PROBLEMS for Lecture 8

8.1. Prove that
(a) linear-fractional transformations preserve the cross-ratio of four points on the Riemann sphere $\overline{\mathbb{C}}$;
(b) a linear-fractional transformation is uniquely determined by three points and their images.
8.2. Let l be a straight line in the Euclidean plane, γ a circle with center O on l, P a point not on l and not on the perpendicular to l from O. Prove that there exists a unique circle passing through P, orthogonal to γ, and centered on l.
8.3. Let l be a straight line in the Euclidean plane, γ a circle with diameter $A B$ on l, P a point not on l and not in γ. Prove that there exists a unique circle passing through P and A with center on l, and a unique circle passing through P and B with center on l.
8.4. Prove that all motions (i.e., orientation-preserving isometries) of the Poincaré disk model are of the form

$$
z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}
$$

where a and b are complex numbers such that $|a|^{2}=|b|^{2}=1$.
8.5. Show that there exists an isometry of the half-plane model that takes any flag to any other flag (a flag is a triple consisting of a line in the hyperbolic plane, one of the two half-planes that the line bounds, and a point on that line).
8.6*. Find a formula for the area of a triangle in hyperbolic geometry.

