 from Hg2, then g1H g2H = g1H g2H. Without loss
of generality, it suffices to consider the case in which only one of the two
elements is replaced, say g1. Then we have g1 = g1h1 for some h1 ∈ H.
We must prove that g1g2 ∈ g1g2H, i.e., that there exists an hx such that
g1g2 = g1g2hx. Replacing g1 by its expression g1h1 (see above), we can
rewrite the previous equation as

g1h1g2 = g1g2hx.

Solving this (linear) equation for hx, we obtain hx = g−12 h1g2. Recall that H
is normal, therefore the right-hand side of the previous equality is an element
of H. Thus we have found the required element hx ∈ H, thereby proving
that the product of cosets is well defined.

The family of cosets supplied with this product operation is called the
quotient group of G by H and is denoted by G/H. It is easy to show that
G/H satisfies the axioms for groups.

Example: in the additive group of integers (Z,+), elements of the form
5k, k ∈ Z, constitute a normal subgroup (of infinite order), denoted 5Z; the
corresponding quotient group Z/5Z is isomorphic to the group Z5.

2.6. Free groups and permutations

In this section, we study two classes of groups: the free groups (which
have the “least structure”) and the permutation groups (which have the
“most structure”).

2.6.1. Free groups. Let {a1, . . . , ak} be a set of symbols. Then the set of
formal symbols (called letters)

A := {e, a1, . . . , ak, a−11 , . . . , a−1k }
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will be our alphabet. A string of letters from our alphabet will be called a
word. Two words w1 and w2 are called equivalent, if one can be obtained
from the other by using the following trivial relations aia

−1
i = a−1i ai = e for

any i and ae = ea = a for any a ∈ A; for example

a1a
−1
3 ∼ a1a

−1
3 e ∼ a1a

−1
3 a2a

−1
2 ∼ a1a

−1
3 a2ea

−1
2 .

The product of two words is defined as their concatenation (i.e., the result of
writing then one after the other). The free group with generators a1, . . . , ak
is defined as the set of equivalence classes of words supplied with the product
(concatenation) operation and is denoted by Fk = F[a1, . . . , ak]. The fact that
concatenation is well-defined on the equivalence classes (i.e., the concatena-
tion of equivalent elements produces an element from the same equivalence
class) is obtained by an straightforward verification that we omit.

For example, F[a] is isomorphic to (Z,+), while F[a1, a2] is not commu-
tative.

2.6.2. Permutation groups. The permutation group Sn on n objects was
defined in 2.1.2 as the family of all bijections of the set {1, 2, . . . , n} supplied
with the operation of composition; Sn consists of n! = 1 · 2 · · · · · n elements
denoted by [i1, . . . , in], where ik := β(k) and β is the bijection defining the
given permutation.

Geometrically, the permutation group S3 can be interpreted as the isom-
etry group Sym(4) of the equilateral triangle, while S4 is isomorphic to
the isometry group of the regular tetrahedron (as we shall see in the next
chapter).

2.6.3. Universality theorem. It turns out that permutation groups and
free groups have important “universality” properties.

Theorem 2.6.3. (i) For any finite group G there exists a monomorphism
of G into Sn for some n.

(ii) For any group G with a finite number n of generators there exists an
epimorphism of the free group Fn onto G.

Proof. (i) Let |G| = n and g0 ∈ G; then the mapping

βg0 : G→ Sn given by G 3 g 7→ gg0 ∈ G

is a monomorphism. Indeed, it is obviously a homomorphism (indeed, we
have βg0βg1 = βg0g1 , because both maps are given by the rule g 7→ gg0g1).
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The homomorphism βg0 is injective, because g0g = g0g
′ implies g = g′ by the

cancellation rule.

(ii) Let g1, . . . , gn be a set of generators of G. Then the mapping

α : F[a1, . . . , an]→ G given by α(ai) = gi, i = 1, . . . , n

is obviously a homomorphism. It is also surjective, because to each element
gε1i1 g

ε2
i2
. . . gεmim ∈ G, where the εi’s are equal to ±1, the mapping α takes the

element aε1i1 a
ε2
i2
. . . aεmim ∈ F[a1, . . . , an]. �

2.7. Group presentations

A presentation of a group is a way of defining the group by means of equa-
tions (called defining relations) in the generators of the group. This reduces
concrete calculations in the group to the formal editing of words according
to simple rules. The formal definition of the notion of group presentation is
easy to state but perhaps difficult to grasp, so we begin with some examples.

2.7.1. Examples of group presentations. (i) Consider all words in the
three-letter alphabet {e, a, a−1}, i.e., expressions such as eaa−1aae, a−1aeaaa,
etc. Let us say that two words are equivalent if one can transform one
word into another by means of the trivial relations aa−1 = e = a−1a and
ae = ea = a and the relation a5 = 1 (as usual, a5 stands for aaaaa). This
is obviously an equivalence relation in the technical sense, i.e. it is reflexive,
symmetric, and transitive, so that the set of all words splits into equivalence
classes. Define the product of two equivalence classes as the class containing
the concatenation of any two elements of the given classes. It is easy to
see that this product is well defined, i.e., does not depend on the choice of
representatives in the classes. Obviously, there will be 5 equivalence classes
(determined by the elements a, a2, a3, a4, a5 = e) and they form a group
under the product operation defined above. The group obtained is clearly
isomorphic to Z5.

(ii) Now consider words in the five-letter alphabet {e, s±1 , s±12 }. Let us
say that two words are equivalent if one can be transformed into the other
by means of the trivial relations (which we won’t write out again) and the
relations s21 = s22 = e and s1s2s1 = s2s1s2 (the latter is known as the Artin
relation). Defining the product of the corresponding equivalence classes as
in the previous example, we obtain a group which is isomorphic to S3 (see
Exercise 2.9 below).
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2.7.3. Formal definition. The definition of a group presentation is the
following. An expression of the form

G = 〈g1, . . . , gn : R1, . . . , Rk〉,

where R1, . . . Rk are words in the alphabet A = {g1, . . . , gng−11 , . . . , g−1n }, is
called a presentation of the group G; the words Rj are called relators; the
group G is defined by its presentation as the quotient group

F[g1, . . . , gn]/{R1, . . . , Rk},

where {R1, . . . , Rk} is the minimal (by inclusion) normal subgroup of the free
group F[g1, . . . , gn] containing the elements (relators) R1, . . . , Rk.

This formal definition may be difficult to understand. But the notion of
group presentation is simple. The elements of the group G that it defines
are words in the alphabet A defined up to the trivial relations (see 2.6.1
above) and up to all the defining relations R1 = e, . . . , Rk = e; the product
is concatenation (and is well defined).

Here are some examples:

(i) Zm = 〈a : am〉 is the m-element cyclic group;

(ii) F[g1, . . . , gn] = 〈g1, . . . , gn : 〉 is the free group on n generators
(nothing appears after the colon in the angle brackets because the free group
has no defining relations);

(iii) the permutation group on four elements can be presented as S4 =
〈s1, s2, s3 : s21, s

2
2, s

2
3, s1s2s

−1
1 s−12 , s1s2s1s

−1
2 s−11 s−12 , s2s3s2s

−1
3 s−12 s−13 〉.

More details and examples appear in the problem section of this chapter.

2.8. Cayley’s theorem

The following theorem (due to the British mathematician Arthur Cayley)
shows that the notion of abstract group is not a real generalization: all groups
are in fact transformation groups!

Theorem 2.8.1. Any group G is a transformation group acting on the
set G by right multiplication: g 7→ gg0 for any g0 ∈ G.

Proof. First, must show that the assignment g 7→ gg0 is a bijection for
any g0 ∈ G. But this is obvious: it is injective (by the cancellation rule) and
surjective (to any element h ∈ G the element g0 assigns the element hg−10 ).
Further we must verify the transformation group axioms (see 1.3.1). This
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verification is also obvious: the transformations defined by elements of G are
closed under composition (because so are elements of G) and under taking
inverse elements (the transformation inverse to the one given by g0 is the one
given by g−10 ). �

Corollary 2.8.2. Any group is a geometry in the sense of Klein (i.e., in
the sense of formal definition given in 1.4.1).

This corollary shows (as we mentioned previously) that the definition of
geometry given in 1.4.1 is of course too general; additional restrictions on the
set of elements and the transformation group are needed to obtain an object
about which most mathematicians will agree that it is a bona fide geometry.
However, there seems to be no formal agreement on this subject, so that the
“additional restrictions” to be imposed are a matter of opinion, and we will
not specify any (at least on the formal level) in this course.

2.7. Problems

2.1. Describe all the finite groups of order 6 or less and supply each with
a geometric interpretation.

2.2. Describe all the (nontrivial) normal subgroups and the correspond-
ing quotient groups of

(a) the isometry group of the equilateral triangle;
(b) the isometry group of the regular tetrahedron.

2.3. Let G be the motion group of the plane, P its subgroup of parallel
translations, and R its subgroup of rotations with fixed center O. Prove that
the subgroup P is normal and the quotient group G/P is isomorphic to R.

2.4. Prove that if the order of a subgroup is equal to half the order of
the group (i.e., the subgroup is of index 2), then the subgroup is normal.

2.5. Find all the orbits and stabilizers of all the points of the group
G ⊂ S10 generated by the permutation [5, 8, 3, 9, 4, 10, 6, 2, 1, 7] ∈ S10 acting
on the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

2.6. Find the maximal order of elements in the group (a) S5; (b) S13.

2.7. Find the least natural number n such that the group S13 has no
elements of order n.

2.8. Prove that the permutation group Sn is generated by the transposi-
tion (1 2) := [2, 1, 3, 4, . . . , n] and the cycle (1 2 . . . n) := [2, 3, . . . , n, 1].
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2.9. Present the symmetry group of the equilateral triangle by generators
and relations in two different ways.

2.10. How many homomorphisms of the free group in two generators into
the permutation group S3 are there? How many of them are epimorphisms?

2.11. Prove that the group presented as 〈a, b | a2 = bn = a−1bab = 1〉 is
isomorphic to the dihedral group Dn (defined in Chapter 3).

2.12. Show that if the elements a and b of a group satisfy the relations
a5 = b3 = 1 and b−1ab = a2, then a = 1.
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Chapter 3

FINITE SUBGROUPS OF SO(3)
AND THE PLATONIC BODIES

This chapter is devoted to the classification of regular polyhedra (the five
“Platonic bodies”) pictured below:

The proof of the classification theorem given here is based on group the-
ory, more precisely on the study of finite subgroups of the isometry group of
the two-dimensional sphere.

3.1. The Platonic bodies in art, philosophy, and science

The perfection of the shape of regular polyhedra attracted the great artist
and thinker Leonardo da Vinci, who pictured them in various media. Figure
3.1 reproduces his engravings of two of them.
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Figure 3.1. Da Vinci engravings: the icosahedron and dodecahedron

Some philosophers and scientists felt an almost mystical attraction to
these amazingly symmetric shapes. Thus the great astronomer Kepler be-
lieved that the distances from the planets to the Sun could be calculated
from a system of nested inscribed Platonic bodies (see his weird engraving
reproduced in Fig.3.2).

Figure 3.2. Kepler’s theory of planetary orbits

The engraving shows a cube inscribed in a sphere, then a smaller sphere
inscribed in the cube, a tetrahedron inscribed in that second sphere, a third
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sphere inscribed in the tetrahedron, followed by successively inscribed sphere,
dodecahedron, sphere, octahedron, sphere, icosahedron. Kepler claimed that
the distances from the five planets to the Sun were proportional to the dis-
tances from the vertices of the five nested polyhedra to their common center
of symmetry. He regarded this “discovery” as his main scientific achievement,
far more important than the three fundamental astronomical laws that bear
his name. Fortunately for his self-esteem, he did not live to see the day when
more exact measurements of the distances between the Sun and the planets
showed that Kepler’s theory was erroneous.

The five regular polyhedra were known to the ancient Greeks, in partic-
ular to the philosopher Plato, who expressed his admiration for their unique
perfection so beautifully that today they are often called “Platonic bodies”.
Of course Plato cannot be credited with their discovery (they were known
before his time), but who the actual discoverers were is not clear. It is also
unclear whether the ancient Greeks had a proof of the fact that there are
no other regular polyhedra, or indeed felt that such a proof was necessary.
We can only conjecture that Archimedes had such a proof, or that it was
possibly known to the Pythagorean school.

We do know that Pythagoras was interested in the regular polyhedra in
connection with his theory of the “singing spheres”. In the 20th century, his
theory was revived in the work of the German physicist Heisenberg, but the
relevant ideas lie outside the scope of a mathematical textbook.

3.2. Finite subgroups of SO(3)

As we mentioned above, the main goal of this chapter is to prove that
the only regular three-dimensional polyhedra are the five Platonic bodies.
The proof that we give here is essentially group theoretic (we reduce the
classification problem of regular polyhedra to classifying finite subgroups of
the special orthogonal group SO(3), or, which is the same thing, the group of
motions of the sphere S2). This proof is quite natural and more geometric, in
a deeper sense, than the tedious and eclectic space geometry proof anterior
to the appearance of the notion of transformation group in mathematics.

Let us return to the geometry (briefly studied in Chapter 1, see 1.1.6) of
the two-dimensional sphere

X = S2 := {(x, y, z) ∈ R2 |x2 + y2 + z2 = 1}
defined by the action of its isometry group Sym (S2). (In linear algebra
courses this group is defined in a different (but equivalent) way, is called the
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orthogonal group, and usually denoted by O(3).) Here we will be dealing with
the subgroup of O(3) = Sym (S2) consisting of rotations, namely the group
Rot(S2) each element of which is a rotation of the sphere about some axis
passing through the origin by some angle φ, 0 ≤ φ < 2π. In linear algebra
courses this group is defined in a different (but equivalent) way, is called the
special orthogonal group and is usually denoted by SO(3).

Our goal is to find the finite subgroups of SO(3). We begin with some
examples of finite subgroups of O(3) and SO(3).

3.2.1. The monohedral group Zn for any n ≥ 2. Its n elements are
rotations about an axis by angles of 2kπ/n, where k = 0, . . . , n− 1.

3.2.2. The dihedral group Dn for any n ≥ 2.

2kπ
5

π

π

π

2kπ
6

Figure 3.3. The dihedral group Dn for n = 6 and n = 5

This 2n-element group is the isometry group of the regular n-gon (lying in
the horizontal plane Oxy and inscribed in the sphere S2 ); Dn consists of n
rotations (by angles of 2kπ/n, k = 0, 1, . . . , n − 1) and n reflections in the
horizontal lines passing through the center of the sphere, the vertices, and
the midpoints of the sides (be careful: these lines are different when n is
even or odd – look at the figure!). Note that the reflections of D(n) in the
horizontal lines are actually rotations by 180◦ in space about these lines.

3.2.3. The isometry group of the regular tetrahedron. It consists of 24
elements, it is denoted by Sym(∆3) and its (12 element) rotation subgroup
is:

Rot(∆3) = Sym+(∆3) ⊂ Sym(∆3);

Sym(∆3) consists of 8 rotations about 4 axes (containing one vertex) by
angles of 2π/3 and 4π/3, of three rotations by π about axes joining the
midpoints of opposite edges and of the identity. It is easy to see that Sym(∆3)
is isomorphic to the permutation group S4. But here we think of this group
geometrically, regarding the tetrahedron as inscribed in the sphere S2 and
the elements of Sym(∆3 as acting on the sphere as well.
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3.2.4. The isometry group Sym(I3) of the cube. It has 48 elements (see
1.2.3); its rotation subgroup consists of 24 elements:

Rot(I3) = Sym+(I3) ⊂ Sym(I3).

If we join the center of each of the 6 faces of the cube by segments to the
four neighboring centers, we obtain the carcass of the octahedron dual to the
cube (see Fig.3.4). The octahedron has 6 vertices and 8 triangular faces; its
isometry group is obviously the same as that of the cube.

3.2.5. The isometry group Sym(Dod) of the dodecahedron. It has 120
elements and possesses a (60 element) rotation subgroup:

Rot(Dod) = Sym+(Dod) ⊂ Sym(Dod).

The dodecahedron is the (regular) polyhedron (inscribed in the sphere S2)
with 12 faces (congruent regular pentagons), 30 edges, and 20 vertices (see
Fig.3.4). The existence of such a polyhedron will be proved at the end of
this chapter. Joining the centers of the faces of the dodecahedron having
a common edge (look at Fig.3.4 again), we get the icosahedron dual to the
dodecahedron; it has 20 faces, 30 edges, and 12 vertices. Its transformation
group is the same as that of the dodecahedron.

Figure 3.4 Dual pairs of regular polyhedra

The following theorem states that SO(3) has no finite subgroups other
than those listed above.

3.2.6. Theorem Any finite nontrivial subgroup of G+ ⊂ Sym+(S2)=SO(3)
is isomorphic to one of the following groups:

(i) Zn, n ≥ 2, (ii) Dn, n ≥ 2, (iii) Rot(∆3), (iv) Sym+(I3), (v) Sym+(Dod).
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Proof. We know that any element of SO(3) (and hence of G+) is a rotation
about a diameter of the sphere S2 and has two fixed points (the ends of the
diameter). Let F be the set of fixed points of the group G+:

F =
{
x ∈ S2 | ∃g ∈ G+ − id, xg = x

}
.

For example, for the group Zn, F consists of two points, while for the rotation
group Rot(∆3) of the tetrahedron it has 14, namely the 4 vertices, the 4
intersection points of the axes of rotations of the faces with the sphere, and
the 6 intersection points of the three axes of rotations passing through the
midpoints of opposite edges of the tetrahedron.

Consider the (finite) geometry (F : G+) and let A be a set containing one
point in each orbit of G+ in F . First we claim that the number of points in
F is

|F | = |A||G+| − 2(|G+| − 1).

The proof of this fact is the object of Exercise 3.3 at the end of the present
chapter. Using the class formula (1.2), we can write

|F | =
∑

x∈A

|G+

v(x)
, where v(x) := |St(x)|

Note that v(x) is the order of the rotation subgroup of G+ generated by the
rotations about the axis containing x and its antipodal point. Replacing |F |
by its value found above and dividing by |G+|, we obtain

2− 2

|G+| =
∑

x∈A

(
1− 1

v(x)

)
, (3.1)

or solving for |G+|,

|G+| =
[
1− 1

2
·
∑

x∈A

(
1− 1

v(x)

)]−1
. (3.2)

The left-hand side of the boxed formula is less than 2, but greater than or
equal to 1; hence so is the sum in the right-hand side, and thus the summation
over A cannot contain 4 summands or more (because v(x) ≥ 2); therefore
there can be only 2 or 3 orbits of the action of G+ on F .

First let us consider the case in which |F | = 2, i.e., when there is only one
rotation axis (with intersection points x1 and x2 with the sphere). In that
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case there are two orbits in F , each consisting of one point, namely {x1} and
{x2}. Is such a situation possible? Of course it is, but only if G+ consists of
rotations about the unique axis x1x2. But then it follows that G+ ∼= Zn for
some n ≥ 2. So the theorem is proved for the case |F | = 2. Note that in this
case v(x1) = v(x2) = n = |G+|.

It is easy to see that if the action of G+ on F produces only two orbits,
then the stabilizers of points from these two orbits have the same number of
elements and we are in the case |F | = 2 considered above. Thus for the rest
of the proof, we can assume that there are three orbits.

Denote by x1, x2, x3 points of these three orbits, so that A = {x1, x2, x3},
and denote by v1, v2, v3 the values of v(x) (the number of elements in the
stabilizers, or which is the same thing, the order of the corresponding rotation
axis) at these points, numbered so that v1 ≤ v2 ≤ v3.

We can assume that |F | > 2 (the case |F | = 2 was considered above),
i.e., there are two rotation axes or more; but then the composition of the two
rotations gives a rotation about a third axis and so G+ ≥ 6. We now claim
that there is an orbit with stabilizer equal to 2.

Indeed, if, in contradiction with our claim, all the vi were greater than
2, the right-hand side of formula (3.1) would be greater than or equal to 2,
which we know is impossible.

Thus it remains to consider the situation in which v1 = 2 and there are
three orbits of the action of G+ on F .

The rest of the proof is a case-by-case analysis of this situation depending
on the possible values of the vi. These values must satisfy relation (3.1),
whose right-hand side is, as we remember, less than 2. Thus we must have
the inequality

3− 1

2
− 1

v2
− 1

v3
< 2. (3.3)

When is this inequality possible? Since v2 and v3 are both integers greater
than or equal to 2, this can happen only in the cases 2–5 indicated in the
following table (in it, the column for the number of elements of G+ was filled
by using formula (3.2)):
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v1 v2 v3 |G+|
case 1 n n - n
case 2 2 2 n 2n
case 3 2 3 3 12
case 4 2 3 4 24
case 5 2 3 5 60

In the rest of the proof, we consider each case separately and distinguish
(among the points of F ) the vertices of a (possibly degenerate) polyhedron
on which G+ acts. We then show that this action is one of those listed in the
claim of the theorem, i.e., the distinguished polyhedron either degenerates
into a regular polygon or is the tetrahedron, or the cube, or the dodecahedron.

Case 1 is the case in which |F | = 2 considered above, and we showed that
it yields the group Zn, n ≥ 2.

Case 2: assume that v2 = 2. Then we have two rotation axes l1, l2 of order
2, i.e., such that the rotation angle is 180◦. Consider the line l3 perpendicular
to these two axes. One of its intersection points with the sphere will be x3.
Let n be the order of the axis l3. It follows from formula (3.2) that the number
of elements of G+ is equal to 2n. We can now identify the three orbits in
F : the n-point orbit containing x1, which lies in the plane perpendicular
to l3 passing through the center of the sphere, the n-point orbit containing
x2, lying in the same plane, and the 2-point orbit consisting of x3 and its
antipodal point. It is now clear that in our case G+ is isomorphic to the
dihedral group Dn.

Case 3: v2 = v3 = 3. Then the number of elements of our group can
be computed from formula (3.2), and is equal to 12. Consider the axis of
rotation l3 passing through x2; it is of order 3. Let x′3 and x′′3 be the two
points to which the rotations about l2 takes the point x3. The rotation about
the axis l1 containing the point x1 is of order 2, hence at least one of the three
points x3, x

′
3, x
′′
3 must be taken to a point (that we denote by x′′′3 ) that does not

coincide with one of those three. Thus we obtain a tetrahedron x3, x
′
3, x
′′
3, x

′′′
3 ,

which, as we will soon see, turns out to be regular. Taking the composition
of the rotations about l3 and the rotation about l1, we get another rotation
of order 3, from which we conclude that another face of the tetrahedron is
an equilateral triangle, and therefore the tetrahedron x3, x

′
3, x
′′
3, x

′′′
3 is regular.

Taking the composition of two order three rotations, we obtain another order
two rotation and, continuing in the same vein, we describe all 12 rotations
of G+ and can conclude that G+ is isomorphic to Rot(∆3).
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Case 4: assume that v2 = 2 and v3 = 4. Here the strategy of proof is
similar to the one in Case 3, except that now we find the 8 vertices of a
cube (rather than those of a tetrahedron) among the points of F . To do
this, we begin with the order 4 rotation, obtaining two squares inscribed in
the sphere, then use the other rotations to show that the two squares are
actually opposite faces of a cube, and finally verify that the 24 elements of
G+ are the symmetries of this cube, so that G+ is isomorphic to Sym+(I3).

Case 5: assume that v2 = 3 and v3 = 5. Here the strategy of proof
is similar to that used in Cases 3 and 4, except that now we construct a
dodecahedron from points of F and obtain an isomorphism between G+ and
Sym+(Dod). We relegate the details to Exercise 3.10.

Thus we see that the five cases correspond to the groups (i)–(v), respec-
tively. The theorem is proved. �

3.2.7. Let us denote by D̃n the subgroup of SO(3) generated by the
elements of Dn and the reflection ρ in the plane passing through the rotation
axis of order n and one of the axes of order 2 in Dn. Obviously the subgroup
D̃n has 4n elements (because the compositions of ρ with different elements
of Dn are all different from each other).

Note also that the subgroup of SO(3) generated by the elements of Zn
(interpreted as the motion group of the regular n-gon lying in the equatorial
plane of the sphere and inscribed in it) and the reflection in a vertical plane
passing through a vertex of the n-gon and the center of the sphere is Dn.

3.2.8. Corollary. Any finite subgroup G of O(3) is either isomorphic
to one of the groups listed in Theorem 3.2.6 or to one of the following groups:

(i) D̃n, (ii) S4, (iii) Sym(I3), (iv) Sym(Dod).

Proof. Let G be a finite subgroup of SO(3) and let G+ be its rotation
subgroup. By Theorem 3.1, G+ must be one of the five groups listed in the
theorem. The whole group G is generated by the elements of G+ and one
reflection in a plane passing through the origin, so it must be one of the five
groups listed in the statement of the corollary. �
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3.3. The five regular polyhedra

A regular polyhedron is defined as a convex polyhedron (inscribed in the
sphere S2) such that

(i) all its faces are congruent regular polygons of k sides for some k > 2;
(ii) the endpoints of all the edges issuing from each vertex lie in one plane

and form a regular l-gon for some l > 2.

Theorem 3.3.1. There are exactly five different regular polyhedra: the
tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahe-
dron.

Proof. This theorem follows from the Corollary to Theorem 3.1. Indeed,
the definition implies that the isometry group of a regular polyhedron is finite
and therefore must be one of the groups listed in Theorem 3.1. The two
“series” (i) and (ii) do not give any (nondegenerate) polyhedra (why?). In
case (iii), we get the tetrahedron (because its symmetry group is isomorphic
to the permutation group S4). In case (iv), we get the cube and its dual, the
octahedron, in case (v), the dodecahedron and its dual, the icosahedron. �

Thus we obtain five geometries with three different group actions (tetra-
hedron, cube ∼ octahedron, dodecahedron ∼ icosahedron). To understand
the group actions in these geometries, it is useful to have a look at their
fundamental domains (Fig.3.5).
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Figure 3.5. Fundamental domains of Platonic bodies

In all five cases, their fundamental domains are pyramids with vertex the
center of the body and base the fundamental domain (a right triangle in all
five cases) of the isometry group of a face. These triangles have acute angles
30◦ (tetrahedron, octahedron, icosahedron), 45◦ (cube), 54◦ (dodecahedron).

3.4. The five Kepler cubes

Kepler observed that the cube can be inscribed in five different ways into
the dodecahedron. Here we will perform the opposite construction: starting
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from the cube, we will construct a dodecahedron circumscribed to the cube.
This will prove the existence of the dodecahedron.

Consider two copies ABCDE and A′B′C ′D′E ′ of the regular pentagon
with diagonals of length 1. Place these pentagons in the plane of the unit
square PQRS so that the diagonals BE and B′E ′ are identified with PS and
QR, respectively, and CD is parallel to C ′D′. By rotating the pentagons in
space about PS and QR, identify the sides CD and C ′D′ above the square
PQRS.

A′
E′=R

B′=Q
D′

C′

A

E=S

B=P

D

C

P

Q

R

S

C=C′

D=D′

Figure 3.6. Constructing the dodecahedron

Now suppose PQRS is the top face of the unit cube PQRSP ′Q′R′S ′.
Place two more pentagons on the face SRR′S ′ of the cube the same way as
before, so that their parallel sides are parallel to SR. Now rotate these two
pentagons until these parallel sides are identified. Then it is not hard to prove
that the upper endpoint of the identified segment will coincide with one of
the endpoints of the common (identified) segment of the first two pentagons.
Perform similar constructions on the other faces of the cube. The polyhedron
thus obtained will be the dodecahedron.

3.5. Regular polytopes in higher dimensions

In dimensions n > 3, there is a classification theorem for regular
n-dimensional polytopes similar to that in three dimensions. Surprisingly,
the number of types of polytopes decreases with the increase of n, changing
from five (in dim=3) and six (dim=4) to three (when dim≥ 5). Thus, instead
of the increased variety of regular bodies that might be expected in high di-
mensions, there are basically only three – the analogs of the tetrahedron, the
cube, and the polytope dual to the cube.

In this section, after presenting the necessary definitions, we state the
corresponding classification theorems without proof.
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3.5.1. Examples and definitions. We begin with a simple example: the
four-dimensional cube. In the Euclidean space R4, consider the 16 points
(±1,±1,±1,±1); their convex hull is by definition the 4-cube. A projection
of the four-dimensional cube on the plane appears in Fig.3.7.

Even simpler (as its name indicates) is the regular n-dimensional simplex
∆n, which is the n-dimensional analog of the tetrahedron, and is defined
inductively: given the (n − 1)-dimensional (regular) simplex ∆n−1 lying in
Rn−1, we construct a perpendicular from its center of gravity into the nth
dimension (i.e., a line parallel to the basis vector (0, . . . , 0, 1) ∈ Rn ⊃ Rn−1)
and take for the n+ 1st vertex of our simplex the point whose distance from
the n vertices of ∆n−1 is equal to the length of the edges of ∆n−1. It is easy
to see that the transformation group of ∆n is the permutation group Σn+1.

Regular n-dimensional polyhedra are defined recursively. The recursion
begins for n = 3 and is that of a Platonic body (see Sect.3.3 above). If
regular (n− 1)-dimensional polyhedra have been defined, we define a regular
n-dimensional polyhedron as a convex polyhedron (inscribed in the sphere
Sn−1 := {(x1, . . . , xn) ∈ Rn|x21 + . . . x2n = 1}) such that

(i) all its faces are congruent regular (n− 1)-dimensional polyhedra;
(ii) the endpoints of all the edges issuing from each vertex lie in one hyper-

plane and form a regular (n− 1)-dimensional polyhedron; all such polyhedra
are congruent (but are not necessarily the same as those from item (i)).

To each regular polytope P , one can assign its symbol, defined (induc-
tively) as the n-tuple of integers (r1, r2, . . . , rn−1) in which r1 is the number
of edges of any one of the 2-dimensional faces Q of P , while (r2, . . . , rn−1) is
the symbol of Q. For example, (4,3,3) is the symbol of the four-dimensional
cube, (5,3) is that of the dodecahedron, (3,3,3,3) that of the five-dimensional
regular simplex.

One can define the dual to any regular polytope in the natural way (sim-
ilarly to the way it is done in dimension 3). For example, the 5-simplex is
dual to itself, while the dual to the 4-cube is the so-called cocube, which has
the symbol (3,3,4).

3.5.2. Theorem. There are (up to homothety) six different regular
polytopes in dimension 4; their symbols are

(3, 3, 3), (4, 3, 3), (3, 3, 4), (3, 4, 3), (5, 3, 3), (3, 3, 5).

The reader who wishes to find a proof of this theorem is referred to Exercise
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Figure 3.7. Regular 4-dimensional polyhedra

3.13, in which hints about the mysterious polytopes with symbols (3,4,3),
(5,3,3), (3,3,5) appear.

3.5.3. Theorem. In dimension n ≥ 5 there are (up to homothety) three
different regular polytopes: the n-simplex, the n-cube, and the n-cocube;
their symbols are

(3, 3, . . . , 3, 3), (4, 3, . . . , 3, 3), (3, 3, . . . , 3, 4).

We omit the proof (see [2]); the reader is also referred to Exercise 3.14; an
important formula used in the (inductive) proof appears as a hint in the
Answers and Hints at the end of the book.

3.6. Problems

3.1. A regular pyramid of six lateral sides is inscribed in the sphere S2.
Find its symmetry (i.e., isometry) group and its group of motions. How does
your answer relate to the theorem on finite subgroups of SO(3)?
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Figure 3.7. Projection of the edges of the 5-dimensional cube

3.2. Answer the same questions as in Problem 3.1 for
(a) the regular prism of six lateral sides;
(b) the regular truncated pyramid of five lateral sides;
(c) the double regular pyramid of six lateral sides (i.e., the union of two

regular pyramids of six lateral sides with common base and vertices at the
poles of the sphere);

3.3. Let G+ be a finite subgroup of SO(3) acting on the sphere S2 and
F the set of all the points fixed by nontrivial elements of G+; prove that F
is invariant with respect to the action of G+ and

|F | = |G+| · |A| − 2(|G+| − 1),

where A ⊂ F is a set containing exactly one point from each orbit of the
action of G+ on the set F .

3.4. Does the motion group of the cube have a subgroup isomorphic to
the motion group of the regular tetrahedron?

3.5. Does the motion group of the dodecahedron have a subgroup iso-
morphic to the motion group of the cube?

3.6. In the motion group of the cube, find all groups isomorphic to Zn
and Dn for various values of n. Does it have any other subgroups?

3.7. Prove the existence of the dodecahedron in detail.

3.8. Given a cube inscribed in the sphere, let the set F consist of all the
vertices of the cube, all the intersection points of the lines joining the centers
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of its opposite faces, and of the lines joining the midpoints of opposite edges,
and let G+ be the motion group of the cube. Prove that G+ acts on F , find
all the orbits of this action and the stabilizers of all the points of F . Compare
your findings with the proof of Theorem 3.1 in Case 4.

3.9. Given a regular tetrahedron inscribed in the sphere, let the set F
consist of all its vertices and of the lines joining the midpoints of the edges,
and let G+ be the motion group of the tetrahedron. Prove that G+ acts on
F , find all the orbits of this action and the stabilizers of all the points of F .
Compare your findings with the proof of Theorem 3.1 in Case 3.

3.10. Given a dodecahedron inscribed in the sphere, let the set F consist
of all the vertices of the dodecahedron, all the intersection points of the lines
joining the centers of its opposite faces and of the lines joining the midpoints
of the edges, and let G+ be the motion group of the dodecahedron. Prove
that G+ acts on F and complete the proof of Theorem 3.1 in Case 5.

3.11. Prove Theorem 3.1 in Case 4 by constructing an octahedron (in-
stead of a cube) from the points of F . Compare with Fig.3.7.

3.12. Use your computer to produce a picture of the projection on an
appropriately chosen two-dimensional plane of the five-dimensional cube.

3.13∗. Prove the classification theorem for regular polyhedra in dimen-
sion four.

3.14∗. Prove the classification theorem for regular polyhedra in dimen-
sion five.
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Chapter 4

DISCRETE SUBGROUPS OF THE ISOMETRY GROUP
OF THE PLANE AND TILINGS

This chapter, just as the previous one, deals with a classification of ob-
jects, the original interest in which was perhaps more aesthetic than scientific,
and goes back many centuries ago. The objects in question are regular tilings
(also called tessellations), i.e., configurations of identical figures that fill up
the plane in a regular way. Each regular tiling is a geometry in the sense of
Klein; it turns out that, up to isomorphism, there are 17 such geometries;
their classification will be obtained by studying the corresponding transfor-
mation groups, which are discrete subgroups (see the definition in Section
4.3) of the isometry group of the Euclidean plane.

4.1. Tilings in architecture, art, and science

In architecture, regular tilings appear, in particular, as decorative mosaics
(Fig.4.1) in the famous Alhambra palace (14th century Spain). According to
M.Berger [2] and B.Grünbaum [7], part or all the 17 geometries mentioned
above are realized by Alhambra mosaics. The reader can easily find beautiful
color reproductions in the web by googling “Alhambra mosaics”.

Figure 4.1. Two Alhambra mosaics
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In art, the famous Dutch artist A.Escher, known for his “impossible”
paintings, used regular tilings as the geometric basis of his wonderful “peri-
odic” watercolors. Two of those are shown Fig.4.2.

Fig.4.2. Two periodic watercolors by Escher

From the scientific viewpoint, not only regular tilings are important: it
is possible to tile the plane by copies of one tile (or two) in an irregular

Fig.4.3. The Vorderberg tiling
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(nonperiodic) way. It is easy to fill the plane with rectangular tiles of size
say 10cm by 20cm in many nonperiodic ways. But the fact that R2 can
be filled irregularly by nonconvex 9-gons is not obvious. Such an amazing
construction, due to Vorderberg (1936), is shown in Fig.4.3. The figure
indicates how to fill the plane by copies of two tiles (their enlarged copies are
shown separately; they are actually mirror images of each other) by fitting
them together to form two spiraling curved strips covering the whole plane.

Somewhat later, in the 1960ies, interest in irregular tilings was revived by
the nonperiodic tilings due to the British mathematical physicist Roger Pen-
rose, which are related to statistical models and the study of quasi-crystals.
More recently, irregular tilings have attracted the attention of mathemati-
cians, in particular that of the 2006 Fields medallist Andrey Okounkov in his
work on three-dimensional Young diagrams.

Figure 4.3. A Penrose tiling

4.2. Tilings and crystallography

The first proof of the classification theorem of regular tilings (defined
below, see Sec.4.5.1) was obtained by the Russian crystallographer Fedorov
in 1891. Mathematically, they are given by special discrete subgroups, called
the Fedorov groups, of the isometry group Sym(R2) of the plane. As we
mentioned above, there are 17 of them (up to isomorphism). The Fedorov
groups act on the Euclidean plane, forming 17 different (i.e., nonisomorphic)
geometries in the sense of Klein, which we call tiling geometries.

The proof given here, just as the one in the previous chapter, is group-
theoretic, and is based on the study of discrete subgroups of the isometry
group of the plane. In fact, the actual classification principle cannot be
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stated without using transformation groups, and at first glance it is difficult
to understand how it came about that the architects of the Alhambra palace,
five centuries before the notion of group appeared in mathematics, actually
found most or all the 17 regular tilings (in this connection, see the article [7]
by B.Grünbaum). Actually, this is not surprising: a deep understanding of
symmetry suffices to obtain answers to an intuitively clear question, even if
one is unable to state the question in the terminology of modern mathematics.

Less visual, but more important for the applications (crystallography), is
the generalization of the notion of regular tiling to three dimensions: config-
urations of identical polyhedra filling R3 in a regular way. Mathematically,
they are also defined by means of discrete subgroups called crystallographic
groups of the isometry group of R3 and have been classified: there are 230 of
them. Their study is beyond the scope of this book.

We are concerned here with the two-dimensional situation, and accord-
ingly we begin by recalling some facts from elementary plane geometry,
namely facts concerning the structure of isometries of the plane R2.

4.3. Isometries of the plane

Recall that by Sym(R2) we denote the group of isometries (i.e., distance-
preserving transformations) of the plane R2, and by Sym+(R2) its group of
motions (i.e., isometries preserving orientation). Examples of the latter are
parallel translations and rotations, while reflections in a line are examples of
isometries which are not motions (they reverse orientation).

(We consider an isometry orientation-reversing if it transforms a clockwise
oriented circle into a counterclockwise oriented one. This is not a mathemat-
ical definition, since it appeals to the physical notion of “clockwise rotation”,
but there is a simple and rigorous mathematical definition of orientation-
reversing (-preserving) isometry in linear algebra courses, based on the sign
(±) of the determinant of the corresponding linear map.)

Below we list some well known facts about isometries of the plane; their
proofs are relegated to exercises appearing at the end of the present chapter.

4.3.1. A classical theorem of elementary plane geometry says that any
motion is either a parallel translation or a rotation (see Exercise 4.1).

4.3.2. A less popular but equally important fact is that any orientation-
reversing isometry is a glide reflection, i.e., the composition of a reflection in
some line and a parallel translation by a vector collinear to that line (Exercise
4.2).
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4.3.3. The composition of two rotations is a rotation (except for the
particular case in which the two angles of rotation are equal but opposite:
then their composition is a parallel translation). In the general case, there
is a simple construction that yields the center and angle of rotation of the
composition of two rotations (see Exercise 4.3). This important fact plays
the key role in the proof of the theorem on the classification of regular tilings.

4.3.4. The composition of a rotation and a parallel translation is a rota-
tion by the same angle about a point obtained by shifting the center of the
given rotation by the given translation vector (Exercise 4.4).

4.3.5. The composition of two reflections in lines l1 and l2 is a rotation
about the intersection point of the lines l1 and l2 by an angle equal to twice
the angle from l1 to l2 (Exercise 4.5).

4.4. Discrete groups and discrete geometries

The action of a group G on a space X is called discrete if none of its
orbits possess accumulation points, i.e., there are no points of x ∈ X such
that any neighborhood of x contains infinitely many points belonging to one
orbit. Here the word “space” can be understood as Euclidean space Rn (or
as a subset of Rn), but the definition remains valid for arbitrary metric and
topological spaces.

A simple example of a discrete group acting on R2 is the group consisting
of all translations of the form k ~v, where v is a fixed nonzero vector and k ∈ Z.
The set of all rotations about the origin of R2 by angles which are integer
multiples of

√
2π is a group, but its action on R2 is not discrete (since

√
2 is

irrational, orbits are dense subsets of circles centered at the origin).

4.5. The seventeen regular tilings

4.5.1 Formal definition. By definition, a tiling or tessellation of the plane
R2 by a polygon T0, the tile, is an infinite family {T1, T2, . . . } of pairwise
nonoverlapping (i.e., no two distinct tiles have common interior points) copies
of T0 filling the plane, i.e., R2 =

⋃∞
i=1 Ti.

For example, it is easy to tile the plane by any rectangle in different ways,
e.g. as a rectangular lattice as well as in many irregular, nonperiodic ways.
Another familiar tiling of the plane is the honeycomb lattice, where the plane
is filled with identical copies of a regular hexagon.

A polygon T0 ⊂ R2, called the fundamental tile, determines a regular
tiling of the plane R2 if there is a subgroup G (called the tiling group) of the
isometry group Sym(R2) of the plane such that
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(i) G acts discretely on R2, i.e., all the orbits of G have no accumulation
points;

(ii) the images of T0 under the action of G fill the plane, i.e.,
⋃

g∈G

g(T0) = R2;

(iii) for g, h ∈ G the images g(T0), h(T0) of the fundamental tile coincide
if and only if g = h.

Actually, (ii) and (iii) imply (i), but we will not prove this (see the first
volume of Berger’s book, pp.37-38 of the French edition).

The action of a tiling group G ⊂Sym(R2) on the plane R2 is, of course,
a geometry in the sense of Klein that we call the tiling geometry (or Fedorov
geometry) of the group G.

4.4.2. Examples of regular tilings

Six examples of regular tilings are shown in Fig.4.4.
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Figure 4.4. Six regular tilings of the plane

Given two tiles, there is one element of the transformation group that
takes one to the other. The question marks show how the tiles are mapped
to each other. (Without the question marks, the action of the transformation
group would not be specified; see Exercise 4.16).
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The first five tilings (a-e) are positive, i.e., they correspond to subgroups of
the group Sym+(R2) of motions (generated by all rotations and translations)
of the plane (one-sided tiles slide along the plane). The sixth tiling (f) allows
“turning over” the (two-sided) tiles.

Let us look at the corresponding tiling groups in more detail.

4.4.3. Theorem. [Fedorov, 1891]. Up to isomorphism, there are exactly
five different one-sided tiling geometries of the plane R2. They are shown in
Fig.4.4,a–e.

Proof. Let G be a group of positive tilings. Consider its subgroup GT of
all the parallel translations in G.

4.4.4. Lemma. The subgroup GT is generated by two noncollinear
vectors v and u.

Proof. Arguing by contradiction, suppose that GT is trivial (there are no
parallel translations except the identity). Let r, s be any two (nonidentical)
rotations with different centers. Then rsr−1s−1 is a nonidentical translation
(to prove this, draw a picture). A contradiction. �

Now suppose that all the elements of GT are translations generated by
(i.e., proportional to) one vector v. Then it is not difficult to obtain a con-
tradiction with item (ii) of the definition of regular tilings. �

Now if G contains no rotations, i.e., G = GT , then we get the tiling (a).
Further, If G contains only rotations of order 2, then it is easy to see that
we get the tiling (b).

4.4.5. Lemma. If G contains a rotation of order α ≥ 3, then it contains
two more rotations (of some some orders β and γ) such that

1

α
+

1

β
+

1

γ
= 1.

Sketch of the proof. Let A be the center of a rotation of order α. Let B
and C be the nearest (from A) centers of rotation not obtainable from A by
translations. Then the boxed formula follows from the fact that the sum of
angles of triangle ABC is π. The detailed proof of this lemma is the topic of
one of the exercises. �

Since the three rotations are of order greater or equal to 3, it follows from
the boxed formula that only three cases are possible.
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1/α 1/β 1/γ
case 1 1/3 1/3 1/3
case 2 1/2 1/4 1/4
case 3 1/2 1/3 1/6

Studying these cases one by one, it is easy to establish that they correspond
to the tilings (d),(c),(e) of Fig.4.3, respectively.

This concludes the proof of Theorem 4.4.3. �

In the general case (all tilings, including those by two-sided tiles), there
are exactly seventeen nonequivalent tilings. This was also proved by Fedorov.
The 12 two-sided ones are shown on the next page.

We will not prove the second part of the classification theorem for regular
plane tilings (it consists in finding the remaining 12 regular tilings, for which
two-sided tiles are required). However, the reader can study some examples
of these 12 tilings by doing some of the exercises. Note that there is a nice
web site with beautiful examples of decorative patterns corresponding to the
17 regular tilings:

http://www2.spsu.edu/math/tile/symm/ident17.htm

One can also visit the Escher website.

4.5. The 230 crystallographic groups

The crystallographic groups are the analogs in R3 of the tiling groups in
Euclidean space R2. The corresponding periodically repeated polyhedra are
not only more beautiful than tilings, they are more important: the shapes of
most of these polyhedra correspond to the shapes of real-life crystals. There
are 230 crystallographic groups. The proof is very tedious: there are 230
cases to consider, in fact more, because many logically arising cases turn out
to be geometrically impossible, and it lies, as we mentioned above, outside
the scope of this book.

Those of you who would like to see some nontrivial examples of geometries
corresponding to some of the crystallographic groups should look at Prob-
lem 4.5 and postpone their curiosity to the next chapter, where 4 examples
of actual crystals will appear in the guise of Coxeter geometries. Another
possibility is to consult the website http://webmineral.com/crystal.shtml or
to google the words “crystallographic group”.
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Figure 4.5. Two-sided regular tilings



54

4.6. Problems

4.1. Prove that any motion of the plane is either a translation by some
vector v, |v| ≥ 0, or a rotation rA about some point A by a nonzero angle.

4.2. Prove that any orientation-reserving isometry of the plane is a glide
reflection in some line L with glide vector u, |u| ≥ 0, u||L.

4.3. Justify the following construction of the composition of two rotations
r = (a, ϕ) and (b, ψ). Join the points a and b, rotate the ray [a, b〉 around a by
the angle ϕ/2, rotate the ray [b, a〉 around b by the angle −ψ/2, and denote
by c the intersection point of the two obtained rays; then c is the center of
rotation of the composition rs and its angle of rotation is 2(π−ϕ/2−ψ/2).
Show that this construction fails in the particular case in which the two
angles of rotation are equal but opposite, and then their composition is a
parallel translation).

4.4. Prove that the composition of a rotation and a parallel translation
is a rotation by the same angle and find its center of rotation.

4.5. Prove that the composition of two reflections in lines l1 and l2 is a
rotation about the intersection point of the lines l1 and l2 by an angle equal
to twice the angle from l1 to l2.

4.6. Indicate a finite system of generators for the transformation groups
corresponding to each of the tilings shown in Figure 4.4 a), b),...,f).

4.7. Is it true that the transformation group of the tiling shown on Figure
4.4 (b) is a subgroup of the one of Figure 4.4 (c)?

4.8. Indicate the points that are the centers of the rotation subgroups of
the transformation group of the tiling shown in Figure 4.4(c).

4.9. Write out a presentation of the isometry group of the plane preserv-
ing

(a) the regular triangular lattice;
(b) the square lattice;
(c) the hexagonal (i.e., honeycomb) lattice.

4.10. For which of the five Platonic bodies can a (countable) collection
of copies of the body fill Euclidean 3-space (without overlaps)?

4.11. For the two Escher pictures in Fig.4.2 indicate to which of the 17
Fedorov groups they correspond.
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4.12. Exactly one of the 17 Fedorov groups contains a glide reflection
but no reflections. Which one?

4.13. Which two of the 17 Fedorov groups contain rotations by π/6?

4.14. Which three of the 17 Fedorov groups contain rotations by π/2?

4.15. Which five of the 17 Fedorov groups contain rotations by π only?

4.16. Rearrange the question marks in the tiling (c) so as to make the
corresponding geometry isomorphic that of the tiling (a).
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Chapter 5

REFLECTION GROUPS AND COXETER GEOMETRIES

In this chapter, as in the previous one, we study geometries defined by
certain discrete subgroups of the isometry group of the plane (and, more gen-
erally, of n-dimensional space), namely the subgroups generated by reflections
(called Coxeter groups after the 20th century Canadian mathematician who
invented them). These geometries are perhaps not as beautiful as those stud-
ied in the previous two chapters, but are more important in the applications
(in algebra and topology). On the other hand, they do have an aesthetic
origin: what one sees in a kaleidoscope (a child’s toy very popular before the
computer era) is an instance of such a geometry. Following E.B.Vinberg, we
call these geometries (in the two-dimensional case) kaleidoscopes. We prove
the classification theorem for them in dimension 2 and state its generalization
to higher dimensions without proof (using the notion of Coxeter scheme).

5.1. An example: the kaleidoscope

The kaleidoscope is a children’s toy: bright little pieces of glass are placed
inside a regular triangular prism and are multiply reflected by three mirrors
forming the lateral faces of the prism.

Π1

Π2

P

(a)

Π1

Π2

P ′

P

(b)

Fig.5.1. Geometry of the kaleidoscope

Looking into the prism, you see a colorful repeated pattern: the picture in
the triangle and its mirror images alternate, forming a hexagon (the union
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of six equilateral triangles), see Fig.5.1(a), surrounded by more equilateral
triangles ad infinitum.

Mathematically, this is a two-dimensional phenomenon: the equilateral
triangle forming the base of the prism is the fundamental domain of a discrete
group acting on the plane of the base.

Now if the kaleidoscope is deformed (e.g., the angles between the faces of
the prism are slightly changed), then the picture becomes fuzzy, no pattern
can be seen. In such a situation, the images of the base triangle overlap
infinitely many times (see Fig.5.1(b), the transformation group acting on the
triangle is not discrete; we will not study this “bad” case: we only study the
case of the “nice” kaleidoscope in dimension two and then generalize it to
any dimension.

5.2. Coxeter polygons and polyhedra

Consider a dihedral angle α < π/2 formed by two plane two-sided mirrors
Π1,Π2. What will the observer O see? Any picture P inside the angle will
be reflected by Π1; its image P ′ will be in turn be reflected by the image of
Π1 by Π2, and so on. At the same time, the picture P inside the angle will
be reflected by Π2; its image P ′′ will be in turn be reflected by the image
of Π2 by Π1, etc. Two cases are possible: either the reflections coming from
different sides will overlap (Fig.5.1,b) or the reflected pictures will coincide
(Fig.5.1,a). Obviously, the pictures will coincide if (and only if) the angle α
is of the form π/k, where k = 2, 3, . . . .

Mathematically, this situation is the following. On the Euclidean plane,
we take two straight lines forming the angle α and consider the group G
of all transformations of the plane generated by the reflections in these two
lines. Let F be the plane region bounded by the two rays forming the angle
α. Obviously, no two regions g(F ) and h(F ), g, h ∈ G, g 6= h, overlap iff
α = π/k, where k = 2, 3, . . . . In that case, G is the dihedral group Dk.

Now suppose we are given a convex polygon F in the plane with vertex
angles less than or equal to π/2. Consider the group GF of transformations
of the plane generated by reflections in the lines containing the sides of F .
We say that GF is acts transitively on F if the images g(F ), g ∈ GF , never
overlap. A necessary condition for the transitive action of GF on F is that all
the vertex angles of F be of the form π/k for various values of k; this follows
from the argument in the previous paragraph. Obviously, this condition is
not sufficient.

The previous arguments are the motivation for the following definition.
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A convex polygon F is called a Coxeter polygon if all its vertex angles are of
the form π/k for various values of k = 2, 3, . . . and it generates a transitive
action of the group GF . Coxeter polygons will be classified below – there are
only four.

The above can be generalized to three-dimensional space. The corre-
sponding definition is the following: a convex polyhedron is called a Coxeter
polyhedron P if all its dihedral angles are of the form π/k for various values
of k = 2, 3, . . . and it generates a transitive action of GP , where GP is the
transformation group generated by the reflections in the planes containing
the faces of P . Coxeter polyhedra will be classified below (there are seven).

5.3. Coxeter geometries on the plane

Let F be a Coxeter polygon in the plane R2. The Coxeter geometry
with fundamental domain F is the geometry (R2 : GF ), where GF is the
group of transformations of the plane generated by the reflections in the
lines containing the sides of the polygon F . The goal of this section is to
classify all Coxeter geometries on the plane.

Figure 5.2. The four plane Coxeter geometries
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5.3.1. Theorem. Up to isomorphism, there are four Coxeter geome-
tries in the plane; their fundamental polygons are the rectangle, the equilat-
eral triangle, the isosceles right triangle, and the right triangle with angles
π/3 and π/6 (see Fig.5.2).

Proof. Let F be the fundamental polygon of a Coxeter geometry. If it
has n sides, then the sum of its angles is π(n−2) and so the average value of
its angles is π(1− 2/n). Now n cannot be greater than 4, because F would
then have an obtuse angle (and this contradicts the definition of Coxeter
polygon). If n = 4, then all angles of F are π(1 − 2/4) = π/2 and F is a
rectangle. Finally, if n = 3, and the angles of the fundamental triangle are
π/k, π/l, π/m, then (since their sum is π), we obtain a Diophantine equation
for k, l,m:

1

k
+

1

l
+

1

m
= 1 .

This equation has three solutions: (3, 3, 3), (2, 4, 4), (2, 3, 6). These solutions
correspond to the three triangles listed in the theorem. �

5.4. Coxeter geometries in Euclidean space R3

5.4.1. In this section we study the Coxeter geometries in R3. A Coxeter
polyhedron F ⊂ R3 is a convex polyhedron (i.e., the bounded intersection of
a finite number of half-spaces in R3) with dihedral angles of the form π/k for
various values of k = 2, 3, . . . .

eA3

(a)

π
2

π
3

C

C

eB3

(b)

Na Cl

eC3

(c)

π
2

π
3 π

4
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2

π
2

π
3

π
6

Figure 5.3. The seven Coxeter polygons in 3-space
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A Coxeter geometry in Rd with fundamental polyhedron F is defined just
as in the case d = 2 (see Section 5.3).

5.4.2. Theorem. There are seven Coxeter geometries in three-
dimensional space; their fundamental polyhedra are the four right prisms
over the the rectangle, the equilateral triangle, the isosceles right triangle, and
the right triangle with acute angles π/3 and π/6, and the three (nonregular)
tetrahedra shown in Fig.5.3.

It is not very difficult to prove that the seven polyhedra (listed in the
theorem) indeed define Coxeter geometries. To prove that there are no other
geometries, nontrivial information from linear algebra (in particular, the no-
tion of Gramm matrix) is needed. Therefore, we omit the proof (see the
book [4] or, for readers of Russian, a series of articles in Matematicheskoye
Prosveshchenie, Ser.3, no. 7, 2003).

A remark about terminology. The term “Coxeter geometry” is not a
standard term. E.B.Vinberg uses the term “kaleidoscope” instead. Also,
we do not use the term “Coxeter group” for the transformation group of a
Coxeter geometry. This is because “Coxeter group” is standardly used in a
somewhat different sense than “transformation group of a Coxeter geometry”.

Coxeter geometries are not only abstract mathematical objects, they are
also important models in crystallography. For example, the polyhedron in
Fig.5.3,b is the crystal of ordinary salt, while the polyhedron in Fig.5.3,a is
a diamond crystal.

5.5. Coxeter schemes and the classification theorem

5.5.1. In this section we study the general case of a Coxeter geometry
in Rd for an arbitrary positive integer d. A Coxeter polyhedron F ⊂ Rd

is a convex polyhedron (i.e., the bounded intersection of a finite number of
half-spaces in Rd) with dihedral angles of the form π/k for various values of
k = 2, 3, . . . such that the reflections in the (d−1)-dimensionsal hyperplanes
containing its faces generate a transitively acting group GF . (The definition
of the measure of a dihedral angle in Euclidean space of arbitrary dimension
d appears in the linear algebra course.) A Coxeter geometry in Rd with
fundamental polyhedron F is defined exactly like in the cases d = 2 and
d = 3 (see Sections 5.2 and 5.3).

5.5.2. A Coxeter scheme is a graph (with integer weights on the edges)
encoding a Coxeter polyhedron (in particular, polygons) in any dimension
d. The scheme of a given Coxeter polyhedron is constructed as follows:
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its vertices correspond to the faces of the polyhedron, two vertices whose
corresponding faces form an angle of π/m, m ≥ 3, are joined by an edge
with the weight m − 2; if two faces are parallel, the corresponding vertices
are joined by an edge with weight ∞. (Note that vertices corresponding to
perpendicular edges are not joined by an edge.)

Graphically, instead of writing the weights 2,3,4 on the edges of a scheme,
we draw double, triple, quadruple edges; instead of writing ∞ on an edge,
we draw a very thick edge.

For example, the Coxeter scheme of the rectangle consists of two compo-
nents, each of which has two vertices joined by an edge with weight∞, while
the scheme of an equilateral triangle has three vertices joined cyclically by
three edges with weights 1.

5.5.3. Theorem. The Coxeter geometries in all dimensions are classi-
fied by the connected components of their Coxeter schemes listed in Fig.5.4.

We omit the proof (see the book [4] or, for readers of Russian, the articles
in the issue of Matematicheskoye Prosveshchenie cited above).

5.6. Problems

5.1. Three planes P1, P2, P3 passing through the z-axis of Euclidean
space R3 are given. The angles between P1 and P2, P2 and P3 are α and β,
respectively.

(a) Under what conditions on α and β will the group generated by reflec-
tions with respect to the three planes be finite?

(b) If these conditions are satisfied, how can one find the fundamental
domain of this action?

5.2. Three straight lines L1, L2, L3 in the Euclidean plane form a triangle
with interior angles α, β, and γ.

(a) Under what conditions on α, β, γ will the group generated by reflec-
tions with respect to the three lines be discrete?

(b) If these conditions are satisfied, how can one find the fundamental
domain of this action?

5.3. Consider the six lines L1, . . . , L6 containing the six sides of a regular
plane hexagon and denote by G the group generated by reflections with
respect to these lines. Does this group determine a Coxeter geometry?
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Name Coxeter scheme dim #(faces) view in R3

Ã1 1 2

Ãn

.....
.

n− 1 n

B̃n

...

n− 1 n

C̃n

... n− 1 n

D̃n

...

n− 1 n > 5 none!

D̃4 4 5 none!

F̃4 4 5 none!

G̃2 2 3

π
3

Ẽ6 none!

Ẽ7 none!

Ẽ8 none!

Figure 5.4. Coxeter schemes for the Coxeter geometries
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5.4. Let F be a Coxeter triangle, s1, s2, s3 be the reflections with respect
to its sides, and GF the corresponding transformation group.

(a) Give a geometric description and a description by means of words in
the alphabet s1, s2, s3 of all the elements of GF that leave a chosen vertex of
F fixed.

(b) Give a geometric description and a description by means of words in
the alphabet s1, s2, s3 of all the elements of GF which are parallel translations.

Consider the three cases of different Coxeter triangles separately.

5.5. Draw the Coxeter schemes of
(a) all the Coxeter triangles;
(b) all the three-dimensional Coxeter polyhedra.

5.6. Prove that all the edges at each vertex of any three-dimensional
Coxeter polyhedron lie on three straight lines passing through that vertex.

5.7. Let (F : GF ) be a Coxeter geometry of arbitrary dimension. Prove
that

(a) if s ∈ GF is the reflection in a hyperplane P , then, for any g ∈ GF ,
gsg−1 is the reflection in the hyperplane gP ;

(b) any reflection from the group GF is conjugate to the reflection in one
of the faces of the polyhedron F ,

5.8. Describe some four-dimensional Coxeter polyhedron other than the
four-dimensional cube.

5.9. (a) Does the transformation group generated by the reflections in
the faces of regular tetrahedron define a Coxeter geometry?

(b) Same question for the cube.
(c) Same question for the octahedron.
(d) Same question for the dodecahedron.
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Chapter 6

SPHERICAL GEOMETRY

So far we have studied finite and discrete geometries, i.e., geometries in
which the main transformation group is either finite or discrete. In this chap-
ter, we begin our study of infinite continuous geometries with spherical ge-
ometry, the geometry (S2:O(3)) of the isometry group of the two-dimensional
sphere, which is in fact the subgroup of all isometries of R3 that map the
origin to itself; O(3) is called the orthogonal group in linear algebra courses.

But first we list the classical continuous geometries that will be studied
in this course. Some of them may be familiar to the reader, others will be
new.

6.1. A list of classical continuous geometries

Here we merely list, for future reference, several very classical geometries
whose transformation groups are “continuous” rather than finite or discrete.
We will not make the intuitively clear notion of continuous transformation
group precise (this would involve defining the so-called topological groups or
even Lie groups), because we will not study this notion in the general case:
it is not needed in this introductory course. The material of this section is
not used in the rest of the present chapter, so the reader who wants to learn
about spherical geometry without delay can immediately go on to Sect. 6.3.

6.1.1. Finite-dimensional vector spaces over the field of real numbers are
actually geometries in the sense of Klein (the main definition of Chapter 1).
From that point of view, they can be written as

(Vn : GL(n)) ,

where Vn denotes the n-dimensional vector space over R and GL(n) is the
general linear group, i.e., the group of all nondegenerate linear transforma-
tions of Vn to itself.

The subgeometries of (Vn : GL(n)) obtained by replacing the group
GL(n) by its subgroup O(n) (consisting of orthogonal transformations) is
called the n-dimensional orthonormed vector space and denoted

(Vn : O(n)) .
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These “geometries” are rather algebraic and are usually studied in linear
algebra courses. We assume that the reader has some background in linear
algebra and remembers the first basic definitions and facts of the theory.

6.1.2. Affine spaces are, informally speaking, finite-dimensional vector
spaces “without a fixed origin”. This means that their transformation groups
Aff(n) contain, besides GL(n), all parallel translations of the space (i.e.,
transformations of the space obtained by adding a fixed vector to all its
elements). We denote the corresponding geometry by

(Vn : Aff(n)) or (Rn : Aff(n)) ,

the later notation indicating that the elements of the space are now regarded
as points, i.e., the endpoints of the vectors (issuing from the origin) rather
than the vectors themselves. This is a more geometric notion than that of
vector space, but is also usually studied in linear algebra courses.

6.1.3. Euclidean spaces are geometries that we denote

(Rn : Sym(Rn)) ;

here Sym(Rn) is the isometry group of Euclidean space Rn, i.e., the group of
distance-preserving transformations of Rn. This group has, as a subgroup,
the orthogonal group O(n) that consists of isometries leaving the origin fixed
(the group O(n) should be familiar from the linear algebra course), but also
contains the subgroup of parallel translations.

We assume that, for n = 2, 3, the reader knows Euclidean geometry from
school (of course it was introduced differently, usually via some modification
of Euclid’s axioms) and is familiar with the structure of the isometry groups
of Euclidean space for n = 2, 3.

The reader who feels uncomfortable with elementary Euclidean plane and
space geometry can consult Appendix I. A rigorous axiomatic approach to
Euclidean geometry in dimensions d = 2, 3 (based on Hilbert’s axioms) ap-
pears in Appendix III.

Note that the transformation groups of these three geometries (vector
spaces, affine and Euclidean spaces) act on the same space (Rn and Vn can
be naturally identified), but the geometries that they determine are different,
because the four groups GL(n), O(n), Aff(n), Sym(R3) are different. The
corresponding geometries will not be studied in this course: traditionally,
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this is done in linear algebra courses, and we have listed them here only to
draw a complete picture of classical geometries.

Our list continues with three more classical geometries that we will study,
at least in small dimensions (mostly in dimension 2).

6.1.4. Hyperbolic spaces Hn (called Lobachevsky spaces in Russia) are
“spaces of constant negative curvature” (you will learn what this means
much later, in differential geometry courses) with transformation group the
isometry group of the hyperbolic space (i.e., the group of transformations
preserving the “hyperbolic distance”). We will only study the hyperbolic
space of dimension n = 2, i.e., the hyperbolic plane. Three models of H2 will
be studied, in particular, the Poincaré disk model,

(H2 :M) ;

here H2 := {(x, y) ∈ R2|x2 + y2 < 1} is the open unit disk and M is the
group of Möbius transformations (the definition appears in Chapter 7) that
take the disk to itself.

We will also study two other models of hyperbolic plane geometry (the
half-plane model, also due to Poincaré, and the Cayley–Klein model). A
special chapter describes how attempts to prove Euclid’s Fifth Postulate led
to the appearance of hyperbolic plane geometry and the dramatic history of
its creation by Gauss, Lobachevsky and Bolyai.

6.1.5. Elliptic spaces Elln are “spaces of constant positive curvature”
(what this means is explained in differential geometry courses). We will only
study the two-dimensional case, i.e., the elliptic plane, in the present chapter
after we are done with spherical geometry, which is the main topic of this
chapter, but can also be regarded as the principal building block of elliptic
plane geometry.

6.1.6. Projective spaces RP n are obtained from affine spaces by “adding
points at infinity” in a certain way, and taking, for the transformation group,
a group of linear transformations on the so-called “homogeneous coordinates”
of points (x1 : · · · : xn : xn+1) ∈ RP n. We can write this geometry as

(RP n : Proj(n)) .

For arbitrary n, projective geometry is usually studied in linear algebra
courses. We will study the projective plane RP 2 in this course, and only
have a quick glance at projective space RP 3 (see Chapter 12).
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6.2. Some basic facts from Euclidean plane geometry

Here we list several fundamental facts of Euclidean plane geometry (in-
cluding modern formulations of some of Euclid’s postulates) in order to com-
pare and contrast them with the corresponding facts of spherical, elliptic,
and hyperbolic geometry.

I. There exist a unique (straight) line passing through two given distinct
points.

II. There exists a unique perpendicular to a given line passing through
a given point. (A perpendicular to a given line is a line forming four equal
angles, called right angles, with the given one.)

III. There exists a unique circle of given center and given radius.

IV. Given a point on a line and any positive number, there exist exactly
two points on the line whose distance from the given point is equal to the
given number.

V. There exists a unique parallel to a given line passing through a given
point not on the given line. (A parallel to a given line is a line without com-
mon points with the given one.) This is the modern version of Euclid’s fifth
postulate, sometimes described as the single most important and controver-
sial scientific statement of all time.

VI. The parameters of a triangle ABC, namely the angles α, β, γ at the
vertices A,B,C and the sides a, b, c opposite to these vertices, satisfy the
following formulas.

(i) Angle sum formula: α + β + γ = π.

(ii) Sine formula:
a

sinα
=

b

sin β
=

c

sin γ
.

(ii) Cosine formula: c2 = a2 + b2 − 2ab cos γ.

6.3. Lines, distances, angles, polars, and perpendiculars on S2

Let S2 be the unit sphere in R3:

S2 := {(x, y, z) ∈ R3|x2 + y2 + z2 = 1};

our present aim is to study the geometry (S2 : O(3)), where O(3) is the
orthogonal group (i.e., the group of isometries of R3 leaving the origin in
place).
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6.3.1. Basic definitions. By a line on the sphere we mean a great circle,
i.e., the intersection of S2 with a plane passing through the sphere’s center.
For example, the equator of the sphere, as well as any meridian, is a line. The
angle between two lines is defined as the dihedral angle (measured in radians)
between the two planes containing the lines. For example, the angle between
the equator and any meridian is π/2. The distance between two points A
and B is defined as the measure (in radians) of the angle AOB. Thus the
distance between the North and South Poles is π, the distance between the
South Pole and any point on the equator is π/2.

Obviously, the transformation group O(3) preserves distances between
points. It can also be shown (we omit the proof) that, conversely, O(3) can
be characterized as the group of distance-preserving transformations of the
sphere (distance being understood in the spherical sense, i.e., as explained
above).

6.3.2. Poles, polars, perpendiculars, circles. Let us look at the analogs
in spherical geometry of the Euclidean postulates.

IS. There exist a unique line passing through two given distinct points,
except when the two points are antipodal, in which case there are infinitely
many. All the meridians joining the two poles give an example of the excep-
tional situation.

IIS. There exists a unique perpendicular to a given line passing through a
given point, except when the point lies at the intersection of the perpendicular
constructed from the center O of the sphere to the plane in which the line lies,
in which case there are infinitely many such perpendiculars. The exceptional

N

S

P

l

Pl

P ′
l

Figure 6.1. Perpendiculars, poles, and polars
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situation is exemplified by the equator and, say, the North Pole: all the
meridians (which all pass through the pole) are perpendicular to the equator.

More generally, the polar of a point P is the (spherical) line obtained by
cutting the sphere by the plane passing through O and perpendicular to the
(Euclidean!) straight line PO. Conversely, given a (spherical) line l, the poles
of that line are the two antipodal points Pl and P ′l for which the (Euclidean)
line PlP

′
l is perpendicular to the plane determined by l. The assertion IIS

may now be restated as follows: there exists a unique perpendicular to a given
line passing through a given point, except when the point is a pole of that
line, in which case all the lines passing through the pole are perpendicular
to the given line.

IIIS. There exists a unique circle of given center C and given radius ρ,
provided 0 < ρ < π. It is defined as the set of points whose (spherical)
distance from C is equal to ρ. It is easy to see that any (spherical) circle
is actually a Euclidean circle, namely the one obtained as the intersection
of the sphere with the plane perpendicular to the Euclidean line OC and
passing through the point I on that line such that OI = cos ρ. Note that the
radius of the Euclidean circle will be less than ρ.

Given a spherical circle of center C and radius ρ, note that it can be
regarded as the circle of radius π−ρ and center C ′, where C ′ is the antipode
of C. Further, note that the longest circle centered at C is the polar of the
point C; its radius is π/2.

IVS. Given a point on a line and any positive number, there exist exactly
two points on the line whose distance from the given point is equal to the
given number, provided the number is less than π.

VS. Any two lines intersect in two antipodal points, i.e., in two points
symmetric with respect to the center of the sphere S2. Therefore there are
no parallel lines in spherical geometry. If two points A,B are not antipodal,
then there is only one line joining them and one shortest line segment with
endpoints at A and B. For opposite points, there is an infinity of lines joining
them (for the North and South poles, these lines are the meridians).

6.3.3. Lines as shortest paths. It is proved in differential geometry
courses that spherical lines are geodesics, i.e., they are the shortest paths
between two points. To do this, one defines the length of a curve as a curvi-
linear integral and uses the calculus of variations to show that the curve (on
the sphere) of minimal length joining two given points is indeed the arc of
the great circle containing these points.
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6.4. Biangles and triangles in S2

6.4.1. Biangles. Two lines l and m on the sphere intersect in two (antipo-
dal) points P and P ′ and divide the sphere into four domains; each of them
is called a biangle, it is bounded by two halves of the lines l and m, called its
sides, and has two vertices (the points P and P ′). The four domains form
two congruent pairs; two biangles from a congruent pair touch each other at
the common vertices P and P ′, and have the same angle at P and P ′. The
main parameter of a biangle is the measure α of the angle between the lines
that determine it; if α 6= π/2, the two biangles not congruent to the biangle
of measure α are called complementary, their angle is π − α. Note that the
angle measure α determines the corresponding biangle up to an isometry of
the sphere.

6.4.2. Areas of figures in the sphere. In order to correctly measure areas
of figures on the plane, on the sphere, or on other surfaces, one must define
what an area is, specify what figures are measurable (i.e., possess an area),
and devise methods for computing areas. For the Euclidean plane, there are
several approaches to area: many readers have probably heard of the theory of
Jordan measure; more advanced readers may have studied Lebesgue measure;
readers who have taken multivariable calculus courses know that areas may
be computed by means of double integrals.

In this book, we will not develop a rigorous measure theory for the geo-
metries that we study. In this subsection, we merely sketch an axiomatic
approach for determining areas of spherical figures; this approach is similar
to Jordan measure theory in the Euclidean plane. The theory says that there
is a family of sets in S2, called measurable, satisfying the following axioms.

(i) Invariance. Two congruent measurable figures have the same area.

(ii) Normalization. The whole sphere is measurable and its area is 4π.

(iii) Countable additivity. If a measurable figure F is the union of a
countable family of measurable figures {Fi} without common interior points,
then its area is equal to the sum of areas of the figures Fi.

An obvious consequence of these axioms is that the area of the North
hemisphere is 2π, while each of the triangles obtained by dividing the hemi-
sphere into four equal parts is of area π/2.

6.4.3. Area of the biangle. From the axioms formulated in the previous
subsection, it is easy to deduce that the area Sπ/2 of a biangle with angle
measure π/2 is π. Indeed, the sphere is covered by four such non-overlapping
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biangles, which are congruent to each other; they have the same area by (i),
the sum of their areas is that of the sphere by (iii), and the latter is 4π by
(ii), whence Sπ/2 = (4π)/4 = π.

For the case in which the angle measure α of a biangle is a rational
multiple of π, a similar argument shows that

Sα = 2α . (6.1)

This formula is actually true for any α, but for the case in which π/α is
irrational, its proof requires a passage to the limit based on an additional
“continuity axiom” that we have not explicitly stated. We therefore omit
the proof, but will use the above formula for all values of α in what follows.

6.4.4. Area of the triangle. Let A,B,C be three distinct points of S2, no
two of which are opposite. The union of the shortest line segments joining
the points A and B, B and C, C and A is called the triangle ABC. For
a triangle ABC, we always denote by α, β, γ the measure of the angles at
A,B,C respectively and by a, b, c the lengths of the sides opposite to A,B,C
(recall that the length a of BC is equal to the measure of the angle BOC in
R3).

6.4.5. Theorem. The area SABC of a spherical triangle with angles
α, β, γ is equal to

SABC = α + β + γ − π .

Proof. There are 12 spherical biangles formed by pairs of linesAB,BC,CA.
Choose six of them, namely those that contain triangle ABC or the antipodal
triangle A1B1C1 formed by the three points antipodal to A,B,C. Denote
their areas by

SI , S
′
I , SII , S

′
II , SIII , S

′
III .

Each point of the triangles ABC and A1B1C1 is covered by exactly three of
the chosen six biangles, while the other points of the sphere are covered by
exactly one such biangle (we ignore the points on the lines). Therefore, using
relation (6.1), we can write

4π = SI + S ′I + SII + S ′II + SIII + S ′III − 2SABC − 2SA1B1C1

= 2α + 2β + 2γ + 2α + 2β + 2γ − 2SABC − 2SA1B1C1

= 4(α + β + γ)− 4SABC ,
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II
III
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II′

III′

A

B
C

A′

B′C′

α

β γ

c

a

b
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B C

L M

H

α

β γ

Figure 6.2. Area and sine theorem for the triangle

because the two triangles ABC A1B1C1 have the same area (since they are
congruent). Clearly, the previous formula implies the required equality. �

This theorem has the following fundamental consequence.

6.4.6. Corollary. The sum of angles of any triangle is more than π.

The analog of the sine formula for the Euclidean triangle is the following
statement about spherical triangles.

6.4.7. Theorem. (The spherical sine theorem.)

sin a

sinα
=

sin b

sin β
=

sin c

sin γ
.

In order to establish this formula, we will use the following statement,
sometimes called the “theorem on the three perpendiculars”.

6.4.8. Lemma. Let A ∈ R3 be a point outside a plane P , let K be its
perpendicular projection on P and let L be its perpendicular projection on
a line l contained in P . Then KL is perpendicular to l.

Proof of the lemma. The line l is perpendicular to the plane AKL be-
cause it is perpendicular to two nonparallel lines of AKL, namely to AL and
AK (to the latter since AK is orthogonal to any line in P). Therefore l is
perpendicular to any line of the plane AKL, and in particular to LK. �

Proof of the theorem. Let H be the projection of A on the plane ABC,
let L and M be the projections of A on the lines OB and OC. Then by
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the lemma, L and M coincide with the projections of H on OB and OC.
Therefore,

AH = LA sin β = sin c sin β, AH = MA sin γ = sin b sin γ.

Thus, sin b : sin β = sin c : sin γ. Similarily, by projecting C on the plane
AOB and arguing as above, we obtain sin b : sin β = sin a : sinα. This
immediately implies the required equality. �

6.5. Other theorems about triangles.

In this section, we state a few more theorems about spherical triangles.
Their proofs are relegated to the exercises appearing at the end of this chap-
ter.

6.5.1. Theorem. (The first cosine theorem.)

cos a = cos b cos c+ sin b sin c cosα

6.5.2. Theorem. (The second cosine theorem.)

cosα + cos β cos γ = sin β sin γ cos c

6.5.3. Corollary. (Analog of the Pythagoras theorem.) If triangle
ABC has a right angle at C, then

cos c = cos a cos b .

6.5.4. Theorem. The medians of any triangle intersect at a single
point.

6.5.5. Theorem. The altitudes of any triangle intersect at a single
point.

6.6. Coxeter triangles on the sphere S2

We will not develop the theory of tilings on the sphere S2 and Cox-
eter geometry on the sphere in full generality, but only consider Coxeter
triangles, i.e., spherical triangles all of whose angles are of the form π/m,
m = 2, 3, . . . . It follows from Theorem 6.4.5 that any spherical Coxeter tri-
angle (π/p, π/q, π/r), N copies of which cover the sphere, must satisfy the
Diophantine equation

N/p+N/q +N/r = N + 4.
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The transformation group of the corresponding Coxeter geometry is finite,
and so Theorem 3.2.6 tells us what group it has to be: it must be either
one of the dihedral groups, or the tetrahedral, hexahedral, or dodecahedral
group. The dihedral groups yield an obvious infinite series of tilings, one of
which is shown in Figure 6.3.

π/5

G
(3)
3

π/5

π/3

H3

π/4

π/3

B3

π/3

A3

Figure 6.3. Four Coxeter tilings of the sphere

The three other groups yield three possibilities for N : N = 24, 48, 120,
and we easily find the corresponding values of (p, q, r) in each of the three
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cases. Finally, the solutions of our Diophantine equation are:

(2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 2, n) for n = 2, 3, . . . .

The corresponding tilings of the sphere (and their Coxeter schemes) are
shown in Figure 6.3.

6.7. Two-dimensional elliptic geometry

6.7.1. Spherical geometry is closely related to the elliptic geometry in-
vented by Riemann. Elliptic geometry is obtained from spherical geometry
by “identifying opposite points of S2”. The precise definition can be stated
as follows. Consider the set Ell2 whose elements are pairs of antipodal points
(x,−x) on the unit sphere S2 ⊂ R3. The group O(3) acts on this set (be-
cause isometries of S2 take antipodal pairs of points to antipodal pairs),
thus defining a geometry in the sense of Klein (Ell2 : O(3)), which we call
two-dimensional elliptic geometry.

Lines in elliptic geometry are defined as great circles of the sphere S2, an-
gles and distances are defined as in spherical geometry, and the trigonometry
of triangles in elliptic geometry is the same as in spherical geometry. More
generally, one can say that elliptic geometry is locally the same as spheri-
cal, but these geometries are drastically different globally. In particular, in
elliptic geometry

• one and only line passes through any two distinct points;

• for a given line and any given point (except one, called the pole of that
line) there exists a unique perpendicular to that line passing through the
point.

The relationship between the two geometries is best expressed by the fol-
lowing statement, which yields simple proofs of the statements about elliptic
geometry made above,

6.7.2. Theorem. There exists a surjective morphism

D : (S2 : O(3))→ (Ell2 : O(3)),

of spherical geometry onto elliptic geometry which is a local isomorphism (in
the sense that any domain contained in a half-sphere is mapped bijectively
and isometrically onto its image).

Proof. The map D is the obvious one: D : x 7→ (x,−x), while the
homomorphism of the transformation groups is the identity isomorphism.
All the assertions of the theorem are immediate. �
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As we noted above, globally the two geometries are very different. Being
metric spaces, they are topological spaces (in the metric topology) which are
not even homeomorphic: one is a two-sided surface (S2), the other (RP 2) is
one-sided (it contains a Möbius strip).

6.8. Problems

In all the problems below a, b, c are the sides and α, β, γ are the opposite
angles of a spherical triangle. The radius of the sphere is R = 1.

6.1. Prove the first cosine theorem on the sphere S2:
cos a = cos b cos c+ sin b sin c cosα.

6.2. Prove the second cosine theorem on the sphere S2:
cosα + cos β cos γ = sin β sin γ cos a.

6.3. Prove that a+ b+ c < 2π.

6.4. Does the Pythagorean theorem hold in spherical geometry? Prove
the analogs of that theorem stated in Corollary 6.5.3.

6.5. Does the Moscow–New York flight fly over Spain? Over Greenland?
Check your answer by stretching a thin string between Moscow and NY on
a globe.

6.6. Find the infimum and the supremum of the sum of the angles of an
equilateral triangle on the sphere.

6.7. The city A is located at the distance 1000km from the cities B
and C, the trajectories of the flights from A to B and from A to C are
perpendicular to each other. Estimate the distance between B and C. (You
can take the radius of the Earth equal to 6400km)

6.8*. Find the area of the spherical disk of radius r (i.e., the domain
bounded by a spherical circle of radius r).

6.9. Find fundamental domains for the actions of the isometry groups
of the tetrahedron, the cube, the dodecahedron, and the icosahedron on the
2-sphere and indicate the number of their images under the corresponding
group action.

6.10. Prove that any spherical triangle has a circumscribed and an in-
scribed circle.

6.11. Prove that the medians of a spherical triangle intersect at one
point.
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6.12. Prove that the altitudes of a spherical triangle always intersect at
one point.

6.13. Suppose that the medians and the altitudes of a spherical triangle
interest at the points M and A respectively. Can it happen that M = A?
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Chapter 7

THE POINCARÉ DISK MODEL
OF HYPERBOLIC GEOMETRY

In this chapter, we begin our study of the most popular of the non-
Euclidean geometries – hyperbolic geometry, concentrating on the case of
dimension two. We avoid the intricacies of the axiomatic approach (which
will only be sketched in Chapter 10) and define hyperbolic plane geometry
via the beautiful Poincaré disk model, which is the geometry of the disk
determined by the action of a certain transformation group acting on the
disk (namely, the group generated by reflections in circles orthogonal to the
boundary of the disk).

In order to describe the model, we need some facts from Euclidean plane
geometry, which should be studied in high school, but in most cases unfortu-
nately aren’t. So we begin by recalling some properties of inversion (which
will be the main ingredient of the transformation group of our geometry) and
some constructions related to orthogonal circles in the Euclidean plane. We
then establish the basic facts of hyperbolic plane geometry and finally digress,
following Poincaré’s argumentation from his book Science et Hypothèse (for
the English version, see [12]) about epistomological questions relating this
geometry (and other geometries) to the physical world.

7.1. Inversion and orthogonal circles

7.1.1. Inversion and its properties. The main tool that we will need in
this chapter is inversion, a classical transformation from elementary plane
geometry. Denote by R the plane R2 with an added extra point (called the
point at infinity and denoted by ∞). The set R := R2 ∪ ∞ can also be
interpreted as the complex numbers C with the “point at infinity” added; it
is then called the Riemann sphere and denoted by C.

An inversion of center O ∈ R2 and radius r > 0 is the transformation of
R that maps each point M to the point N on the ray OM so that

|OM | · |ON | = r2 (7.1)

and interchanges the points O and ∞. Sometimes inversions are called re-
flections with respect to the circle of inversion, i.e., the circle of radius r
centered at O.
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There is a simple geometric way of constructing the image of a point M
under an inversion of center O and radius r: draw the circle of inversion,
lower the perpendicular to OM from M to its intersection point T with the
circle and construct the tangent to the circle at T to its intersection point N
with the ray OM ; then N will be the image of M under the given inversion.
Indeed, the two right triangles OMT and OTN are similar (they have a
common acute angle at O), and therefore

|OM |
|OT | =

|OT |
|ON | ,

and since |OT | = r, we obtain (7.1).

O
r

M

N

T

Figure 7.1. Inversion |OM | · |ON | = r2

If the extended plane R is interpreted as the Riemann sphere C, then
an example of an inversion (of center O and radius 1) is the map z 7→ 1/z,
where the bar over z denotes complex conjugation.

It follows immediately from the definition that inversions are bijections
of R = C that leave the points of the circle of inversion in place, “turn the
circle inside out” in the sense that points inside the circle are taken to points
outside it (and vice versa), and are involutions (i.e., the composition of an
inversion with itself is the identity). Further, inversions possess the following
important properties.

(i) Inversions map any circle or straight line into a circle or straight line.
In particular, lines passing through the center of inversion are mapped to
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themselves (but are “turned inside out” in the sense that O goes to ∞ and
vice versa, while the part of the line inside the circle of inversion goes to the
outside part and vice versa); circles passing through the center of inversion
are taken to straight lines, while straight lines not passing through the center
of inversion are taken to circles passing through that center (see Fig.7.2).

∞

Figure 7.2. Images of circles and lines under inversion

(ii) Inversions preserve (the measure of ) angles; here by the measure of
an angle formed by two intersecting curves we mean the ordinary (Euclidean)
measure of the angle formed by their tangents at the intersection point.

(iii) Inversions map any circle or straight line orthogonal to the circle of
inversion into itself. Look at Fig.7.3, which shows two orthogonal circles CO
and CI of centers O and I, respectively.

It follows from the definition of orthogonality that the tangent from the
center O of CO to the other circle CI passes through the intersection point T
of the two circles. Now let us consider the inversion of center O and radius
r = |OT |. According to property (iii) above, it takes the circle CI to itself;
in particular, the point M is mapped to N , the point T (as well as the other
intersection point of the two circles) stays in place, and the two arcs of CI
cut out by CO are interchanged. Note further that, vice versa, the inversion
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in the circle CI transforms CO in an analogous way.

O M

N

T

r

I

Figure 7.3. Orthogonal circles

The (elementary) proofs of properties (i)–(iii) are left to the reader (see
Exercises 7.1–7.3).

7.1.2. Construction of orthogonal circles. We have already noted the
important role that orthogonal circles play in inversion (see 7.1.1.(iii)). Here
we will describe several constructions of orthogonal circles that will be used
in subsequent sections.

7.1.3. Lemma. Let A be a point inside a circle C centered at some
point O; then there exists a circle orthogonal to C such that the reflection in
this circle takes A to O.

Proof. From A draw the perpendicular to line OA to its intersection T
with the circle C (see Fig.7.4).

O T

I

A

Figure 7.4. Inversion taking an arbitrary point A to O
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Draw the tangent to C at T to its intersection at I with OA. Then the
circle of radius IT centered at I is the one we need. Indeed, the similar
right triangles IAT and ITO yield |IA|/|IT | = |IT |/|IO|, whence we obtain
|IA| · |IO| = |IT |2, which means that O is the reflection of A in the circle of
radius |IT | centered at I, as required. �

7.1.4. Corollary. (i) Let A and B be points inside a circle C0 not lying
on the same diameter; then there exists a unique circle orthogonal to C0 and
passing through A and B.

(ii) Let A be a point inside a circle C0 and P a point on C0, with A and P
not lying on the same diameter; then there exists a unique circle orthogonal
to C0 passing through A and P .

(iii) Let P and Q be points on a circle C0 of center O such that PQ is not
a diameter; then there exists a unique circle C orthogonal to C0 and passing
through P and Q.

(iv) Let A be a point inside a circle C0 of center O and D be a circle
orthogonal to C0; then there exists a unique circle C orthogonal to both C0
and D and passing through A.

Proof. To prove (i), we describe an effective step-by-step construction,
which can be carried out by ruler and compass, yielding the required circle.
The construction is shown on Figure 7.5, with the numbers in parentheses
near each point indicating at which step the point was obtained.

First, we apply Lemma 7.1.3, to define an inversion ϕ taking A to the
center O of the given circle; to do this, we lower a perpendicular from A to
OA to its intersection T (1) with C, then draw the perpendicular to OT from
T to its intersection I (2) with OA; the required inversion is centered at I
and is of radius |IT |. Joining B and I, we construct the tangent BS (3)
to the circle of the inversion ϕ and find the image B′ (4) of B under ϕ by
dropping a perpendicular from S to IB.

Next, we draw the line B′O and obtain the intersection points M,N of
this line with the circle of the inversion ϕ. Finally, we draw the circle C
passing through the points M,N, I. Then C “miraculously” passes through
A and B and is orthogonal to C0! Of course, there is no miracle in this: C
passes through A and B because it is the inverse image under ϕ of the line
OB′ (see 7.1.1(i)), it is orthogonal to C0 since so is OB′ (see 7.1.1(ii)).

Uniqueness is obvious in the case A = O and follows in the general case
by 7.1.1(i)-(ii). �
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A′ = 0 I(2)

T (1)

A

N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)

M(5)

B

B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)

S(3)

Figure 7.5. Circle orthogonal to C0 containing A,B

The proof of (ii) is analogous: we send A to O by an inversion ϕ, join O
and ϕ(P ) and continue the argument as above. �

To prove (iii), construct lines OP and OQ, draw perpendiculars to these
lines from P and Q respectively and denote by I their intersection point.
Then the circle of radius |IP | centered at I is the required one. Its uniqueness
is easily proved by contradiction. �

To prove (iv), we again use Lemma 7.1.3 to construct an inversion ϕ that
takes C0 to itself and sends A to O. From the point O, we draw the (unique)
ray R orthogonal to ϕ(L). Then the circle ϕ−1(R) is the required one. �

7.2. Definition of the disk model

7.2.1. The disk model of the hyperbolic plane is the geometry (H2 :M)
whose points are the points of the open disk

H2 :=
{

(x, y) ∈ R2 |x2 + y2 < 1
}
,

and whose transformation group M is the group generated by reflections in
all the circles orthogonal to the boundary circle A := {(x, y) : x2 +y2 = 1} of
H2, and by reflections in all the diameters of the circle A. NowM is indeed
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a transformation group of H2: the discussion in 7.1.1 implies that a reflection
of the type considered takes points of H2 to points of H2 and, being its own
inverse, we have the implication ϕ ∈M =⇒ ϕ−1 ∈M.

We will often call H2 the hyperbolic plane. The boundary circle A (which
is not part of the hyperbolic plane) is called the absolute.

7.2.2. We will see later thatM is actually the isometry group of hyper-
bolic geometry with respect to the hyperbolic distance, which will be defined
in the next chapter. We will see that although the Euclidean distance be-
tween points of H2 is always less than 2, the hyperbolic plane is unbounded
with respect to the hyperbolic distance. Endpoints of a short segment (in
the Euclidean sense!) near the absolute are very far away from each other in
the sense of hyperbolic distance.

Figure 7.6 gives an idea of what an isometric transformation (the simplest
one – a reflection in a line) does to a picture. Note that from our Euclidean
point of view, the reflection changes the size and the shape of the picture,
whereas from the hyperbolic point of view, the size and shape of the image
is exactly the same as that of the original. It should also be clear that
hyperbolic reflections reverse orientation.

H2

Figure 7.6. An isometry in the hyperbolic plane

7.3. Points and lines in the hyperbolic plane

7.3.1. First we define points of the hyperbolic plane simply as points of
the open disk H2. We then define the lines on the hyperbolic plane as the
intersections with H2 of the (Euclidean) circles orthogonal to the absolute as
well as the diameters (without endpoints) of the absolute (see Fig.7.7).
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O A

B

Figure 7.7. Lines on the hyperbolic plane

Note that the endpoints of the arcs and the diameters do not belong to
the hyperbolic plane: they lie in the absolute, whose points are not points of
our geometry.

Figure 7.7 shows that some lines intersect in one point, others have no
common points, and none have two common points (unlike lines in spherical
geometry). This is not surprising, because we have the following statement.

7.3.2. Theorem. One and only one line passes through any pair of
distinct points of the hyperbolic plane.

Proof. The theorem immediately follows from Corollary 7.1.4, (i). �

7.4. Perpendiculars

7.4.1. Two lines in H2 are called perpendicular if they are orthogonal in
the sense of elementary Euclidean geometry. When both are diameters, they
are perpendicular in the usual sense, when both are arcs of circles, they have
perpendicular tangents at the intersection point, when one is an arc and the
other a diameter, then the diameter is perpendicular to the tangent to the
arc at the intersection point.

7.4.2. Theorem. There is one and only one line passing through a
given point and perpendicular to a given line.

Proof. The theorem immediately follows from Corollary 7.1.4, (iv). �

7.5. Parallels and nonintersecting lines

7.5.1. Let l be a line and P be a point of the hyperbolic plane H2 not
contained in the line l. Denote by A and B the points at which l intersects
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the absolute. Consider the lines k = PA and m = PB and denote their
second intersection points with the absolute by A′ and B′. Clearly, the lines
k and m do not intersect l. Moreover, any line passing through P between k
and m (i.e., any line containing P and joining the arcs AA′ and BB′) does
not intersect l. The lines APA′ and BPB′ are called parallels to l through
P , and the lines between them are called nonintersecting lines with l.

l

H2

P

K

A
B

A′
B′

P

l

Figure 7.8. Perpendiculars and parallels

We have proved the following statement.

7.5.2. Theorem. There are infinitely many lines passing through a
given point P not intersecting a given line l if P /∈ l. These lines are all
located between the two parallels to l. �

This theorem contradicts Euclid’s famous Fifth Postulate, which, in its
modern formulation, says that one and only one parallel to a given line passes
through a given point. For more than two thousand years, many attempts to
prove that the Fifth Postulate follows from Euclid’s other postulates (which,
unlike the Fifth Postulate, were simple and intuitively obvious) were made by
mathematicians and philosophers. Had such a proof been found, Euclidean
geometry could have been declared to be an absolute truth both from the
physical and the philosophical point of view, it would have been an exam-
ple of facts that the German philosopher Kant included in the category of
synthetic apriori. For two thousand years, the naive belief among scientists
in the absolute truth of Euclidean geometry made it difficult for the would
be discoverers of other geometries to realize that they had found something
worthwhile. Thus the appearance of a consistent geometry in which the Fifth
Postulate does not hold was not only a crucial development in the history of
mathematics, but one of the turning points in the philosophy of science. In
this connection, see the discussion in Chapter 11.
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7.6. Sum of the angles of a triangle

7.6.1. Consider three points A,B,C not on one line. The three segments
AB, BC, CA (called sides) form a triangle with vertices A,B,C. The angles
of the triangle, measured in radians, are defined as equal to the (Euclidean
measure of the) angles between the tangents to the sides at the vertices.

7.6.2. Theorem. The sum of the angles α, β, γ of a triangle ABC is
less than two right angles:

α + β + γ < π .

Proof. In view of Lemma 7.1.3, we can assume without loss of generality
that A is O (the center of H2). But then if we compare the hyperbolic triangle
OBC with the Euclidean triangle OBC, we see that they have the same angle
at O, but the Euclidean angles at B and C are larger than their hyperbolic
counterparts (look at Fig.7.9), which implies the claim of the theorem. �

O = A

C

B

Figure 7.9. Sum of the angles of a hyperbolic triangle

It is easy to see that very small triangles have angles sums very close to
π, in fact the least upper bound of the angle sum of hyperbolic triangles is
exactly π. Further, the greatest lower bound of these sums is 0. To see this,
divide the absolute into three equal arcs by three points P,Q,R and construct
three circles orthogonal to the absolute passing through the pairs of points P
and Q, Q and R, R and P . These circles exist by Corollary 7.1.2, item (iii).
Then all the angles of the “triangle” PQR are zero, so its angle sum is zero.
Of course, PQR is not a real triangle in our geometry (its vertices, being
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on the absolute, are not points of H2), but if we take three points P ′, Q′, R′

close enough to P,Q,R, then the angle sum of triangle P ′Q′R′ will be less
than any prescribed ε > 0.

R

P

Q

A

B

C

Figure 7.10. Ordinary triangle and “triangle” with angle sum 0

7.7. Rotations and circles in the hyperbolic plane

We mentioned previously that distance between points of the hyperbolic
plane will be defined later. Recall that the hyperbolic plane is the geometry
(H2 :M), in which, by definition, M is the transformation group generated
by all reflections in all the lines of H2. If we take the composition of two
reflections in two intersecting lines, then what we get should be a “rotation”,
but we can’t assert that at this point, because we don’t have any definition
of rotation: the usual (Euclidean) definition of a rotation or even that of a
circle cannot be given until distance is defined.

But the notions of rotation and of circle can be defined without appealing
to distance in the following natural way: a rotation about a point P ∈ H2 is,
by definition, the composition of any two reflections in lines passing through
P . If I and A are distinct points of H2, then the (hyperbolic) circle of center
I and radius IA is the set of images of A under all rotations about I.

7.7.1. Theorem. A (hyperbolic) circle in the Poincaré disk model is a
Euclidean circle, and vice versa, any Euclidean circle inside H2 is a hyperbolic
circle in the geometry (H2 :M).

Proof. Let C be a circle of center I and radius IA in the geometry
(H2 : M). Using Lemma 7.1.3, we can send I to the center O of H2 by a
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reflection ϕ. Let ρ be a rotation about I determined by two lines l1 and
l2. Then the lines d1 := ϕ(l1) and d2 := ϕ(l2) are diameters of the absolute
and the composition of reflections in these diameters is a Euclidean rotation
about O (and simultaneously a hyperbolic one). This rotation takes the
point ϕ(A) to a point on the circle C ′ of center O and radius Oϕ(A), which
is simultaneously a hyperbolic and Euclidean circle. Now by Corollary 7.1.4
item (i), the inverse image of ϕ−1(C ′) will be a (Euclidean!) circle. But
ϕ−1(C ′) coincides with C) by construction, so C) is indeed a Euclidean circle
in our model.

The proof of the converse assertion is similar and is left to the reader (see
Exercise 7.7).

7.8. Hyperbolic geometry and the physical world

In his famous book Science et Hypothèse, Henri Poincaré describes the
physics of a small “universe” and the physical theories that its inhabitants
would create. The universe considered by Poincaré is Euclidean, plane (two-
dimensional), has the form of an open unit disk. Its temperature is 100◦

Farenheit at the center of the disk and decreases linearly to absolute zero at
its boundary. The lengths of objects (including living creatures) are propor-
tional to temperature.

How will a little flat creature endowed with reason and living in this disk
describe the main physical laws of his universe? The first question he/she
may ask could be: Is the world bounded or infinite? To answer this question,
an expedition is organized; but as the expedition moves towards the boundary
of the disk, the legs of the explorers become smaller, their steps shorter –
they will never reach the boundary, and conclude that the world is infinite.

The next question may be: Does the temperature in the universe vary?
Having constructed a thermometer (based on different expansion coefficients
of various materials), scientists carry it around the universe and take mea-
surements. However, since the lengths of all objects change similarly with
temperature, the thermometer gives the same measurement all over the uni-
verse – the scientists conclude that the temperature is constant.

Then the scientists might study straight lines, i.e., investigate what is
the shortest path between two points. They will discover that the shortest
path is what we perceive to be the arc of the circle containing the two points
and orthogonal to the boundary disk (this is because such a circular path
brings the investigator nearer to the center of the disk, and thus increases the
length of his steps). Further, they will find that the shortest path is unique
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and regard such paths as “straight lines”.
Continuing to develop geometry, the inhabitants of Poincaré’s little flat

universe will decide that there is more than one parallel to a given line passing
through a given point, the sum of angles of triangles is less than π, and obtain
other statements of hyperbolic geometry.

Thus they will come to the conclusion that they live in an infinite flat
universe with constant temperature governed by the laws of hyperbolic ge-
ometry. But this not true – their universe is a finite disk, its temperature is
variable (tends to zero towards the boundary) and the underlying geometry
is Euclidean, not hyperbolic!

The philosophical conclusion of Poincaré’s argument is not agnosticism –
he goes further. The physical model described above, according to Poincaré,
shows not only that the truth about the universe cannot be discovered, but
that it makes no sense to speak of any “truth” or approximation of truth in
science – pragmatically, the inhabitants of his physical model are perfectly
right to use hyperbolic geometry as the foundation of their physics because
it is convenient, and it is counterproductive to search for any abstract Truth
which has no practical meaning anyway.

This conclusion has been challenged by other thinkers, but we will not
get involved in this philosophical discussion.

7.8. Problems

7.1. Prove that inversion maps circles and straight lines to circles or
straight lines.

7.2. Prove that inversion maps any circle orthogonal to the circle of
inversion into itself.

7.3. Prove that inversion is conformal (i.e., it preserves the measure of
angles).

7.4. Prove that if P is point lying outside a circle γ and A, B are the
intersection points with the circle of a line l passing through P , then the
product |PA| · |PB| (often called the power of P with respect to γ) does not
depend on the choice of l.

7.5. Prove that if P is point lying inside a circle γ and A, B are the
intersection points with the circle of a line l passing through P , then the
product |PA| · |PB| (often called the power of P with respect to γ) does not
depend on the choice of l.
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7.6. Prove that inversion with respect to a circle orthogonal to a given
circle C maps the disk bounded by C bijectively onto itself.

7.7. Prove that any Euclidean circle inside the disk model is also a
hyperbolic circle. Does the ordinary (Euclidean) center coincide with its
“hyperbolic center”?

Figure 7.11. A pattern of lines in H2

7.8. Study Figure 7.11. Does it demonstrate any tilings of H2 by regular
polygons? Of how many sides? Do you discern a Coxeter geometry in this
picture with “hyperbolic Coxeter triangles” as fundamental domains? What
are their angles?

7.9. Prove that any inversion of C preserves the cross ratio of four points:

〈z1, z2, z3, z4〉 :=
z3 − z1
z3 − z2

:
z4 − z1
z4 − z2

.

7.10*. Using complex numbers, invent a formula for the distance between
points on the Poincaré disk model and prove that “symetry with respect to
straight lines” (i.e., inversion) preserves this distance.
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7.11. Prove that hyperbolic geometry is homogeneous in the sense that
for any two flags (i.e., half planes with a marked point on the boundary)
there exists an isometry taking one flag to the other.

7.12. Prove that the hyperbolic plane (as defined via the Poincaré disk
model) can be tiled by regular pentagons.

7.13. Define inversion (together with the center and the sphere of inver-
sion) in Euclidean space R3, state and prove its main properties: inversion
takes planes and spheres to planes or spheres, any sphere orthogonal to the
sphere of inversion to itself, any plane passing through the center of inversion
to itself.

7.14. Using the previous exercise, prove that any inversion in R3 takes
circles and straight lines to circles or straight lines.

7.15. Prove that any inversion in R3 is conformal (preserves the measure
of angles).

7.16. Construct a model of hyperbolic space geometry on the open unit
ball (use Exercise 7.13).

7.17. Prove that there is a unique common perpendicular joining any
two nonintersecting lines.

7.18. Let A∞P and A∞P
′ be two parallel lines (with A∞ a point on

the absolute). Given a point M on A∞P , we say that M ′ ∈ A∞P
′ is the

corresponding point to M if the angles A∞MM ′ and A∞M
′M are equal.

Prove that any point M ∈ A∞P has a unique corresponding point on the
line A∞P

′.

7.19. The locus of all points corresponding to a point M on A∞P and
lying on all the parallels to A∞P is known as a horocycle. What do horocycles
look like in the Poincaré disk model?
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Chapter 8

THE POINCARÉ HALF PLANE MODEL

In this chapter, we will present another model of the hyperbolic plane,
also due to Poincaré. This model is also a geometry in the sense of Klein,
and we will learn in subsequent chapters that it is actually isomorphic (as a
geometry) to the disk model studied in Chapter 7.

The points of the half plane model are simply complex numbers with
positive imaginary part (the part of the complex numbers that lies “above”
the real axis). Such a configuration of points does not appear to be as
symmetric as that of the disk, but the half plane model has the advantage
that the elements of its transformation group (which is a concrete subgroup
of the Möbius group of linear fractional transformations, see the definition
below) are defined by simple explicit formulas and there is a neat formula
for the distance between two points.

It will turn out that the isometry group with respect to this distance is
actually the transformation group of the model, so that this model shows
that hyperbolic geometry is a geometry in the traditional sense: its structure
is defined by a distance function. This will allow us to study “hyperbolic
trigonometry”, and understand the meaning of certain mysterious “absolute
constants” that arise in hyperbolic plane geometry.

In order to define the half plane-model, we will need to specify certain
transformation groups acting on the Riemann sphere C = C ∪ ∞, and we
begin this chapter by studying these transformations.

8.1. Affine and linear-fractional transformations of C

In this section, we will be studying various linear-fractional groups acting
on the Riemann sphere C. An efficient tool in our constructions will be the
notion of cross ratio, with which we begin.

8.1.1. Cross ratio of four complex numbers. The cross-ratio of four
complex numbers z1, z2, z3, z4 ∈ C is defined as the number

〈z1, z2, z3, z4〉 :=
z3 − z1
z3 − z2

:
z4 − z1
z4 − z2

. (8.1)

The cross ratio 〈z1, z2, z3, z4〉 possesses the following properties.
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8.1.2. Affine transformations. A transformation of C onto itself of the
form z 7→ az + b, ∞ 7→ ∞, where a, b ∈ C and a 6= 0, is called affine.
In particular, if a = 1, the corresponding affine transformation is a parallel
translation (by the vector OB, where B is the point of the complex plane
corresponding to the complex number b).

8.1.3. Theorem. Affine transformations take straight lines to straight
lines, circles to circles, and preserve angles and cross ratios.

Proof. Denoting a = reiϕ, r > 0, we can write

z 7→ eiϕz 7→ r(eiϕz) 7→ (reiϕz) + b = az + b,

which shows that any affine transformation is the composition of a rotation
(by the angle ϕ), a homothety (with coefficient r), and a parallel translation
(by the vector b). This implies the theorem, because rotations, homotheties,
and translations obviously possess all four of the properties asserted by the
theorem. The least obvious of these facts is that homotheties preserve cross
ratio, but this follows immediately from the fact that homothety in the plane
of the complex variable is multiplication by a real number (which will cancel
out in each of the fractions of the cross ratio). �

8.1.4. Linear-fractional transformations. A transformation of C given
on C \ {−d/c} by

z 7→ az + b

cz + d
, where ac− bd 6= 0 , (8.2)

which takes the point −d/c to ∞ and ∞ to a/c is called linear-fractional.
The set of all linear-fractional transformations form a group, called the

Möbius group and denoted by Möb.
Indeed, the fact that the composition of two linear-fractional transforma-

tions is a linear-fractional transformation can be shown as follows: substitute
(a1z + b1)/(c1z + d1) for z in the expression (az + b)/(cz + d), which yields
(after some manipulations)

(aa1 + bc1)z + (ab1 + bd1)

(ca1 + dc1)z + (cb1 + dd1)
; (8.3)

but this expression is of the same form as (8.2), so the composition is indeed
linear-fractional.
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The fact that the inverse of any linear-fractional transformation is a
linear-fractional transformation is also easy to prove. To do that, it suf-
fices to find values of a1, b1, c1, d1 (in terms of a, b, c, d) so that the expression
(8.3) reduces to (1 · z + 0)/(0 · z + 1); such values must satisfy the system of
four linear equations in four unknowns

aa1 + bc1 = 1, ab1 + bd1 = 0, ca1 + dc1 = 0, cb1 + dd1 = 1,

but this system obviously has a nonzero solution.
The following property of linear-fractional transformations gives an in-

sight in the geometric meaning of this class of transformations and turns out
to be extremely useful in constructing and analyzing them.

8.1.4. Lemma. Let z1, z2, z3 and w1, w2, w3 be two triplets of distinct
points of the Riemann sphere. Then there exists a unique linear-fractional
transformation taking zi to wi, i = 1, 2, 3.

8.1.5. Theorem. Linear-fractional transformations take straight lines
and circles to straight lines or circles, and preserve angles and cross ratios.

Proof. As can be easily checked, the image of the point z under the
linear-fractional transformation (8.1) may be rewritten as

az + b

cz + d
=
a

c
+

bc− ad
c(cz + d)

,

and therefore can be regarded as the composition

z 7→ cz + d =: z1 7→ cz1 =: z2 7→ 1/z2 =: z3 7→ (bc− ad)z3 =: z4 7→

7→ a

c
+ z4 =

a

c
+

bc− ad
c(cz + d)

=
az + b

cz + d

of an affine transformation, a homothety, a transformation taking z to 1/z,
another homothety, and a parallel translation. About all these transforma-
tions, except z 7→ 1/z, we know that they take straight lines to straight lines,
circles to circles, and preserve angles and cross ratios.

Concerning the transformation z 7→ 1/z, a straightforward if somewhat
tedious calculation shows that it preserves cross ratios (one replaces zi by
1/zi, i = 1, 2, 3, 4, and the obtained rather cumbersome fractions, after can-
cellations, reacquire the exact form of the original ratio). Further, since
1/z = 1/z, the transformation z 7→ 1/z is the composition of a reflection, an
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inversion, and another reflection. But we know that inversion takes straight
lines or circles to straight lines or circles and preserves angles (see 7.1.1, items
(i)–(iii)), which proves the theorem. �

8.1.6. Two examples of linear-fractional transformations. Linear-frac-
tional transformations are the subject matter of an important chapter of
the theory of a complex variable; in it, one studies what types of domains
can be mapped into each other by linear-fractional transformations. We will
not need the general theory of this study, but the two following examples of
linear-fractional transformations will be very important for what follows.

Example 8.1. The linear-fractional transformation

Ω : z 7→ i · 1 + z

1− z
maps the unit disk D2 := {z ∈ C : |z|2 ≤ 1} to the upper half plane
C+ := {z ∈ C : Im z > 0}. Indeed, it is easy to verify that the points −1, i, 1
are mapped to 0,−1,∞, respectively, which means (by Theorem 8.1.3) that
the boundary circle of the disk D2 is mapped to the real axis. A simple
computation shows that |z| < 1 implies that Im(Ω(z)) >0, as required.

Example 8.2. The linear-fractional transformations

z 7→ az + b

cz + d
and z 7→ a(−z) + b

c(−z) + d
, (8.3)

where a, b, c, d ∈ R and ac−bd > 0 take the upper half plane to itself, the first
of them preserving, the second, reversing the orientation of the half plane.

For the first of these formulas, it is obvious that points of the real axis
are taken to points of the real axis; further, if z, Imz > 0, is any point in the
upper half-plane, then

Im
az + b

cz + d
= Im

(az + b)(cz + d)

|cz + d|2 = Im
adz + bcz

|cz + d|2 =
(ad− bc)Im z

|cz + d|2 ,

which is positive iff ac− bd > 0.
The second formula differs from the first by a transformation of the form

z 7→ −z, which obviously takes the upper half plane to itself, but reverses
the orientation.

The set of all linear-fractional transformations (8.3) constitute a group
under composition, which we denote by RMöb. Indeed, this follows from the
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fact that the set of all linear-fractional transformations of the form (8.2) is
a group and a composition of transformations taking the half plane to itself
take the half plane to itself. The group RMöb will be the transformation
group of the half plane model.

8.2. The Poincaré half-plane model

The Poincaré half-plane model is the geometry consisting of the points
z ∈ C such that Im z > 0, supplied with the transformation group RMöb.
In this geometry, straight lines are defined either as open half circles (in the
upper half-plane) perpendicular to the line Im z = 0 (which is called the
absolute) or as the open rays {z ∈ C : Rez = x0 ∈ R, Im z > 0}.

1

i

Figure 8.1. “Straight lines” in the half-plane model

8.3. Perpendiculars and parallels

The situation with perpendiculars and parallels in the half-plane model
is quite similar to that for the disk model, except that the corresponding
pictures look very different.

8.3.1. Theorem Given a point P and a line l in the half plane model,
there exists a unique perpendicular to l passing through P .

l

P ′

K′

P

K

P

K

l

Figure 8.2. Perpendiculars in the half-plane model
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Proof. There are two cases to consider (depending on whether l is a half-
line or a half-circle), see Figure 8.2. In the first, the theorem follows from
Exercise 8.2, in the second, the proof is obvious. �

8.3.2. Theorem. Given a point P and a line l in the half plane model,
there exist infinitely many lines passing through P and not intersecting l.
All these nonintersecting lines lie between the two parallels to l from P .

Proof. There are two cases to consider (depending on whether l is a half-
line or a half-circle); see Figure 8.3. In the first, the theorem follows from the
obvious fact there is exactly one half circle centered on the real axis passing
through a point X on the real axis and a point P outside it, in the second,
the proof is immediate. �

P

l

P

l

Figure 8.3. Parallels in the half-plane model

8.4. Isometries w.r.t. Möbius distance

Let us define the Möbius distance µ(A,B) between two points A,B of the
upper half-plane by setting

µ(A,B) := | ln(〈A,B,X, Y 〉)|,

where X and Y are the intersection points of the line (AB) with the abso-
lute if the points A,B have different real parts (note that 〈A,B,X, Y 〉 ∈ R
because the four points lie on a circle, so that the log is well defined); if
Re(A) = Re(B) = x0, we set

µ(A,B) := | ln(〈A,B,∞, X〉)|,

where X is the point with coordinates (x0, 0).



99

8.4.1. Theorem. The isometry group of the upper half plane with re-
spect to the distance µ coincides with the group RMöb described in Example
8.1.

The proof is a tedious verification that we omit. �

8.5. Problems

8.1. Prove that
(a) linear-fractional transformations preserve the cross-ratio of four points

on the Riemann sphere C;
(b) a linear-fractional transformation is uniquely determined by three

points and their images.

8.2. Let l be a straight line in the Euclidean plane, γ a circle with center
O on l, P a point not on l and not on the perpendicular to l from O. Prove
that there exists a unique circle passing through P , orthogonal to γ, and
centered on l.

8.3. Let l be a straight line in the Euclidean plane, γ a circle with
diameter AB on l, P a point not on l and not in γ. Prove that there exists a
unique circle passing through P and A with center on l, and a unique circle
passing through P and B with center on l.

8.4. Prove that all motions (i.e., orientation-preserving isometries) of the
Poincaré disk model are of the form

z 7→ az + b

bz + a
,

where a and b are complex numbers such that |a|2 = |b|2 = 1.

8.5. Show that there exists an isometry of the half-plane model that
takes any flag to any other flag (a flag is a triple consisting of a line in the
hyperbolic plane, one of the two half-planes that the line bounds, and a point
on that line).

8.6*. Find a formula for the area of a triangle in hyperbolic geometry.
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Chapter 9

THE CAYLEY–KLEIN MODEL

In this chapter, we study one more model of hyperbolic plane geometry –
the Cayley–Klein model. Its set of points consists of all the points of the open
disk (just as in the case of the Poincaré disk model) and its transformation
group is isomorphic toM (the transformation group of the Poincaré model),
but the action of M in the two models is not the same. As a result, the
lines in the two models look very different: instead of arcs of circles as in the
Poincaré model, in the second model lines are open chords of the disk.

Another essential difference between our study of the two models is in the
approach to the definition of the Cayley–Klein model as a geometry (in the
sense of Klein), i.e., the definition of its transformation group. This is done in
a more traditional way: we will begin by defining the distance between points
and then introduce the transformation group of the geometry as the isometry
group of this distance, i.e., the group of all distance-preserving bijections of
its set of points.

9.1. Isometry and the Cayley–Klein model

9.1.1. The distance function. Let H2 be the interior of the unit disk
on the Euclidean plane and let A and B be points of H2. Suppose the

(Euclidean) line AB intersects the boundary of the disk H2
at the points X

and Y , the points Y,A,B,X appearing on the line AB in that order (see
Fig.9.1).

A

B

Y

X

Figure 9.1. Line in the Cayley–Klein model
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Then the distance d between the points A and B is defined as

d(A,B) :=
1

2

∣∣∣∣log
|AX|
|BX| ·

|AY |
|BY |

∣∣∣∣ . (9.1)

The coefficient 1/2 in the right-hand side of (9.1) can be replaced by any
other positive real number c – all such distances define the same geometry
(up to isomorphism, but not up to isometry). The reason for this strange
choice (c = 1/2 rather than the more natural c = 1) is that the coefficient
c = 1/2 leads to more elegant formulas than c = 1 and gives the same metric
as in the Poincaré model.

Note that if the points Y,A,B,X are ordered on the line AB as shown
in the figure (and A 6= B), then the expression under the logarithm sign is
greater than 1 and therefore the distance between A and B is positive. Note
further that if we introduce coordinates on the line AB, placing the origin
“to the left” of Y and assigning the real numbers y, a, b, x to the points
Y,A,B,X, respectively, then the expression under the logarithm sign can
rewritten as the following cross ratio

x− a
x− b :

y − a
y − b = 〈a, b, x, y〉.

This cross ratio looks very similar to the one we used to define the distance
in the half plane model, but it should be stressed that here we are dealing
with real numbers rather than complex ones.

9.1.2. Properties of the distance function. The distance function d given
by (9.1) defines a metric on the open disk H2, i.e.,

(i) d(A,B) ≥ 0, and d(A,B) = 0 if and only if A = B.

(ii) d(A,B) = d(B,A).

(iii) d(A,B) + d(B,C) ≥ d(A,C).

Proof. Item (i) obviously holds: the distance d(A,B) between distinct
points A and B is positive (as we have shown above), while if A = B, then
the denominators in (9.1) cancel, leaving us with log(1)=0.

Item (ii) follows from the obvious formula

x− a
x− b :

y − a
y − b =

(x− b
x− a :

y − b
y − a

)−1
.
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Finally, item (iii) can be proved by using projective transformations.
Since we won’t be using (iii) in what follows, we postpone its proof to Chapter
12 (see Exercise 12.13).

9.1.3. Definition of the Cayley–Klein model. As explained above, we
will define the geometry (in the sense of definition 1.4.1) of the Cayley–
Klein model by taking for its transformation group the isometry group of
the distance d, i.e., the group of all distance-preserving bijections of H2,
which we denote by N . (We will prove later that N is isomorphic to M,
the transformation group of the Poincaré disk model, but this fact does not
concern us now.)

Thus we define the Cayley–Klein model of the hyperbolic plane as the
geometry

(
H2 : N

)
, where N is the isometry group of the open unit disk H2

with respect to the distance (9.1).

9.1.4. Lines and points in the Cayley–Klein model. The points of the
Cayley–Klein model, as explained above, are simply the points of the open
unit disk H2 in R2. The boundary of the disk is traditionally called the
absolute, and its points do not belong to our geometry.

The lines of our geometry are defined as the chords of the absolute (with-
out their endpoints). This definition immediately implies the fundamental
facts that one and only one line passes through any two distinct points and
that two noncoinciding lines either don’t intersect or have exactly one com-
mon point.

In the two following sections, just as in the corresponding sections in the
previous two chapters, we shall derive the basic facts of hyperbolic geometry
in the case of the model under consideration.

9.2. Parallels in the Cayley–Klein model.

The situation with parallelism in this model is similar to that in the
Poincaré disk model, except that the picture looks slightly different (recti-
linear chords instead of arcs of circles).

9.2.1. Definitions. Given a line l = AB and a point P not on this line,
it is easy to describe the lines that pass through P and do not intersect l.
Indeed, denoting by l and m the lines passing through P and through the
intersection points X, Y of line l with the absolute, we see that any line
passing through P and lying between k and m does not intersect line l; these
lines are called nonintersecting lines w.r.t. AB, while the lines k and m are
the parallels to AB passing through P (see Figure 9.2).
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More generally, two lines (i.e., open chords of the disk) are parallel if they
have no common points in H2 and one common point on the absolute; if two
lines (chords) have no common points at all (in the closed disk H2), then
they are called nonintersecting.

P

A

B

Figure 9.2. Parallels and nonintersecting lines

We have shown that there are infinitely many lines passing through a
given point P not intersecting a given line l = AB if P /∈ l; these lines are
all located between the two parallels to l passing through P .

9.2.2. Remark. Note that the set of of all lines passing through a fixed
point of the absolute

Figure 9.3. Parallels filling the hyperbolic plane
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point of the absolute fills the entire hyperbolic plane H2 (see Figure 9.3,
where both disk models are pictured).

This means that, by using the metric on each of these lines, we can try
to define the notion of “parallel translation” and therefore that of a “free
vector” of sorts in hyperbolic geometry. This might lead one to think that
one can associate a linear space with our geometry. Unfortunately, this is
not the case (see the discussion in 9.4.1 and in Exercise 9.7).

9.3. Perpendiculars in the Cayley–Klein model.

9.3.1. What they look like. Unlike perpendiculars in the Poincaré disk
model, perpendicular lines in the Cayley–Klein model do not form right an-
gles in the Euclidean sense. An exactly constructed example is shown in
Fig.9.3 (the nontrivial geometric construction by means of which this “hy-
perbolically perpendicular straight line” was drawn does not appear on the
figure, and will be discussed in the next chapter, in 10.1.4).

X Y

P

H

Figure 9.4. Strange looking perpendicular

9.3.2. Definitions. Before discussing perpendicularity, we must define
what perpendicular lines are. To do that, we first define a reflection with
respect to a given line as the nonidentical isometry of H2 that takes each
point of the given line to itself. Now we can define two lines as perpendicular
if the reflection with respect to one of them takes the other line to itself. It is
true that there exists one and only one perpendicular to a given line passing
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through a given point, but the proof of this fact directly in the Cayley–Klein
model is quite difficult and is omitted.

9.3.3. Remark. It should be stressed that in our model the “hyperbolic
measure” of angles is in general not equal to their Euclidean measure. In
particular, triangles in the Cayley–Klein model, which look like rectilinear
Euclidean triangles, have angle sums less than π (although visually this is
does not seem to be the case).

9.4. The hyperbolic line and relativity

In this section, we digress about the distance function on hyperbolic
straight lines and point out a remarkable relationship between the compo-
sition of shifts on such a line and the additivity of velocities in the Special
Relativity Theory of Einstein. But we begin with a general remark concern-
ing vectors in hyperbolic geometry.

9.4.1. Remark about free vectors. The notion of free vector in Euclidean
geometry, defined as an equivalence class of equal fixed vectors, allows to
associate to the Euclidean plane a two-dimensional real vector space whose
elements are precisely the free vectors of the Euclidean plane. Any free vector
also defines parallel shifts of the entire plane in a natural way. All this is
possible because at each point of the Euclidean plane there is one and only
one (fixed) vector pointing in the same direction and having the same length
as a given (fixed) vector. On the hyperbolic plane supplied with a metric, we
can say when two vectors have the same length, but the expression “point
in the same direction” is meaningless (compare with Remark 9.2.2), so that
there is no well-defined notion of parallel shift. However, the notion of parallel
shift along a fixed hyperbolic straight line makes sense, and we discuss it in
the next subsection.

9.4.2. Adding shifts and velocities. Let us distinguish some hyperbolic
straight line in the Cayley–Klein model (i.e., an open chord of the open disk
H2) and parametrize it by an appropriate Euclidean parameter x so that it
is isometric to the open interval (−1, 1). Let v be a real number of absolute
value less than 1. Consider the map

Tv : [−1, 1]→ [−1, 1], x 7→ x+ v

xv + 1
.

It is easy to prove that Tv is a bijection of the closed interval [−1, 1] to itself
leaving its endpoints in place and its restriction to the open interval (−1, 1)
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is an isometry with respect to the hyperbolic distance (for the details, see
Exercise 9.9). This isometry can therefore be regarded as the parallel shift
along the given hyperbolic line by the vector v.

Let us calculate the composition of two parallel shifts by the vectors v1
and v2:

x 7→ x+ v1
xv1 + 1

7→
( x+ v2
xv2 + 1

+ v1

)/( x+ v2
xv2 + 1

v1 + 1
)

=

=
(
x+

v1 + v2
1 + v1v2

)/(
x
v1 + v2
1 + v1v2

+ 1
)

;

we see that the composition Tv2 ◦ Tv1 is exactly the parallel shift Tv, where v
is defined by the formula

v :=
v1 + v2
1 + v1v2

. (9.1)

Thus we have proved that the composition of two parallel shifts by vectors
v1 and v2 is a parallel shift by the vector v given by formula (9.1).

The reader will surely have noticed that this formula is the analog of the
famous Einstein formula for the addition of velocities:

v :=
v1 + v2
c+ v1v2

,

where c is the speed of light. The two formulas differ only in the choice of the
scale of velocity, in our hyperbolic scale the “speed of light” is set equal to 1.
Note that in both situations, if the “velocity vectors” v1 and v2 are very small
as compared to the constant c (or 1 in our case), then v is approximately
equal to v1 + v2.

The above observation is an argument in favor of our universe being
hyperbolic rather than Euclidean. (Actually, most physicists believe it is
neither.)

9.5. Problems

9.1. Prove that for three points A,B,C on one line, where B is between
A and C, one has d(A,B) + d(B,C) = d(A,C).

9.2. Prove that the equality d(A,B) + d(B,C) = d(A,C) implies that
the points A,B,C lie on one line and B is between A and C.

9.3. Prove that the reflection in a line in the Cayley-Klein model is an
involution.
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9.4. Show that the notion of perpendicular lines in the Cayley–Klein
model (as introduced in 9.3.2) is well defined (i.e., does not depend on the
order of the two lines).

9.5. Prove that the four angles formed at the intersection point of two
perpendiculars are congruent.

9.6∗. Prove that the sum of angles of a triangle in the Cayley–Klein
model is less than π directly from the definitions pertaining to the model.

9.7. Having defined the notion of free vector in hyperbolic geometry
as suggested in 9.2.2, try to define the sum of two vectors and investigate
the possibility of associating a two-dimensional vector space with hyperbolic
plane geometry.

9.8. Construct a triangle in the Cayley–Klein model with angle sum less
than a given positive ε.

9.9. Prove that the parallel shift Tv defined in 9.4.2 does take (−1, 1) to
itself and find the appropriate hyperbolic distance for which it is an isometry.
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Chapter 10

HYPERBOLIC PLANE TRIGONOMETRY
AND ABSOLUTE CONSTANTS

We begin this chapter by showing that the three models of the hyperbolic
plane are, in fact, isomorphic geometries. In continuing and concluding our
study of hyperbolic plane geometry, we will then feel free to use whichever
model is more convenient in the given context. This study includes the main
formulas of hyperbolic trigonometry, which we obtain after having recalled
the definitions of the hyperbolic functions, usually studied in complex analy-
sis. In conclusion of the chapter, we learn that in hyperbolic geometry, unlike
Euclidean geometry, there are inherent absolute constants.

10.1. Isomorphism between the two disk models

As we mentioned in the previous chapter, the Cayley–Klein model and the
Poincaré disk model are isomorphic. This means that that there is a bijection
between their sets of points and an isomorphism of their transformation
groups which are compatible in the sense specified in 1.4.4. To prove this,
we will need a classical construction from Euclidean space geometry.

10.1.1. Stereographic projection. Let S2 be the unit sphere, let Π be the
equatorial plane of the sphere, and N be its North Pole. The stereographic
projection σ : Π → S2 is the map that takes each point M ∈ S2 \ N to the
intersection point M ′ of the ray NM with Π.

N

A

A′

B

B′

C

C ′

Figure 10.1. Stereographic projection

Obviously, σ is a bijection of S2 \{N} onto Π. It is also not hard to prove
that stereographic projection is conformal (see Exercise 10.1).
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10.1.2. Bijection between the sets of points of the two disk models. We
regard the intersection of the open unit ball with the equatorial plane Π as
the set H2 of points of both disk models. In order to prove that the two
models are isomorphic, we begin by establishing a bijection β between their
point sets. This bijection is not the identity map, and can be described as
follows.

Let A be an arbitrary point of H2 and let XY be the chord (of the
absolute) perpendicular to the radius OA (Fig.10.2). Consider the vertical
plane containing XY ; it intersects the unit sphere along a circle. Denote by
A1 the intersection of the downward vertical ray passing through A with this
circle. Now join the points A1 and N and denote by A′ the intersection of
A1N and the equatorial plane. The correspondence A 7→ A′ defines a map
from H2 to H2 that we denote by β.

AAAAAAAAAAAAAAAAAAAAAAAAAA

A1

A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′

N

O

XXXXXXXXXXXXXXXXXXXXXXXXXX

Y

Figure 10.2. Bijection between the two disk models

It is not hard to prove that the map β is a bijection of H2 onto itself (for
the details, see Exercise 10.2).

10.1.3. Isomorphism between the transformation groups. The next step
in the proof of the fact that the two disk models are isomorphic geometries
is the construction of an isomorphism between their transformation groups
N and M that would be compatible with β. But that construction is in a
sense automatic, because, as we shall see, the compatibility condition actually
prescribes the choice of isomorphism.
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Our aim is to construct an isomorphism ϕ : N →M, whereN andM are
the transformation groups of the Cayley–Klein and the Poincaré disk models,
respectively. Let g ∈ N be an arbitrary element and A be an arbitrary point
of the Poincaré disk. We define the element ϕ(g) by setting

(
ϕ(g)

)
(A) := β

(
g
(
(β−1(A)

))
,

where β is the bijection defined in the previous subsection. This formula says
that in order to obtain the image B :=

(
ϕ(g)

)
(A) under ϕ(g) of an arbitrary

point A, we perform the only possible natural actions: pull back the point
A from the Poincaré disk model to the Cayley–Klein disk via β−1, obtaining
A′ := β−1(A), act on A′ by g, and return the obtained point g

(
(β−1(A)

)
to

the Poincaré disk via β (look at Figure 10.3).

β−1

β

A

g(A′)

(ϕ(g))(A)

A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)A′=β−1(A)
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Figure 10.3. Isomorphism of the two disk models

The fact that ϕ) is a group homomorphism is obvious by construction,
the fact that it is bijective is also easy to prove (see Exercise 10.3), while the
fact that the pair (β, ϕ is an isomorphism of geometries is also immediate
from the construction. We have proved the following theorem.

10.1.4. Theorem. The map β from 10.1.3 defines an isomorphism of
the geometry (H2 : N ) (the Cayley–Klein model) and the geometry (H2 :M)
(the Poincaré disk model) if we define the corresponding isomorphism (which
we denote by ϕ) of the groups N and M by setting

(
ϕ(g)

)
(A) := β

(
g
(
(β−1(A)

))
,
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where A is any point of the Poincaré disk and g ∈ N .

10.1.4. Construction of perpendiculars in the Cayley–Klein model. The
fact that we have a concrete isomorphism between the two disk models can
be used to construct the “strange looking perpendiculars” (look at Fig. 9.4
again) in the Cayley–Klein model model. To do that, we use the bijection
β from 10.1.2 to pass to the Poincaré disk model, where we know how to
construct perpendiculars (see Theorem 7.4.1) and, having performed that
construction, we return to the Cayley–Klein model via β−1, obtaining the
required perpendiculars.

X Y

Z

W

PP ′
O

H ′

H
l

Figure 10.4. Constructing perpendiculars in the Cayley–Klein model

In more detail, the construction is as follows (Fig.10.4). We are given a
line l = XY and a point P in the Cayley–Klein model H2. First we construct
the chord WZ containing P and perpendicular to the radius OP . Next, we
construct the two arcs of circles perpendicular to the absolute and passing
through the points X, Y and W,Z and denote by P ′ the intersection point
of the arc subtending WZ with the radius OP . Note that the two arcs are
the images of the Cayley–Klein lines XY and WZ under the bijection β (see
10.1.2) and are therefore lines in the Poincaré disk model.

From the point P ′, we draw the arc orthogonal to the absolute and orthog-
onal to the arc l′ subtending XY (see 7.4.1) and denote by H ′ the intersection
point of these two arcs. Note that H ′ is the foot of the perpendicular lowered
from P ′ to l′ in the sense of the Poincaré disk model. Now if we construct
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the ray OH ′, its intersection point H with the line l is the foot of the re-
quired perpendicular lowered from P to l, because the map β−1 transforms
the Poincaré perpendicular P ′H ′ to the Cayley–Klein perpendicular PH.

10.2. Isomorphism between the two Poincaré models

In this section we show that the Poincaré disk model (Chapter 7) is
isomorphic to the half-plane model studied in Chapter 8. To do that, we will
need the linear-fractional transformation Ω defined (in Example 8.1) by the
formula

Ω : z 7→ i · 1 + z

1− z ;

Ω maps the unit disk D2 := {z ∈ C : |z|2 ≤ 1} to the upper half plane
C+ := {z ∈ C : Im z > 0}. The transformation Ω, together with the
compatibility (equivariance) condition determines the isomorphism between
the two geometries. More precisely, we have the following result:

10.2.1. Theorem. The map Ω from Example 8.1 defines an isomor-
phism of the geometry (H2 : M) (the Poincaré disk model from Chapter 7)
and the geometry (C+ : RMöb) (the Poincaré half-plane model) if we define
the corresponding isomorphism (which we denote by ∆) of the groups RMöb
and M by setting

M 3 g 7→ Ω ◦ g ◦ Ω−1 ∈ RMob.

Proof. The map Ω is one-to-one because it has the obvious inverse given
by the rule w 7→ (i−w)/(i+w). The isomorphism ∆ is compatible with the
group actions by definition. �

Now let us define the Lobachevsky distance λ between two points A,B of
the open disk H2 (in the framework of the Poincaré disk model) by setting

λ(A,B) := | ln(〈A,B,X, Y 〉)|,

where X and Y are the intersection points of the line (AB) with the absolute.
Now Theorems 8.1.3, 8.1.5, and 10.2.1 immediately imply the following

result:

10.2.2. Corollary. The group of isometric transformations of the disk
with respect to the distance λ coincides with the group M generated by all
reflections in the “straight lines” of the disk model.
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Since isomorphism of geometries is a transitive relation, we have the fol-
lowing

10.2.3. Corollary. The three models of hyperbolic geometry, namely
the Poincaré disk and half plane models and the Cayley–Klein model, are
isomorphic as geometries in the sense of Klein.

10.3. Hyperbolic functions

The complex exponent ez, z ∈ C, is related to the ordinary trigonometric
functions by the beautiful Euler formula:

eiϕ = cosϕ+ i sinϕ,

whose proof is obvious if we consider the unit circle centered at the origin of
the plane C. The real exponent ex, x ∈ R, is related to the “trigonometric
functions” of hyperbolic geometry, known as the hyperbolic functions sh, ch,
th, cth (hyperbolic sine, cosine, tangent, cotangent, respectively) and defined
by the formulas

shx :=
ex − e−x

2
chx :=

ex + e−x

2

thx :=
ex − e−x
ex + e−x

cthx :=
ex + e−x

ex − e−x
These functions satisfy formulas similar to the main formulas for ordinary
trigonometric functions. Here are some examples:

ch2 x− sh2 x = 1, thx cthx = 1, sh(x± y) = sh x ch y ± chx sh y,

sh 2x = 2 sh x chx, ch 2x = sh2 x+ ch2 x, ch(x±y) = chx ch y± shx sh y.

The proofs are obtained by plugging in the definitions in the formulas
and performing simple calculations.

10.4. Trigonometry on the hyperbolic plane

Because of Corollary 10.2.3, the elementary trigonometric formulas for
hyperbolic triangles are exactly the same for the half-plane and the disk
model. Their proof is quite straightforward (perhaps a little simpler in the
case of the half-plane) and are relegated to the exercises. We state them
in the form of theorems. Below ABC is a triangle, α, β, γ are the angles
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opposite to A,B,C, respectively, and a, b, c the sides opposite to A,B,C,
respectively.

10.4.1. Theorem. (Hyperbolic sine theorem)

sh a

sinα
=

sh b

sin β
=

sh c

sin γ
.

10.4.2. Theorem. (Hyperbolic cosine theorem)

ch a = ch b ch c− sh c sh b cosα.

10.5. The angle of parallelism and the Schweikart constant

10.5.1. Let (AB) be a line in hyperbolic geometry (we can use either
one of the two models here) and C be a point not on (AB); let X and Y
be the intersection points of the line (AB) with the absolute, so that the
rays [CX) and [CY ) are the parallels to (AB) passing through C; let [CH],
H ∈ (AB), be the perpendicular lowered from C to (AB); let d := λ(C,H)
be the Lobachevsky distance between C and H; finally, let α be the measure
of the angle XCH (or, which is the same, of Y CH).

Then it is not difficult to prove that α depends only on d (see Exercise
10.11); α is called the angle of parallelism.

10.5.2. Theorem. The angle of parallelism α is given by the formula:

tgh d = cosα .

For the proof, see Exercise 10.9.

This formula shows, in particular, that when d is very small, the angle of
parallelism is close to π/2, while for large values of d, α becomes very small.

10.5.3. Now let O be the center of the disk model and let [OA) and [OB)
be perpendicular rays issuing from O; let X and Y be the intersection points
of the rays [OA) and [OB) with the absolute; let (CD) be the line intersecting
the absolute at X and Y ; let [OH], H ∈ (CD), be the perpendicular lowered
from O to (CD); let σ := λ(O,H) be the hyperbolic distance between O and
H.

The number σ is called the Schweikart constant; it is an absolute constant
of the hyperbolic plane. If we think of hyperbolic geometry as a model of
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Figure 10.5. The angle of parallelism and the Schweikart constant

physical reality, then we must conclude that there is an absolute unit of length
in our universe (no such unit appears in the Euclidean model of space).

10.5.3. Another absolute constant of hyperbolic geometry comes from
the measure of a standard area, namely that of a special infinite “triangle”.
To construct this triangle, consider three rays issuing from the center (actu-
ally, any other point will do) of the disk model and forming angles of 2π/3.
Denote by X, Y, Z their intersection points with the absolute, and consider
the lines XY, , Y Z , ZX. They form an “infinite equilateral triangle” with
all three angles equal to zero. Then its area can be computed by the formula
for the area of a triangle in hyperbolic geometry

S = π − α− β − γ =⇒ S = π

(see Chapter 8 and Exercise 8.6).

X

Y Z

Figure 10.6. Infinite triangle
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The above argument was not very rigorous, since the formula used is ap-
plicable only to finite triangles, but it can be made rigorous by approximating
triangle XY Z by finite triangles and passing to the limit.

Thus we have obtained a third absolute constant, namely π, the area of
the figure bounded by three lines joining three points of the absolute.

10.5.4. Remark. We noted above (see Section 9.4) that the formula
for adding vectors on the hyperbolic line is very similar to Einstein’s formula
for adding the velocities of inertial frames. In this section, we have obtained
three absolute constants – this is another trait of hyperbolic geometry that is
similar to the properties of Einstein’s theory of the physical world, in which
absolute constants (e.g. the speed of light) appear. In this connection, one
should not be misled by the word “relativity”: Einstein’s theory doesn’t say
that “everything is relative”, on the contrary, it supplies us with physically
meaningful absolute constants, something that a Euclidean model of the
universe cannot do. On the other hand, a physical model entirely based
on hyperbolic space geometry and an independent “time axis” is not viable
either: our universe is more complicated than that, time and space are not
independent, according to Einstein, they “mingle together” in a certain sense.

10.5. Problems

10.1. Prove that stereographic projection is conformal.

10.2. Prove that the map β constructed in 10.1.2 is bijective and show
that any chord of H2 (i.e., any line in the Cayley–Klein model) is taken by
β to the arc of the circle passing through X and Y and orthogonal to the
absolute (i.e., to a line in the Poincaré disk model).

10.3. Prove the main relations between the hyperbolic functions indi-
cated in Section 10.3.

10.4. Prove the hyperbolic sine theorem.

10.5. Prove the hyperbolic cosine theorem.

10.6. Prove that two triangles with equal sides are congruent in hyper-
bolic geometry.

10.7. Prove that in hyperbolic geometry two triangles having an equal
angle and equal sides forming this angle are congruent.

10.8. Show that homothety is not conformal in hyperbolic geometry.
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10.9. (a) Prove the formula for the angle of parallelism α for a point A
and a line l:

tanh(d) = cos(α)

where d is the distance from A to l (thereby showing that the angle of par-
allelism depends only on the distance from the point to the line).

(b) Prove that the previous formula is equivalent to the following one
(obtained independently by Bolyai and Lobachevsky):

tan
α

2
= e−d

10.10. Prove that in a triangle with right angle γ the sides a, b, c and
their opposite angles α, β, γ = π/2 satisfy the following relations:

sh a = sh c sinα; tgh b = tgh c cosα; ctgα ctg β = ch c; cosα = ch a sin β.

What do these relations tend to as a, b, c become very small?

10.11. Prove that the sides a, b, c and opposite angles α, β, γ of any
triangle on the hyperbolic plane satisfy the following relations:

(a) ch a sin β = ch b sinα cos β + cosα sin γ;

(b) ch a =
cosα + cos β cos γ

sin β sin γ
.

10.12. Prove that if the corresponding angles of two triangles are equal,
then the triangles are congruent.

10.13. Prove that all the points of the (Euclidean) straight line y = kx
that lie in the upper half plane y > 0 are equidistant from the (hyperbolic)
straight line Oy.

10.14. (a) Prove that any hyperbolic circle contained in any one of the
Poincaré models of hyperbolic geometry is actually a Euclidean circle.

(b) For the Poincaré upper half plane model, find the Euclidean center
and radius of the hyperbolic circle of radius r centered at the point (a, b).

(c) For the Poincaré model in the unit disk D, find the relationship be-
tween the radii of the Euclidean and the hyperbolic circles centered at the
center of D.
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10.15. Prove the triangle inequality for the distance in the Poincaré half
plane model.

10.16. Prove that the three (a) bissectors (b) medians (c) altitudes of
any hyperbolic triangle intersect at one point.

10.17. (The hyperbolic Menelaus Theorem.) The line l intersects the lines
BC,CA,AB (containing the sides) of triangle ABC at the points A1, B1, C1

respectively; then
shAC1

shC1B

shBA1

shA1C

shCB1

shB1A
= 1.

10.18. (The hyperbolic Ceva Theorem.) The points A1, B1, C1 are cho-
sen on the sides BC,CA,AB of triangle ABC. Prove that the segments
AA1, BB1, CC1 intersect at one point if and only if one of the following two
equivalent conditions hold:

sinACC1

sinC1CB
· sinBAA1

sinA1AC
· sinCBB1

sinB1BA
= 1,

shAC1

shC1B
· shBA1

shA1C
· shCB1

shB1A
= 1.
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Chapter 11

HISTORY OF NON-EUCLIDEAN GEOMETRY

In this chapter, we will retrace the history of the creation of non-Euclidean
geometry by Gauss, Lobachevsky, and Bolyai (and their predecessors and
followers) and discuss the traditional axiomatic approach to the foundations
of geometry. The story begins with Euclid’s Elements, the brilliant first
attempt to construct mathematics as a deductive science (see [8]).

11.1. Euclid’s fifth postulate

The Ancient Greeks realized that, in a deductive science, in order to de-
duce (prove) facts from other facts by logical reasoning, it is necessary to start
from some facts which are not proved. Euclid called these facts postulates
(we call them axioms) and explicitly formulated five of them. He also used
several other axioms implicitly (without formulating them). Apparently, Eu-
clid (and other Greek mathematicians) thought that the postulates should
be self-evident (simple and so obvious that no doubt about their truth could
arise).

Euclid’s last axiom, the fifth postulate, however, is not simple and not
obvious. Its modern equivalent it can be stated as follows:

(V+) For any straight line and any point not on this line there is a unique
parallel to this line passing through the given point.

Here by a parallel to a given line one means a straight line that has no
common points with the given line. In Euclid’s formulation, the statement
was more complicated and less obvious.

(V) If a straight line falling on two straight lines makes the sum of the
interior angles on one side less than two right angles, then the two straight
lines, if extended indefinitely, meet on that side on which are the angles with
sum less than two right angles.

Presumably, Greek mathematicians (perhaps Euclid himself) tried to de-
duce the fifth postulate from the other axioms. In any case, in Euclid’s
Elements, the application of the fifth postulate is postponed as much as pos-
sible: it occurs for the first time in the proof of Proposition 27 of Book 1
(there are 48 propositions, i.e., theorems in our terminology, in that book).
The interested reader may want to look at the postulates and theorems in
Book 1 of Euclid’s Elements: they appear in Appendix II of the present book.
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After Euclid, for more than two thousand years, many scientists tried to
prove the fifth postulate, and many “succeeded”, usually by proving state-
ments equivalent to (V) by means of arguments based on additional axioms
which were not explicitly formulated.

11.2. Statements equivalent to the fifth postulate

We have already mentioned one such statement, namely (V+). Here are
some more (in square brackets [ ], we indicate the mathematician who used
this approach to “prove” the fifth postulate).

(1) The sum of the three angles of any triangle is equal to π (to two
right angles, in Euclid’s terminology). [This statement appears in Euclid’s
Elements as Proposition 32, and was proved by using the fifth postulate;
Legendre gave a “proof” in 1805 without the fifth postulate.]

(2) A line intersecting one of two parallel lines intersects the other. [Pro-
clus, 5th century]

(3) Similar but not congruent triangles exist. [John Wallis, 1663]

(4) The fourth angle of a quadrilateral with three right angles is also a
right angle. [Nasiraddin, 13th century, Saccheri, 1679, Lambert, 1776] . Such
a quadrilateral was later called a Saccheri quadrilateral.

Trying to prove the fifth postulate, most mathematicians (including those
mentioned above) argued by contradiction. As a rule, they considered two
cases, assuming that the sum of angles of a triangle is (a) more than π or
(b) less than π (equivalently, that the fourth angle of the Saccheri quadrilat-
eral is more (less) than π/2, or that there are no parallels, respectively more
than one parallel, through a given point to a given line). In the first case,
it is possible to correctly obtain a contradiction using the Euclidean axioms.
In the second case, a contradiction does not follow, but the desire to prove
the fifth postulate was so strong that the mathematicians working on the
problem usually produced what they claimed to be a proof, but which was
actually flawed.

11.3. Gauss

Carl Friedrich Gauss (1777–1855) first began working on the fifth pos-
tulate in 1796, at the age of nineteen, and argued by contradiction, like his
predecessors, but went much further in developing the theory in case (b). It
is not clear when he came to the conclusion that no contradiction would arise.
In a famous letter (1824) to his friend F.A.Taurinus, he explained that in the
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case α+ β + γ < π one obtains a “thoroughly consistent curious geometry”,
which he called “non-Euclidean”. He concluded his letter by asking Taurinus
not to tell anyone about his “private communication”, which he was thinking
of publishing at “some future time” .

Later, in 1832, he learned from his friend Farkas Bolyai that the latter’s
son, Janos, had arrived at the same conclusions. Later, in 1841, he found out
that Lobachevsky had done the same. Gauss even learned Russian (to read
Lobachevsky’s early work?), but never directly communicated with either
Janos Bolyai or Lobachevsky about these questions.

Portrait: google wikipedia Gauss in cyrillic

Carl Friedrich Gauss

The most amazing thing, however, is that Gauss, when he was not think-
ing about number theory or the fifth postulate, had constructed the differen-
tial geometry of surfaces, including surfaces of constant negative curvature,
which are, in fact, a model (at least locally) of hyperbolic geometry. All
these years, he had this model before his eyes, but never made the obvious
connection with non-Euclidean geometry. He died without suspecting that a
proof of the consistency of hyperbolic geometry was at his finger tips!

11.4. Lobachevsky

Nikolay Ivanovich Lobachevsky (1793–1856), like everybody else, tried to
prove the fifth postulate by contradiction. As he progressed further in the
case α + β + γ < π, he became convinced that the theory was consistent.
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In an unpublished textbook, written in 1823, he mentions that all attempts
to prove the fifth postulate were erroneous. In 1826, Lobachevsky read a
paper in Kazan about a “new geometry” (which he later called imaginary),
and published (in Russian) a memoir about it in the Kazan Bulletin, which
was unnoticed abroad. Trying to gain recognition, he published his work in
German (Geometrische Untersuchugen, 1840) and in French (Pangéométrie,
1855), but without success (for an English translation of his work, see [11]).

Portrait in Wikipedia: google “Lobachevsky” in cyrillic

Nikolay Ivanovich Lobachevsky

N.I.Lobachevsky was not only the President (Rector, in the Russian ter-
minology) of Kazan University, but also its Head Librarian. The Kazan li-
brary received many scientific periodicals, including the most famous math-
ematical journal of the time, Crelle’s Journal. Library cards (which have
come down to us) show that Lobachevsky read every issue of Crelle’s Jour-
nal that reached Kazan, except two successive issues in the 1830ies. These
two issues contained two papers by Mindling, in which the latter obtained,
on surfaces of constant negative curvature, trigonometric formulas identical
to the trigonometric formulas previously obtained by Lobachevsky on the
hyperbolic plane. Had Lobachevsky seen one of these papers, he would have
immediately observed that they constituted a proof of the consistency of
hyperbolic geometry!
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11.5. Bolyai

Janos Bolyai (1802–1860) was the son of a mathematician, Farkas Bolyai,
who had “proved” the fifth postulate (his friend Gauss had pointed out his
error). Janos first followed in his father’s footsteps by trying to prove the
fifth postulate by contradiction, but soon realized that he was obtaining
a consistent geometry. In 1823 he wrote to his father: “Out of nothing I
have created a strange new universe”. But it was only in 1832 (three years
after Lobachevsky) that his investigations were published in an Appendix
to his father’s book Tentamen (both were written in latin; for the German
translation, see [15], the English translation of the Appendix appears in [17]
and in [14], p.375).

Farkas sent the book to Gauss, asking to comment on the Appendix.
Instead of praising and encouraging Janos, Gauss wrote that this would be
“praising myself”, since he had discovered the same things thirty years before,
and the Appendix “spared him the effort” of writing up his discovery. Dis-
couraged, Janos Bolyai stopped working for several years, but then started
working on a book that would contain a detailed exposition of his results.

Portrait: google ”Janos Bolyai Wikipedia”

Janos Bolyai

When Gauss had learned about Lobachevsky’s results, he “kindly” com-
municated this fact to Janos Bolyai via the latter’s father. For a while, Janos
thought that Lobachevsky did not exist, that he was a creation of Gauss, who
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used “Lobachevsky” as a pen name to publish results stolen from J.Bolyai’s
famous Appendix! Fortunately, Janos Bolyai finally understood that this
was not the case, but he never finished his book, in fact published nothing
more. He died fairly young, unrecognized by his contemporaries...

11.6. Beltrami, Helmholtz, Lie, Cayley, Klein, and Poincaré

The first proof of the consistency of hyperbolic geometry is attributed to
Beltrami, who showed (1868) that its axioms and theorems hold (at least
locally) on surfaces of constant negative curvature. The physicist Helmholtz
was probably the first to understand how one can prove the consistency of
hyperbolic geometry, but his arguments were regarded as unsufficiently rig-
orous by mathematicians. Sophus Lie improved the arguments of Helmhotz
and was the first to stress the role of transformation groups in mathematics.
Klein gave the definition of geometry that we introduced in Chapter 1, and,
simultaneously with Cayley (but independently of him), gave an elementary
global model of hyperbolic geometry; he also coined the terms hyperbolic,
parabolic, elliptic for the three geometries. Poincaré constructed the two
models of hyperbolic geometry that we discussed in Chapters 7 and 8.

10.7. Hilbert

David Hilbert made the first successful attempt to give an axiomatic
exposition of Euclidean (space) geometry, rigorous in the modern sense of
the word. It consists of 21 axioms, three undefined concepts (point, line,
plane), and several undefined relations. Hilbert’s axioms for plane geometry
are presented and discussed in Appendix III of the present book.

The axiomatic approach is rarely used in teaching geometry in our time,
because Euclidean geometry can be introduced in a much simpler way: it
can easily be constructed as a branch of linear algebra over the real numbers
(based on the fact that the straight line is “isomorphic” to the real numbers
R). This fact can be deduced from Hilbert’s axioms by using the axiomatic
definition of the real numbers and checking that these algebraic axioms are
satisfied by the points of any line, provided the product and sum operation
are appropriately defined on it.
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Chapter 12

PROJECTIVE GEOMETRY

In this chapter, we introduce the main ideas of projective geometry for
the particular case of RP 2, the projective plane, and only have a brief look
at projective space RP 3. The general theory of d-dimensional projective
spaces (RP d, d ≥ 1) is traditionally studied in linear algebra courses by
means of the so-called homogeneous coordinate model, but we do not go
beyond the dimension d = 3. We use a more geometric approach, which may
seem strange at first, because in our model “points” of RP 2 will be lines
in Euclidean space R3, but ultimately we will appeal to the homogeneous
coordinate model.

12.1. The projective plane as a geometry

12.1.1. Main definition. The projective plane RP 2 is defined as the geom-
etry (RP 2 : Proj(2)), whose elements (called projective points) are straight
lines in R3 passing through the origin O and whose transformation group
Proj(2) is defined as follows. We start with the general linear group GL(3)
and identify any two linear transformations of R3 whose matrices can be ob-
tained from each other by multiplication by nonzero constants; the composi-
tion of matrices is well defined on such equivalence classes of transformations,
and Proj(2) is defined as the group whose elements are these classes and the
group operation is composition (i.e., multiplication of matrices).

12.1.2. Points and lines. The elements of RP 2 (projective points) are
Euclidean lines; nevertheless, we will often simply call them points (of our ge-
ometry). The straight lines (of our geometry) are defined as the (Euclidean)
planes passing through the origin. These definitions immediately imply the
two following assertions.

I. One and only one “line” passes through any two distinct “points”.

II. Any two distinct “lines” intersect in one and only one “point”.

Thus there are no parallel lines in our geometry, just as in spherical geom-
etry. But we will see that the two geometries are very different; in particular,
there is no natural metric in projective geometry (and hence no measure of
angles, no perpendiculars, no areas, and so on). Unlike spherical geometry,
in which “straight lines” intersect in two points, in projective geometry lines
intersect in one point, not two.



126

12.1.3. Intuitive description. You can imagine the projective plane as a
Euclidean plane to which a “line at infinity” Λ∞ has been added. When you
move along a Euclidean line L to infinity in some direction, you intersect the
line at infinity at some point P = L∩Λ∞; if you move along L in the opposite
direction, you will reach Λ and intersect it at the same point P . Parallels (in
the Euclidean sense) intersect on the infinite line. Thus lines in RP 2 are some
kind of cycles (like “infinite circles”). The line at infinity, however, should
not be regarded as a “special” line, because most projective transformations
transform it into an “ordinary” line. The informal description of RP 2 given
here will be made rigorous in Subsection 12.2.4. below.

12.2. Homogeneous coordinates

12.2.1. Returning to our geometry (RP 2 : Proj(2)), let us introduce
coordinates for our points. Each point L (i.e., each Euclidean line passing
through the origin) is uniquely determined by its direction vector, i.e., by
three coordinates (x1, x2, x3), in the standard basis of R3, namely in the
basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Conversely, however, points do not uniquely determine the coordinates: if λ
is a nonzero real number, then (λx1, λx2, λx3) determines the same point as
(x1, x2, x3). In this situation, we call the two sets of coordinates equivalent,
denote the corresponding equivalence class by (x1 : x2 : x3), and refer to
χ(L) = (x1 : x2 : x3) as the homogeneous coordinates of the point L.

12.2.2. Homogeneous coordinates make the computation of the action
of elements g ∈ Proj(2) on points L ∈ RP 2 very easy: the transformation g
is given by a 3× 3 matrix Ag ∈ GL(3) (defined up to a constant), and

g(L) = Ag((x1 : x2 : x3)) =




a11 a12 a13
a21 a22 a23
a31 a32 a33






x1
x2
x3


 .

The geometric meaning of the transformation with matrix Ag is that its col-
umn vectors are the images of the standard basis vectors under that trans-
formation, but since Ag is defined up to a nonzero scalar, these images are
also defined up to a nonzero scalar multiple.

12.2.3. Projective spaces of higher dimensions. In linear algebra courses,
the projective space RP d, for any value of d, is defined in a similar way: its
elements are homogeneous coordinates (x0 : x1 : · · · : xd), i.e., equivalence
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classes of (d + 1)-tuples (x0 : x1 : · · · : xd) of real numbers (not all equal to
zero) up to multiplication by a nonzero constant. The group Proj(d+1) acts
on each element by multiplication by (d+1)× (d+1) matrices corresponding
to linear operators in Rd+1 (defined up to a constant). We will not study
higher-dimensional projective spaces RP d, d > 3, in this course. A detailed
account can be found in most linear algebra courses. However, we will look
at projective space RP 3 briefly in Section 12.8 below.

12.2.4. Now let us describe a rigorous model of RP 2 that will explain
why RP 2 is called the projective plane. In R3 consider the plane Π given
by the equation x3 = 1. Points of this plane have coordinates of the form
(x1, x2, 1). To the plane Π add the line at infinity Λ∞ whose points are
equivalence classes of Euclidean points (x1, x2, 0) up to multiplication by a
non-zero constant (notation (x1 : x2 : 0)). The set Π∪Λ∞ is the set of points
of the projective plane.

0
x1

x2

P ∈ Λ∞

Λ∞ ∋ P

x3

1

x3=1

Figure 12.1. The projective plane

Note that the “points at infinity” (x1 : x2 : 0) ∈ Λ∞ determine Euclidean
straight lines in the plane x3 = 0. Intuitively, you should think of these lines
as “pointing to infinity” in a certain direction, so that the set Λ∞ “surrounds”
the plane Π. More precisely, these lines are not rays, they are ordinary “two-
sided” lines, and so they point to infinity in two opposite directions, but
they intersect the projective line Λ∞ at only one point (you should think
of this point as being the identification of two diametrically opposite points
at infinity). The reader familiar with elementary topology should recognize
the classical topological model of RP 2 obtained by identifying diametrically
opposite points of the boundary of the unit disk D2.
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The lines in this model of RP 2 are the ordinary (Euclidean) lines in Π plus
the “line” Λ∞. There is an obvious bijection between the points and lines of
RP 2 (as defined in the previous section) and those in the model Π ∪ Λ∞; in
particular, the line Λ∞ corresponds to the (Euclidean) plane x3 = 0. Using
this bijection, it is easy to define the action of Proj(2) in this model.

12.3. Projective transformations

12.3.1. One may want to ask: Why is our geometry called “projective”,
when it is defined by a group of linear operators in R3? Let us try to answer
this question. Let Π1 and Π2 be two planes in R3 and let P ∈ R3 be a
point. The projection of Π1 to Π2 from P is the map π that to each point
A ∈ Π1 assigns the point A′ ∈ Π2 at which the line PA intersects Π2. This
assignment is not necessarily bijective: π will be undefined at some points
X (if PX is parallel to Π2) and not onto (some points of Π2 will not be
covered), see Fig.12.2.

Λ2
∞

Λ1
∞

X
Y

P

A

A′

Π1

Π2

Figure 12.2. Projective transformations of planes

However, if we supply Π1 and Π2 with lines at infinity Λ1
∞ and Λ2

∞, and
appropriately define the projection, then we obtain a bijection between the
projective planes Π1 ∪ Λ1

∞ and Π2 ∪ Λ1
∞. The details are left to the reader.

12.3.2. A set of points A1, . . . , An, n ≥ 3, of the projective plane (in-
terpreted as the model described in 12.2.4) are said to be in general position

if for any three of them Ak, Al, Am, the vectors
−→
OAk,

−→
OAl,

−→
OAm constitute

a basis of R3. If one of the points, say Ai, lies on the line at infinity, the

vector
−→
OA1 is well defined, in coordinates it has the form (a : b : 0). If three

points or more from our collection lie on the infinite line, then, of course, the
collection will not be in general position.
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Another way of defining a collection of points in general position is to say
that no three of them lie on the same line.

12.3.3. Theorem. There exists one and only one projective transfor-
mation that takes four points A,B,C,D ∈ RP 2 in general position to four
other points A′, B′, C ′, D′ ∈ RP 2 in general position.

Proof. In accordance with our model of the projective plane, we can
think of the points A,B,C and A′, B′, C as lying in the plane x3 = 1. By

assumption, the vectors
−→
OA,
−−→
OB,

−→
OC constitute a basis of R3. Let (a1, a2, a3),

(b1, b2, b3), (c1, c2, c3) be the coordinates of the vectors
−→
OA′,

−−→
OB′,

−→
OC ′ in that

basis. Then the matrix

M =




a1 b1 c1
a2 b2 c2
a3 b3 c3




can be regarded as a linear transformation of R3 taking A,B,C to A′, B′, C.
Now let us multiply the columns of this matrix by scalar constants, obtaining
the matrix

Ag =




λa1 µb1 νc1
λa2 µb2 νc2
λa3 µb3 νc3




which we now regard as defining an element g of Proj(2). Clearly, Ag takes
the points A,B,C ∈ RP 2 to the points A′, B′, C ′ ∈ RP 2, although the same
matrix regarded as acting in R3 does not take A,B,C ∈ R3 to A′, B′, C ′ ∈ R3

(when not all three of the scalars λ, µ, ν are equal to 1).
Now let us denote by (d1, d2, d3) the coordinates of the point D in the

basis
−→
OA,
−−→
OB,

−→
OC and by (d′1, d

′
2, d
′
3) the coordinates of the point D′ in the

same basis. We claim that it is possible to choose the scalar parameters
λ, µ, ν so that Ag will take D ∈ RP 2 to D′ ∈ RP 2.

Indeed, this will be case if the matrix Ag applied to the vector (d1, d2, d3)
will give the vector (d′1, d

′
2, d
′
3), or, which is the same thing, the system of

equations 



a1d1λ+ b1d2µ+ c1d3ν = d′1
a2d1λ+ b2d2µ+ c2d3ν = d′1
a3d1λ+ b3d2µ+ c3d3ν = d′1

in the unknowns λ, µ, ν will have a solution. But the determinant ∆ of this
system can be expressed as ∆ = d1d2d3det(M) and so is nonzero. Hence our
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system of equations has a nonzero solution in λ, µ, ν. Thus we have shown
that Ag(D) = D′ (if we choose for the values of λ, µ, ν the solution of our
system) and proved the existence of the required projective transformation.

Its uniqueness follows by working out the construction of Ag in reverse
order, which will bring us back to the same matrix (up to multiplication by
a scalar). �

12.4. Cross-ratio of collinear points

12.4.1. Main definitions. We mentioned above that there is no natural
metric on the projective plane, and no affine structure (the ratio of the two
segments determined by three collinear points of RP 2 is not well defined).
Nevertheless, the affine structure in R3 allows us to define the cross ratio of
any four ordered collinear points of RP 2.

The definition is the following. Let k, l,m, n be collinear points in RP 2,
i.e., four coplanar lines of R3 passing through the origin; suppose a line s
cuts our four lines at the points A,B,C,D, respectively. Then the vectors−→
AC and

−−→
BC are proportional, i.e.,

−→
AC = λ

−−→
BC; the real number λ (which

may be negative) is denoted by 〈A,B,C〉; the number 〈A,B,D〉 is defined
similarity. We now put

〈A,B,C,D〉 :=
〈A,B,C〉
〈A,B,D〉 ;

the number thus obtained is called the cross-ratio of the points A,B,C,D.
It is not difficult to show that it is well defined, i.e., does not depend on the
choice of the secant line s. Now if one of the points, say B, lies on the infinite
line Λ∞, then we put 〈A,B,C,D〉 := 〈C,D,A〉 (similarly for the others).

12.4.2. Coordinate expressions. The cross ratio is easy to compute in
coordinates. To this end, we return to the model

Π = {(x, y, z) ∈ R3|z = 1} ⊂ RP 2 = Π ∪ Λ∞

and suppose that the collinear points A,B,C,D have the coordinates:

(xA, yA, 1), (xB, yB, 1), (xC , yC , 1), (xD, yD, 1).

Then, obviously,

〈A,B,C〉 =
xC − xA
xC − xB

=
yC − yA
yC − yB

, 〈A,B,D〉 =
xD − xA
xD − xB

=
yD − yA
yD − yB
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and therefore

〈A,B,C,D〉 =
xC − xA
xC − xB

:
xD − xA
xD − xB

=
yC − yA
yC − yB

:
yD − yA
yD − yB

.

If one of the points, say B, is on the infinite line (at its intersection with
the line containing the points A,C,D), then the cross ratio reduces to the
ordinary ratio What happens in this case may be described by saying that
“the infinities cancel”:

xC − xA
xC −∞

:
xD − xA
xD −∞

=
xC − xA
xD − xA

= 〈C,D,A〉.

In the case when all four points A,B,C,D lie on the infinite line, their
cross ratio is also a well defined real number. Its calculation is the object of
Exercise 12.3.

12.4.3. Theorem. The cross-ratio of four collinear points is invariant
under projective transformations.

Proof. The proof is a problem in linear algebra; see Exercise 12.4. �

12.5. Projective duality

12.5.1. Points and lines on the projective plane (RP 2 : Proj(2)) play, in
a certain sense, symmetric roles. This will be easier to see if we introduce
the notion of incidence: we will say that two lines a and b are incident at the
point P if P is the intersection point of the lines a and b, and that the two
points P and Q are incident at the line a if a passes through P and Q. Also,
together with the standard term collinear (used for points all lying on one
line) we will use the term copunctal for lines all passing through one and the
same point.

Given an assertion of projective geometry formulated in this terminology,
we can translate it into another statement, called dual, by replacing the word
“line” by the word “point” (and “collinear” by “‘copunctal”) and vice versa.
For example, statement I from Section 12.1 can be expressed as: “One and
only one line is incident to two distinct points”; its translation (i.e., the dual
statement) will be “One and only one point is incident to two distinct lines”,
which is exactly the assertion of II (see Section 12.1). Another example: “Any
projective transformation takes collinear points to collinear points” translates
to “Any projective transformation takes copunctal lines to copunctal lines”.

What is remarkable is that this kind of translation always translates true
statements to true statements. To prove this, we will define the dual geometry
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to the geometry of RP 2: it is the geometry (DRP 2 : Proj(2)) whose points
are planes of R3 passing through the origin under the action of the group of
linear nondegenerate transformations of R3. In DRP 2, the intersections of
two points (i.e., Euclidean planes) will be called the line passing through the
points (it is actually a Euclidean line in Euclidean 3-space).

12.5.2. Theorem. The two geometries (DRP 2 : Proj(2)) and
(RP 2 : Proj(2)) are isomorphic: there is a bijection, called duality and de-
noted by D, between the sets of points of the two geometries compatible with
an isomorphism of GL(3) onto itself.

Proof. To each “point” Π of DRP 2, i.e., to each plane of R3 given by the
equation a1x1+a2x2+a3x3 = 0, we assign the point of RP 2 with homogeneous
coordinates (a1 : a2 : a3) (which is of course the Euclidean line passing
through the origin and perpendicular to the plane). If an element g ∈ Proj(2)
takes the point (a1 : a2 : a3) to some point (b1 : b2 : b3), then the same
element will take the plane Π to the plane given by b1x1 + b2x2 + b3x3 = 0.
Thus the duality map D : RP 2 → DRP 2 (which is obviously bijective)
is compatible with the action of Proj(2), so that we have constructed the
required isomorphism. �

Note that the duality correspondence is an involution, i.e., D ◦D identi-
cally maps RP 2 onto itself. Further, note that the isomorphism constructed
above preserves incidence: if two points A,B of RP 2 (i.e., two Euclidean
lines passing through the origin O of R3) are incident to the line l (i.e., are
contained in a Euclidean plane Πl), then the two lines D(A), D(B) in DRP 2

intersect in the point (of DRP 2) D(l) = Πl. Thus we have the following
statement.

12.5.3. Corollary: Duality Principle. There is a bijection between
the set of lines and the set of points of RP 2 that preserves incidence and takes
any theorem of projective geometry to a theorem of projective geometry.

12.6. Conics in RP 2

The nondegenerate conic sections (or conics for short) in the Euclidean
plane are, as is well known, the ellipse, the hyperbola and the parabola. In
RP 2, these three curves are projectively equivalent, so that there exists only
one nondegenerate conic in RP 2 (up to projective equivalence).

A conic in RP 2 can be defined as any set of points obtained from the
curve C given by (x1)

2 + (x2)
2 = 1 (in the plane-with-line-at-infinity model
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described in Section 12.2, this curve is the Euclidean circle) by a projective
transformation. Any projective transformation under which the image of C
does not intersect the line at infinity Λ∞ transforms C into an ellipse; a
projective transformation that takes one point of C to Λ∞ transforms C into
a parabola, and a projective transformation that takes two points of C to
Λ∞ transforms C into a hyperbola.

12.7. The Pappus, Desargues, and Pascal theorems

We conclude our study of RP 2 with three beautiful classical theorems.
All three can be regarded as theorems about points and lines either in the
projective plane or in the affine (in particular Euclidean) plane.

S

A1

A2

A3

B1

B2

B3

P1

P2

P3

Figure 12.3. Desargues’ theorem

12.7.1. Desargues’ Theorem. Suppose that the lines joining the cor-
responding vertices of triangles A1A2A3 and B1B2B3 intersect at one point
S. Then the intersection points P1, P2, P3 of the lines A2A3 and B2B3, A3A1

and B3B1, A1A2 and B1B2, respectively, are collinear.

Proof. We begin by passing from the plane to 3-space and prove the three-
dimensional analog of Desargue’s theorem. (The proof of the 3-D theorem
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turns out to be unexpectedly simple, but the argument used in it doesn’t work
in the plane!). We then use the 3-D theorem to prove Desargue’s theorem in
the plane by means of a continuous deformation of the spatial picture to the
planar one.

Suppose we are given two triangles A1Â2A3 and B1B̂2B3 in Euclidean
space R2 such that the three lines A1B1, Â2B̂2, A3B3 intersect at one point
S. (The reader should think of the points A1, B1, A3, B3, S as being the same
as in the planar version of the theorem, while the points A2, B2 have been
“lifted out” of the plane.) Then the lines SB1, SB̂2, SB3 define a trihedral
angle in R3 (see Fig.12.4).

S

A1

Â2

A3

B1

B̂2

B3

M

N

P

Q1

Q2

Q3

Λ

Figure 12.4. Desargues’ theorem in space

Consider the three pairs of lines Â2A3 and B̂2B3, Â2A1 and B̂2B1, A1A3

and B1B3. We claim that each of these pairs has a common point (in space!)
and these three points are collinear.

Indeed, the (Euclidean) planes Π1 := (A1Â2A3) and Π2 := (B1B̂2B3)
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intersect in a line Λ. Obviously, the lines Â2A3 and B̂2B3 intersect at a point
(denoted Q1) of Λ, and so do the lines Â2A1 and B̂2B1 (the intersection
point is denoted by Q3) as well as the lines A1A3 and B1B3 (at Q2). Since
the points Q1, Q2, Q3 all lie on Λ, they are collinear, as claimed.

Let us pass to the proof of the planar version of the theorem.
Consider the plane B1SB3 (which we think of as being “horizontal”),

construct a plane perpendicular to it through the line SB2, in that plane
choose a point O “below” the horizontal plane, and choose points Â2 and B̂2

so that S, Â2, B̂2 are collinear by projecting the points A2, B2 from O (see
Fig.12.5).

S

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

Â2

A3

B1

B2

B̂2

B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

O

P1

P2 = Q2

P3

Q3

Q1

Figure 12.5. Proof of Desargues’ theorem

Using the 3-D version of the theorem, we can now construct the three
collinear points Q1, Q2, Q3. Now rotate the line SB̂2 about S downward
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in the vertical plane until it coincides with SB2. Since the mobile points
Q1, Q2, Q3 will always be collinear and, when they reach the horizontal plane,
they will coincide with the points P1, P2, P3, it follows that these three points
are collinear. This proves the theorem. �

12.7.2. Pappus’ Theorem. Suppose the points A1, A2, A3 are collinear,
and the points B1, B2, B3 are collinear. Let P1, P2, P3 be the intersection
points of the lines A2B1 and A1B2, A1B3 and A3B1, A2B3 and A3B2, respec-
tively. Then the points P1, P2, P3 are collinear.

A1

A2

A3

B1 B2 B3

P1

P2

P3

Figure 12.6. Pappus’ theorem

Sketch of the proof. By Theorem 12.3.3, we can assume that A1A2B1B2

is a square. Using the coordinate system with basis
−−→
A1A2

−−→
A1B1, it is an easy

exercise to prove that the points P1, P2, P3 are collinear.

12.7.3. Pascal’s Theorem. The points A,B,C,D,E, F lie on a conic.
Let P1, P2, P3 be the intersection points of the lines AB and ED, AF and
CD, CB and EF , respectively. Then the points P1, P2, P3 are collinear.

The theorem is illustrated by Figure 12.7, in which the conic is a circle.
In fact, Pascal actually proved the theorem in this particular case without
any loss of generality – he knew all conics are projectively equivalent to the
circle. Here we do not present the (not very difficult) proof of his theorem.

12.7.4. Remark. Note that the theorem is true in RP 2 as well as in
R2. To formulate it in full generality as a Euclidean theorem, one has to
consider several singular cases (which arise when one of the points Pi “goes
to infinity”); in these cases the proof differs somewhat from the proof in the
generic case. Note also that the Euclidean versions have metric proofs (see
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A
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D

E

F

P1

P2

P3

Figure 12.7. Pascal’s theorem

Exercise 12.14), but the projective proof is, in a sense, more natural. Similar
remarks hold for the Pappus and the Desargues theorems.

12.8. Projective space RP 3

In this section we very briefly describe three-dimensional projective ge-
ometry.

12.8.1. Definition of projective space. The projective space RP 3 can
be defined in terms of homogeneous coordinates as explained in Subsection
12.2.3, but here we adopt a more geometric approach. Namely, we con-
sider four-dimensional Euclidean space R4 and for the points of RP 3 take
the straight lines passing through the origin O of R4 and define the transfor-
mation group Proj(3) of RP 3 as in the two-dimensional case (using GL(4)
instead of GL(3)). We then define the lines of RP 3 as the planes passing
through the origin O and its planes as the three-dimensional hyperplanes of
R4 passing through O.

The following basic statements immediately follow from the above defi-
nitions.

I. One and only one “line” passes through any two distinct “points”.

II. Any two distinct “planes” intersect in one and only one “line”.

Thus there are no parallel lines or parallel planes in this geometry. More-
over, there is no distance function in RP 3, and so no measure of areas or
angles, and no perpendiculars.

12.8.2. Properties of projective transformations. Without going into



138

details, let us just mention that there is a “five point theorem” similar to
the “four point theorem” 12.3.3 and that the cross-ratio of four collinear
points is invariant under projective transformations. There is neat theory of
quadrics (surfaces given by second degree equations) in which, for example,
the hyperboloid of two sheets is (projectively) equivalent to the hyperboloid
of one sheet and to the ellipsoid.

12.8.3. Projective duality in space. Just as in RP 2, in RP 3 there is a
duality principle, but a somewhat more sophisticated one: it involves not
only points and lines, but also planes. After replacing the expressions “pass-
ing through”, “intersecting in”, etc. by appropriate versions of the notion of
incidence and using the expressions “copunctal’ and ”coplanar” in the for-
mulation of a theorem, we obtain the dual theorem simply by interchanging
the words “point” and “plane” (and not changing the word “line”, which
is self-dual). The dual theorem will also be correct, since its proof can be
obtained by “dualizing” the proof of the original theorem. For example, the
properties I and II are dual to each other.

12.9. Problems

12.1 Five distinct collinear points A,B,C,D,E are given. Prove that

〈A,B,C,D〉 · 〈A,B,D,E〉 · 〈A,B,E,C〉 = 1.

12.2. How many different values does the cross-ratio of four points on a
line take when the order of the points is changed?

12.3. Calculate the cross-ratio of four points (xi : yi; 0), i = 1, 2, 3, 4
lying on the infinite line Λ∞.

12.4. Prove Theorem 12.4.3.

12.5. Four planes pass through a common line l, while the line m inter-
sects all four planes. Prove that the cross-ratio of the intersection points of
m with the planes does not depend on the choice of m.

12.6. State and prove the theorem dual to the Pappus theorem. Draw
the corresponding picture.

12.7. State and prove the theorem dual to Desargues’ theorem. Draw
the corresponding picture.

12.8*. Prove that under projective duality any point on a conic is taken
to a line tangent to the dual conic.
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12.9. Using Exercise 12.8, state and prove the theorem dual to Pascal’s
theorem (the dual theorem is known as Brianchon’s Theorem). Draw the
corresponding picture.

12.10. Three skew lines l, l1, l2 in R3 are given. To a point A1 ∈ l1 let us
assign the point A2 at which the line l2 intersects the plane determined by
A1 and l. Prove that the assignment A1 7→ A2 is a projective map of l1 onto
l2.

12.11. The lines l1, . . . ln−1 and l are given on the plane. The points
O1, . . . , On are chosen on l. The lines containing the sides of a polygon
A1, . . . , An pass through the points O1, . . . , On while its vertices A1, . . . , An−1
move along the lines l1, . . . ln−1. Prove that the vertex An also moves along
a straight line.

12.12. Compute the cross-ratios of the quadruple of points A,B,C,D in
Figure 12.8.

12.13. Prove the triangle inequality for the hyperbolic metric by using
appropriate projective transformations.

12.14. Prove the Euclidean version of Pascal’s theorem for the case of
the circle.
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Chapter 13

“PROJECTIVE GEOMETRY IS ALL GEOMETRY”

The title of this chapter is a quotation from Arthur Cayley, the outstand-
ing 19th century British mathematician, one of the founders of projective
geometry. The aim of this chapter is to give a precise mathematical meaning
to these words, namely to show that the three principal continuous geome-
tries, parabolic (Euclid), hyperbolic (Lobachevsky), and elliptic (Riemann)
are subgeometries of projective geometry. We will prove this in dimension
two, i.e., show that the projective plane “contains” (in a certain precise sense)
the hyperbolic plane, the elliptic plane, and the Euclidean plane. Since the
discrete geometries that we also studied in this book are, in turn, subgeome-
tries of the three principal continuous ones, this means that all the geometries
studied so far in this course are parts of projective geometry.

But first we recall the notion of subgeometry, which appeared briefly in
Chapter 1.

13.1. Subgeometries

13.1.1. Recall that two geometries (X : G) and (Y : H) are isomorphic
if there is an equivariant bijection between them, i.e., a bijection between
their sets of points and an isomorphism between their transformation groups
which are compatible (for the detailed definition, see Chapter 1). Further,
the geometry (X : G) is a subgeometry of (Y : H) if there is an injective map
i : X → Y and a monomorphism γ : G → H compatible with the group
actions, i.e., satisfying (i(x))(γ(g)) = i(xg). (In this formula, we use the
notation xg for the result of the action of the element g ∈ G on the point
x ∈ X; thus (i(x))(γ(g)) stands for the result of the action of the element
γ(g) ∈ H on the point i(x) ∈ Y .)

Of course any geometry isomorphic to the given one is its subgeometry,
but we are interested in the case when it is a proper subgeometry, i.e., when
i is not a bijection, or γ is not an isomorphism, or both.

13.1.2. Here are some toy examples of proper subgeometries:

• the motion group of the regular dodecagon (regular polygon of 12 sides)
is a subgeometry of the dodecahedron with dihedral group D12 acting on it;

• the dihedral group D6 acting on the regular dodecahedron defines a
subgeometry of the same dodecahedron with the dihedral group D12 acting
on it;
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• the dihedral group D6 acting on the regular dodecahedron defines a
subgeometry of Euclidean plane geometry (R2 : Isom(R2)).

13.2. The Euclidean plane as a subgeometry of RP 2

13.2.1 The fact that the Euclidean plane (R2 : Isom(R2)) is a subgeom-
etry of the projective plane (RP 2 : Proj(2)) is rather obvious if we interpret
RP 2 (in the homogeneous coordinate model, see Section 11.2) as the plane

Π = {(x1, x2, x3) ∈ R3 |x3 = 1}

supplied with the “line at infinity” Λ∞ = {(x1 : x2 : x3)|x3 = 0}, i.e., if we
take RP 2 = Π ∪ Λ∞.

Indeed, let us define i : R2 → RP 2 = Π ∪ Λ∞ in the obvious way, i.e.,
by setting i((x1, x2)) := (x1, x2, 1) and define γ : Isom(R2) → GL(3) as

follows. Let g ∈ Isom(R2), let (
−→
AB,
−→
AC) be an orthonormal frame in R2 and

(
−−→
A′B′,

−−→
A′C ′) be its image under g. For γ(g) we take the element of Proj(2)

that takes the three lines OA,OB,OC to the three lines OA′, OB′, OC ′. This
construction is shown in the figure.

x1

x2

x3

O

A
B

C

A′

B′

C′

1

Π

Λ∞

Λ∞

Λ∞ g

γ(g)

Figure 13.1. The Euclidean plane as a subgeometry of RP 2

13.2.2. Theorem. The construction described above shows that the
Euclidean plane is a subgeometry of the projective plane.
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Proof. The theorem is obvious: clearly, i is injective, γ is a monomor-
phism, and the fact that compatibility holds is also immediate. �

13.3. The hyperbolic plane as a subgeometry of RP 2

13.3.1. The fact that the hyperbolic plane (H2 : M) is a subgeometry of
the projective plane (RP 2 : Proj(2)) is best seen by using the Cayley–Klein
model and interpreting RP 2 (as in Section 12.2 above) as the plane

Π = {(x1, x2, x3) ∈ R3 |x3 = 1}

supplied with the “line at infinity” Λ∞ = {(x1 : x2 : x3)|x3 = 0}, i.e., by
taking RP 2 = Π ∪ Λ∞.

Recall that the Cayley–Klein model was defined as (H2 : Isomλ(H2)),
where H2 is the unit open disk and λ is the metric given by the formula
λ(A,B) = (1/2)| ln(〈A,B,X, Y 〉)| (for the details, see Section 9.2).

Π

Λ∞

Λ∞

Λ∞

x1

x2

x3

i(H2)A1

B1
C1

D1

A2 B2

C2D2

γ(g)

i(X)

i(Y )

Figure 13.2. The Cayley–Klein model as a subgeometry of RP 2

Now let us define i : H2 → RP 2 = Π ∪ Λ∞ in the obvious way, i.e.,
by setting i((x1, x2)) := (x1, x2, 1) and define γ : Isomλ(H2) → Proj(2) as
follows. Let g ∈ Isomλ(H

2). Take four points A,B,C,D ∈ H2 in general
position and consider their images Ag,Bg, Cg,Dg ∈ H2 under g. Denote

A1 = i(A), B1 = i(B), C1 = i(C), D1 = i(D) ∈ H2,

A2 = i(Ag), B2 = i(Bg), C2 = i(Cg), D2 = i(Dg) ∈ H2.
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The two quadruples of points Ai, Bi, Ci, Di ∈ Π, i = 1, 2, are in general
position, and so by Theorem 12.3.3 there exists a unique projective transfor-
mation taking A1, B1, C1, D1 to A2, B2, C2, D2; we take this transformation
to be γ(g). The construction is shown on the figure.

Basically, this construction is simply the natural extension of the action
of g from the open unit disk

{(x1, x2, 1) |x21 + x22 < 1} = i(H2)

to the entire projective plane. To any “straight line” of H2 (i.e., any chord
XY of the unit circle) corresponds the straight line joining the points i(X),
i(Y ) in the projective plane; to parallel or nonintersecting lines in H2 (chords
of the unit circle) correspond straight lines in RP 2 that actually intersect (at
a point outside the disk i(H2), possibly on the “infinite line” Λ∞).

13.3.2. Theorem. The construction described above shows that the
hyperbolic plane is a subgeometry of the projective plane.

Proof. The map i is obviously injective, so that it remains to show that the
restriction of γ(g) to the open disk {(x1, x2, 1) |x21+x22 < 1} = i(H2) coincides
with γ. This is a consequence of the fact that projective transformations
preserve the cross ratio of any four collinear points, and therefore preserve
the distance λ between points inside i(H2) (λ being the absolute value of the
logarithm of the appropriate cross ratio). But g is an isometry (with respect
to λ), it coincides with the restriction of γ(g) to i(H2) on three noncollinear
points, therefore it coincides with this restriction on all of i(H2). This proves
the theorem.�

13.3.3. Remark. It can be proved that the subgroup of Proj(2) that
takes the circle {(x1, x2, 1) |x21 + x22 = 1} to itself is actually isomorphic
to Isomλ(H2)), and this isomorphism is often used to establish various for-
mulations expressing the fact that the hyperbolic plane is “a part of” the
projective plane. We do not need this fact in our approach to this topic, so
we omit the proof here.

13.4. The Riemannian elliptic plane as a subgeometry of RP 2

13.4.1. As in the two previous sections, we regard RP 2 as the plane Π
with the line at infinity Λ∞ added to it. Our model of Riemannian two-
dimensional elliptic geometry Ell2 will be the standard one, i.e., the unit
sphere with its antipodal points identified: Ell2 = (S2/Ant : O(3)). We think
of this sphere as lying on the plane Π, touching it at the point (0, 0, 1).
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We first construct the inclusion (which will actually be a bijection) of
S2/Ant to RP 2 by simply projecting it from the center of the sphere onto
Π∪Λ∞. Note that “straight lines” in S2/Ant (i.e., great circles of the sphere
with diametrically opposed points identified) will be mapped to straight lines
of the projective plane, in particular, the equator of the sphere will be mapped
to the “infinite line” Λ∞. Note also that spherical triangles (not intersecting
the equator) will be projected to ordinary rectilinear triangles in Π, but their
angles will not be preserved.

O

1

2

3

x1 x2

x3

A

A1

B1

S2/Ant

A′
1

B′
1

C′
1

D′
1

γ(g)

g

Π

Λ∞

Figure 13.3. Bijection between the elliptic plane and RP 2

To construct the monomorphism γ : O(3)→ Proj(2), we choose two per-
pendicular arcs AB and AC (that do not intersect the equator) and denote
by BCD the triangle symmetric to triangle ABC with respect to the line
BC. Denote by A1, B1, C1, D1 the central projections of the points A,B,C,D
to the plane Π. Now suppose g ∈ O(3) takes the points A,B,C,D to
A′, B′, C ′, D′, and denote by A′1, B

′
1, C

′
1, D

′
1 their projections to Π. We define

γ(g) as the projective transformation that takesA′, B′, C ′, D′ toA′1, B
′
1, C

′
1, D

′
1

(such a projection exists and is unique by Theorem 12.3.3). The construction
is shown on the figure.

13.4.2. Theorem. The construction described above shows that the
Riemannian elliptic plane is a subgeometry of the projective plane.
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Proof. The theorem is an easy consequence of the following lemma, whose
proof is the object of Exercise 13.3.

13.4.3. Lemma. The map γ described above is a monomorphism of
O(3) to Proj(2).

Indeed, the monomorphism γ is compatible with the map i by construc-
tion, so that the theorem follows. �

13.5. Problems

13.1. Prove that any projective transformation of the projective plane
RP 2 preserves the cross-ratio of collinear points

13.2. Prove that, conversely, any transformation of the projective plane
that preserves the cross-ratio of all collinear points is projective.

13.3. Prove Lemma 13.4.3.

13.4. Give an example of a spherical triangle whose angle sum is close
to 2π and describe its image under the central projection defined in §12.4.

13.5. Show that for any ε > 0 and any positive number S, there exists a
spherical triangle of area less than ε whose image under the central projection
defined in Section 13.4 is of area greater than S.

13.7. Prove that the subgroup of projective transformations that take
the unit circle centered at the origin to itself is isomorphic to the isometry
group of the hyperbolic plane.

13.8. Generalize and solve the previous problem by replacing the circle
by an arbitrary oval (nondegenerate second degree curve).
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.

Chapter 14

FINITE GEOMETRIES

A finite geometry is geometry whose set of points is finite. In that sit-
uation, the possibilities for the transformation group are extremely varied,
and Klein’s definition of geometry is too general to single out those finite
geometries that actually deserve to be called geometries. Thus one must
impose restrictions on the group actions involved, and this is done by using
coordinates from linear spaces over finite fields. Another approach involves
introducing the notion of “straight line” and imposing conditions (axioms)
which make the geometries “projective” or “affine” in a certain sense.

Unfortunately, the two approaches are not equivalent, the axiomatic ap-
proach yielding a wider class of finite planes than the algebraic coordinate
one. However, it turns out that the two approaches are equivalent if and only
if Desargues’ theorem holds in the finite geometry considered.

It should be noted that some basic natural questions about finite geome-
tries are at present unanswered and that these geometries are the object of
active ongoing research. Some of these questions and related conjectures are
mentioned in Section 14.11.

14.1. Small finite geometries

In this section, we try to classify all the geometries with a “small” number
of points. By classifying we mean listing (without repetitions) all the geome-
tries with a given number of points k := |X| up to isomorphism. Recall that
two geometries are isomorphic if there is an equivariant bijection between
them, i.e., a bijection between their sets of points and an isomorphism be-
tween their transformation groups which is compatible with the bijection (for
the detailed definition, see Chapter 1).

There is of course only one geometry with one point. For |X| = 2 there
are two geometries (with |G| = 2 and |G| = 1). For |X| = 3 there are
four: the symmetries (= isometries) of the vertices of the equilateral triangle
(G = S3), the motions of the vertices of the equilateral triangle (G = Z3),
the symmetries of the vertices of the isosceles triangle (G = Z2). For |X| = 4
there are ten: the symmetries of the regular tetrahedron, its motions, the
symmetries of the square, its motions, the rotations of the square by 0 and
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π, the symmetries of the rhombus, and four more geometries obtained when
the transformation group has a fixed point (the same one for each element).

For |X| ≥ 5 the situation becomes too complicated to handle, while for
|X| ≥ 10, even a supercomputer is powerless.

To continue our study, we need to specify some reasonable classes of finite
geometries. To do that, we need some algebra.

14.2. Finite fields

The modern logical foundation of ordinary Euclidean affine geometry is
the notion of vector space over the real number field. To construct something
similar in the finite case, we need finite fields.

14.2.1. Theorem. For any q = pm, where p is prime and m is a
positive integer, there exists exactly one (up to isomorphism) field consisting
of q elements, called the finite field of order q and denoted by F (q). There
are no other finite fields.

We will not prove this theorem (the proof belongs to algebra courses) and
only present the simplest nontrivial example F (4) = {0,1,2,3} by displaying
its addition and multiplication tables:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

In order to get a feeling for the structure of the fields F (q), we invite the
reader to construct the addition and multiplication tables for, say, F (32).

14.3. Example: the finite affine plane of over F (5)

In this section we will construct a finite affine plane geometry starting
from the finite field F (p), where p is a prime number (i.e., in the case m = 1).
To make the construction more concrete, we will carry it out for p = 5,
although it works for any prime p.

14.3.1. Let us define the affine plane AF (5) of order 5 as the set
{(x, y)|x ∈ F (5), y ∈ F (5)} of pairs (coordinates of points). As in ordinary
Euclidean geometry, two points T = (a, b), S = (c, d) determine a vector
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−→
TS = {c−a, d−b}. We will define straight lines as in analytic geometry, i.e.,
by setting A(t) = A0 + t−→v , where A0 is a point, −→v is a vector, and t runs
over F (5). For example, if we take A0 = (0, 0) and −→v = (1, 2), we obtain the
“straight line” {

(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)
}
.

Thus we obtain a total of 30 straight lines, 25 points, 5 points on each
line, and 6 lines passing through each point. In Figure 14.1, we have shown
the six lines passing through the point (0, 0).

1

2
3

4

5

6

Figure 14.1. Six lines in AF (5)

Arguing in the same way in the general case, we obtain p2 + p straight
lines, p2 points, p points on each line, and p + 1 lines passing through each
point.

14.3.2. The same result can be obtained by using the orbit space of an
appropriate geometry. Let Z ⊕ Z ⊂ R2 be the integer lattice on the plane
and let (Z⊕Z : G) be the geometry defined by the transformation group G,
isomorphic to Z⊕ Z, acting by coordinate shifts by 5, i.e.,

G 3 (k, l) : (m,n) 7→ (m+ 5k, n+ 5l).

The orbit space of this action consists of 25 “points”. We identify them with
the 25 points of the lattice with nonnegative coordinates less than 5. The
“straight line” passing through two points of this 5 by 5 square are defined
as follows: construct the Euclidean line joining these two points in R2, take
all the integer points on this line and reduce both their coordinates mod 5,
obtaining three more points in the square; together with the two given points,
they constitute a “ straight line”.
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Geometrically, you can visualize this as the covering of the torus by the
plane: under this map the points of the square lattice are “wrapped around”
the 25 points on the torus.

14.4. Example: the finite affine plane over F (22)

We now start our constructions with the field F (22). Define the affine
plane over F (4) as the set {(x, y)|x ∈ F, y ∈ F} of pairs (coordinates of
points). Using the same approach as in Section 14.3 (including the “vector
definition” of straight lines), we obtain, for example, the “straight line” con-
sisting of the points

{
(0, 0), (1, 1), (2, 2), (3, 3)

}
. Now consider the line passing

through (0, 0) along the vector {1, 2}; it consists of the points

{
(0, 0), (1, 2), (2, 0), (3, 2)

}
.

But there is another line passing through the two points (0, 0), (2, 0), namely
the “horizontal” line

{
(0, 0), (1, 0), (2, 0), (3, 0)

}
.

Thus the fundamental fact that “through two points there passes one and
only one straight line” does not hold in the “affine geometry” with straight
lines defined as above!

Nevertheless, a reasonable affine geometry with 4 points on each line can
be constructed on the set of points P by defining straight lines in a different
way. In particular, the “straight line” that passes through the points (0, 0),
(1, 2) must contain two more points ((2, 3) and (3, 1)) and is unique. In this
geometry, there are 16 = q2 points, 20 = q2 +q straight lines, 4 = q points on
each line, and 5 = q+ 1 lines pass through each point. The five lines passing
through the point (0, 0) are shown in Figure 14.2.

1

2
3

4

5

Figure 14.2. Five lines in AF (4)
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The result is a geometry called the finite affine plane over the field F (4)
and is denoted by AF (4). The set AF (4) is indeed a geometry in the sense
of Klein, (AF (4) : Γ), if for the transformation group Γ we take the set of all
bijections of AF (4) that map lines into lines.

In the general case, i.e., when F = F (q), q = pm, m > 1, with prime p, one
can also construct the finite affine plane AF (q), but the direct construction
is rather tedious, and we omit it. However, we will present a neat indirect
construction via finite projective geometries in Section 14.8.

First, we give an example of a finite projective geometry.

14.5. Example of a finite projective plane

14.5.1. Let AF (4) be the finite affine plane for q = 22. We say that
two lines of AF (4) are parallel if they coincide or have no common points.
Parallelism is an equivalence relation, and so all lines are partitioned into
equivalence classes of parallel lines. It is easy to see that there are 5 such
classes. To AF (4) let us add 5 points (called points at infinity) and agree that
they all lie on one straight line (the line at infinity). The set thus obtained is
called the projectivization of the affine plane AF (4) and is denoted by PF (4);
it has 21 points, 21 straight lines, 5 points on each line, 5 lines passing through
each point, and any two distinct lines have exactly one common point. The
projective plane PF (4) is shown in Figure 14.3.

∞

∞

∞

∞

∞

Figure 14.3. Projectivization of AF (4)

14.5.2. The construction described above for q = 4 actually works for
any q = pm with prime p. One obtains the projective geometry PF (q); it
has q2 + q+ 1 points, q2 + q+ 1 straight lines, q+ 1 points on each line, q+ 1
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lines passing through each point, and any two distinct lines of PF (q) have
exactly one common point.

14.6. Axioms for finite affine planes

14.6.1. A more traditional approach to finite geometries is the axiomatic
approach. A finite affine plane is a nonempty finite set of elements P (called
points) with a family L of subsets (called lines) that satisfy the axioms:

Aff.1. There is exactly one line passing through any two distinct points.

Aff.2. There is exactly one line parallel to a given line and passing
through a given point. (Two lines are called parallel if they have
no common points or if they coincide.)

Aff.3. There is a generic triangle (three points not belonging to one
and the same line).

Here the second axiom ensures that the dimension of the set of points is
less than or equal to 2. The third axiom ensures that its dimension is greater
than or equal to 2. Thus the dimension of the set of points is two, this set
can be regarded as a “plane”. The construction of the two simplest affine
planes (with 4 and 9 points) is the object of Exercise 14.1.

14.3.2. Theorem. (i) For every q = pm, where p is prime and m is a
positive integer, there exists an affine geometry P = AF (q) with q points on
a line.

(ii) The geometry P = AF (q) has q2 points, a family of q2 + q subsets L
that satisfies the axioms Aff.1–Aff.3.

(iii) If Γq is the group of bijections of P that map lines (i.e., elements of
L) into lines, then (P, Γq) is a geometry in the sense of Klein called an affine
Galois plane of order q.

The existence of AF (q) (item (i) of the theorem) will be proved in 14.8.3.
The proof of items (ii)-(iii) is a series of exercises (14.2-14.6) in the problem
section.

14.7. Axioms for finite projective planes

14.7.1. A finite projective plane is a nonempty finite set of elements P
(called points) with a family L of subsets (called it lines) that satisfy the
following axioms:

Proj.1. There is exactly one line passing through a pair of distinct points.

Proj.2. There is exactly one point contained in a pair of distinct lines.
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Proj.3. There exist four points that determine six distinct lines.

Proj.4. There exist four lines that determine six distinct points.

Actually the fourth axiom is redundant (it follows from the first three),
we include it for the sake of symmetry.

The simplest finite projective plane (called the Fano plane) is shown in
Figure 14.4. It has 7 points, 7 lines, 3 points on each line, and 3 lines passing
through each point. The four points in the middle of the picture satisfy the
axiom Proj.3. The Fano plane can be constructed from the four point affine
plane by adding the “line at infinity”, as explained in 14.5.1.

1

2

34

5

6

7

Figure 14.4. The Fano plane

14.7.3. Projective duality. Just as in the case of the real projective plane
RP 2, the finite projective plane satisfies the Duality Principle: Interchanging
the words “point” and “line” in the statement of any theorem and accord-
ingly modifying the wording of the incidence relations, one obtains another
theorem. This principle follows from the fact that the four axioms split into
two pairs dual to each other. However, the finite projective projective plane
obtained from a given one by duality is not necessarily isomorphic to the
given one. Questions of duality are rather delicate in the finite case, and we
do not discuss them here.

14.7.3. Theorem. If (P,L) is a finite projective plane, then there exists
a natural number n, called the order of the plane, such that:

(i) each line contains n+ 1 points;
(ii) each point is contained in n+ 1 lines;
(iii) the number of points is equal to the number of lines and equal to

n2 + n+ 1.

14.7.4. Remark. The theorem does not assert the existence of finite
projective planes: in it, it is assumed that a finite projective plane is given
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and thus it only asserts that if a plane satisfying axioms Proj.1–Proj.3 exists,
then its number of lines and points satisfies the constraints (i)-(iii).

14.7.5. Proof of Theorem 14.7.3. Suppose (P,L) is a finite projective
plane, l,m ∈ L, and let a ∈ P be a point not lying on l nor on m (such
a point exists by axiom Proj.3). Consider the map f of the set of points
of the line l to the set of points of m that assigns to each point x ∈ l the
intersection point of the lines xa and m. Axioms Proj.1–Proj.2 imply that f
is well defined and bijective. Denoting the number of points on l by n + 1,
we see that item (i) is proved. Item (ii) follows by the Duality Principle. To
prove (iii), fix some point a ∈ P. Each line passing through a passes through
n other points, and so |P| = (n + 1)n + 1 = n2 + n + 1. By duality we have
|L| = n2 + n+ 1., which concludes the proof. �

14.7.6. Remarks. (1) One can pass from the finite affine plane to the
projective plane by adding q + 1 “points at infinity” (corresponding to each
class of parallel lines) and one new line (the line of all points at infinity).
Conversely, one can pass from a projective plane to an affine plane by re-
moving one line (with all its points). Unfortunately, the result is not well
defined: it may depend on the choice of the line!

(2) There is no uniqueness theorem for projective planes of order pm for
m > 1 (for example, there is are several nonisomorphic projective planes of
order 9, see Exercise 14.9).

(3) It is not known at present for what values of q there exist projective
planes of order q. Specifically, this question is unanswered already for q = 12.
This question, and other open questions, as well as related conjectures, are
briefly discussed in Section 14.11.

14.8. Constructing projective planes over finite fields

In this section, we give a constructive definition of the finite projective
planes based on linear spaces over finite fields, similar to the definition of the
real projective plane RP 2 (cf. 12.1).

14.8.1. Main construction. Consider the three-dimensional vector space
V over the finite field F = F (pm), where p is prime. Denote by P the set of
one-dimensional subspaces of V , which we now call points, and the set L of
two-dimensional subspaces, which we now call lines; we say that a line l ∈ L
passes through a point p ∈ P (or p is contained in l, or l contains p) if we
have the inclusion of linear spaces p ⊂ l.
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14.8.2. Theorem. (i) The construction described above yields a finite
projective plane (P, L) of order q = pm.

(ii) If we define the transformation group of P as the set of bijections Γ
of P that take lines to lines, then (P,Γ) is a geometry in the sense of Klein.

Proof. All four axioms Proj.1–Proj.4 are immediate consequences of the
main construction. Item (ii) is the object of Exercise 14.6 .�

The geometry thus constructed is called the finite projective space over
the field F (pm)and is denoted by PF (pm).

14.8.3. Corollary. The finite affine plane of order q = pm, where p is
any prime and m is any natural number, exists.

Proof. To construct the required plane, it suffices to remove one line (and
all its points) from the finite projective plane of order q. �

This fact completes the proof of item (i) of Theorem 14.3.2.

14.9. The Desargues theorem

The Desargues theorem, which we proved for the real projective plane
RP 2, is not true for arbitrary finite projective planes. However, we have the
following statement.

14.9.1. Theorem. The Desargues theorem holds for the finite projective
planes PF (pm) = (P, L), i.e., three lines x1y1, x2y2, x3y3 ∈ L intersect at one
point if and only if the intersection points z1, z2, z3 ∈ P of the pairs of lines
x2x3 and y2y3, x3x1 and y3y1, x1x2 and y1y2, respectively, are collinear.

Proof. In the proof, we will use the model of PF (pm) given by the con-
struction 14.8.1, i.e., we regard points as one-dimensional linear subspaces of
the vector space over F (pm) and lines as two-dimensional subspaces.

First let us note that the Desargues theorem is self-dual, and there-
fore it suffices to prove the “only if” part, i.e., assuming that the lines
A1B1, A2B2, A3B3 intersect at one point (which we denote by S), to show
that the intersection points P1, P2, P3 are collinear. If the point S lies in each
of the three lines P1P2, P2P3, P3P1, then there is nothing to prove, so we can
assume that S /∈ P2P3.

In our model the points S,Ai, Bj, Pk are actually one-dimensional linear
spaces, and we will use the same lower case letters s, ai, bj, pk to denote
nonzero vectors belonging to (and therefore determining) the corresponding
linear spaces.
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Figure 14.5. Desargues’ theorem

Now since the vectors s, a1, b1 belong to the same two-dimensional space,
they are linearly dependent, and (by an appropriate choice of these vectors
in their linear spaces) we can write b1 = a1 + s. It is easy to see that the
vectors a1, p2, p3 are linearly independent, and therefore we can put

b1 = α1a1 + α2p2 + α3p3,

where α1, α2, α3 ∈ F . Consider the linear operator ϕ on V given by

ϕ(a1) = b1, ϕ(p2) = p2, ϕ(p3) = p3.

Then we have

ϕ(s) = ϕ(b1− a1) = (α1− 1)b1 +α2p2 +α3p3 = (α1− 1)b1 + b1−α1a1 = α1s.

The linear operator ϕ is nondegenerate, it takes linear subspaces to linear
subspaces of the same dimension. In particular, we have

ϕ(A1) = B1, ϕ(P2) = P2, ϕ(P3) = P3, ϕ(S) = S.
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The vectors p2, p3 form a basis of the line P2P3 (regarded as a two-
dimensional vector space), and so the operator ϕ is the identity on this line.
Now if Λ is any line passing through S, then, since ϕ leaves S in place as well
as the intersection point of the lines Λ and P2P3, it follows that ϕ(Λ) = Λ.

Now the point A2 lies on the lines SA2 and B1P3, and therefore ϕ(A2)
is the intersection point of the lines SA2 and B1P3, and so ϕ(A2) = B2.
Similarly, ϕ(A3) = B3. Thus ϕ(A2A3) = B2B3. Now let P be the intersection
point of the lines A2A3 and P2P3. Then the point ϕ(P ) lies on the line B2B3

and, at the same time, ϕ(P ) = P . Therefore, P = P1 and P1 lies on the line
P2P3, which was to be proved. �

14.9.2. Remark. Note that this proof (like the proof given in 12.7.1) is, in
a certain sense, “three-dimensional”: when we replaced points by vectors in
the above proof, we were essentially adding a point (the origin of coordinates
in the three-dimensional space over F (pm)) lying outside the plane containing
all the given points.

14.10. Algebraic structures in finite projective planes

Until now, we have been using algebra (finite fields) to construct geomet-
ric objects (finite affine and projective planes). Now we will try to move in
the opposite direction, i.e., analyze what the geometric axioms for the finite
projective plane imply concerning the algebraic structure of the projective
line. Unfortunately, it will turn out that the natural and optimistic expec-
tation that axioms Proj.1–Proj.4 imply that there are pm + 1 points on each
line (for some prime p and natural number m) and that these points can be
added and multiplied in a natural way, thereby forming a field isomorphic to
F (pm), does not come true. The situation is much more complicated, in the
general case one can obtain an algebraic structure from the axioms, but is
not that of a field: its multiplication is not commutative and there only one
distributive law (see 14.10.3 below)

14.10.1. Introducing coordinates. Let (P, L) be a finite projective plane
of order n ≥ 2. (Recall that this means that (P, L) satisfies axioms Proj.1–
Proj.4) and one of its lines (and therefore all lines) contains n points). Denote
by F a set of n elements; we stress that F is a set of arbitrary symbols, it is
not a field, in fact at first it has no algebraic operations defined on it. Our
aim is to supply F with an algebraic structure (hopefully that of a field) and
use it to introduce coordinates in our finite projective plane (P, L).

We begin by choosing two arbitrary elements of F that we denote by 0
and 1. By ∞ we denote a symbol that does not belong to F . Using axiom
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Proj.3, let us choose an initial quadrilateral in our plane, i.e., four points no
three of which lie on one line. Denote these points by (0, 0), (0), (∞), (1, 1)
and denote the six lines passing through these points as follows

[0, 0] : = (0, 0)(0), [0] := (0, 0)(∞), [∞] := (0)(∞),

[1] : = (1, 1)(∞), [0, 1] := (1, 1)(0), [1, 0] := (0, 0)(1, 1).

These six lines intersect in seven points (four of which belong to the initial
quadrilateral), and we denote the other three as follows

(1, 0) := [1][0, 0], (0, 1) := [0][0, 1], (1) := [∞][1, 0],

where the juxtaposition of two lines determines their intersection, e.g. the
formula (1, 0) = [1][0, 0] means that (0, 1) is the intersection point of the lines
[1] and [0, 0].

If there are no other points in P, then n = 2 and it is easy to see that we
have obtained the Fano plane. The reader will profit by looking at Fig.14.4
and supplying its points with coordinates as indicated in the construction
described above.

If there are other points left, then n > 2 and we denote by a an arbitrary
element of F other than 0 or 1. For any such a, we define new points and
lines by setting

[a,0]:=(0,0)(a), (1,a):=[1][a,0], [0,a]:=(0)(1,a),
(a,a):=[0,a][1,0], [a]:=(a,a)(∞), (a,0):=[a][0,0], (0,a):=[0,a][0].

If there are any other elements b in F other than 0, 1, a, we set

(a, b) := [a][0, b], [a, b] := (a)(0, b).

Thus we have supplied all the points of our finite projective plane with co-
ordinates, and we know what the intersection points of any two lines are.

14.10.2. Addition and multiplication. Now we can define the sum and
product of two arbitrary elements a, b ∈ F by setting

(a, a+ b) := [a][1, b], (a, a · b) := [a][b, 0].

The motivation behind this definition is that it is compatible with the addi-
tion and multiplication induced on points on the projective line in the case
of the finite projective plane over the field F (pm). The reader is invited to
return to the definition of finite projective planes over a field, check that they
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can be supplied with coordinates as specified above and that the operations
defined above coincide with the ones induced by the field F (pm).

As we noted above, it is not always true that these operations supply F
with a field structure. They satisfy axioms of a structure weaker than that
of a field, which we now define.

14.10.3. Almost fields. An almost field is a set F with two binary
operations, called addition and multiplication, such that under addition F
is an Abelian group with neutral element 0, the set F \ 0 is a group (not
necessarily Abelian) under multiplication and the right distributive law is
satisfied, i.e., (a+ b)c = ac+ bc.

When the left distributive law is not satisfied (such examples of almost
fields exist), the almost field is not even a ring. We will not describe examples
of this type or study almost fields in detail: they are complicated and rather
ugly, and we will limit our exposition to the statements (without proofs) of
two beautiful theorems and of some open problems.

14.10.4. Theorem. (i) Given any finite almost field F , a projective
plane over F can be determined by using the construction from Section 14.8
with F replacing the field F (pm).

(ii) Given any finite projective plane of order n, there is an almost field
F (of order n − 1) using which the projective plane can be constructed as
indicated in (i).

The proof of (i) is similar to that in Section 14.8, while (ii) can be proved
by a tedious series of geometric constructions needed to verify the numerous
axioms of almost fields.

14.10.5. Theorem. A finite projective plane is a projective plane over
the field F (pm) if and only Desargue’s theorem holds in it.

The “only if” part was proved above (see 14.8.1), while the “if” part is
another complicated series of artificial geometric constructions ensuring the
required algebraic axioms.

14.11. Open problems and conjectures

The main open problem here is the following: For what values of q does
there exist a finite projective plane of order q and for what values of q is the
finite projective plane of order q unique?

We know that there exists one and only one projective plane of the or-
ders 2,3,4,5,7,8 (see Exercises 14.10–14.11). We also know certain number-
theoretic constraints forbidding projective planes of certain orders.
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14.11.3. Theorem. [Brack–Raiser] Let q ≡ 1 or 2 (mod 4). If there
exists a projective plane of order q, then q can be presented as the sum of
squares of two natural numbers.

For the proof, see [??]. This theorem forbids projective planes of orders
6, 14,21, 22, 30, etc.

14.11.3. Conjecture. The order q of any finite projective plane is a
prime number q = p or a power of a prime q = pm.

The first natural number q which does not meet the assumptions of the
conjecture is 6, and indeed on can prove (see Exercise 14.9) that there is
no finite projective plane of order 6. The next such number is 10, and it is
only in 1991 that it was established, with the aid of a supercomputer, that
the conjecture holds there also. But already for q = 12 the existence of a
projective plane of order q is an open question.

14.11.3. Conjecture. All the projective planes of prime order p are
Desargues.

There are non-Desarguian projective planes of nonprime order. The
“smallest” one is of order 9 (Exercise 14.15).

14.12. Problems

14.1. Construct an affine geometry having 4 points and a finite affine
geometry having 9 points.

14.2. Suppose that one of the lines of the affine plane (P, L) from Theorem
14.1 consists q points. Prove that the plane P consists of q2 points.

14.3. Suppose that one of the lines of the affine plane (P, L) from Theorem
14.1 consists q points. Prove that all other lines consist of q points.

14.4. Suppose that one of the lines of the affine plane (P, L) from Theorem
14.1 consists q points. Prove that L consists of q2 = q lines.

14.5. Suppose that one of the lines of the affine plane (P, L) consists q
points. Prove that q + 1 lines pass through each point.

14.6. Prove that the finite affine plane AF (pm) is a geometry in the sense
of Klein.

14.7. In the affine plane consisting of q2 points for q = 3, construct the
system of lines passing through one of the points.

14.8. Describe the projectivization of the affine plane from Exercise 14.5.
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14.9*. Prove that there does not exist a finite projective plane of order
q = 6.

14.10. Prove that the projective planes of order 2,3,4,5 are unique.

14.11*. Prove that the projective planes of order 7 and 8 are unique.

14.12*. Does there exist a finite affine plane of order q = 6?

14.13*. Find two nonisomorphic finite affine planes of order q = 9.

14.14. By adding “points at infinity” to the affine geometries of orders
3,4,5, construct the corresponding finite projective planes.

14.14**. Give an example of a finite projective plane from which one
can obtain nonisomorphic affine planes by removing one line.

14.15*. Construct a non-Desarguian projective plane of order 9.


