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Lecture 7

THE POINCARÉ DISK MODEL
OF HYPERBOLIC GEOMETRY

In this lecture, we begin our study of the most popular of the non-
Euclidean geometries – hyperbolic geometry, concentrating on the case of
dimension two. We avoid the intricacies of the axiomatic approach (which
will only be sketched in Chapter 10) and define hyperbolic plane geometry
via the beautiful Poincaré disk model, which is the geometry of the disk
determined by the action of a certain transformation group acting on the
disk (namely, the group generated by reflections in circles orthogonal to the
boundary of the disk).

In order to describe the model, we need some facts from Euclidean plane
geometry, which should be studied in high school, but in most cases unfortu-
nately aren’t. So we begin by recalling some properties of inversion (which
will be the main ingredient of the transformation group of our geometry)
and some constructions related to orthogonal circles in the Euclidean plane.
We then establish the basic facts of hyperbolic plane geometry and finally
digress (following Poincaré’s argumentation from his book Science et Hy-
pothèse [??]) about epistomological questions relating this geometry (and
other geometries) to the physical world.

7.1. Inversion and orthogonal circles

7.1.1. Inversion and its properties. The main tool that we will need
in this lecture is inversion, a classical transformation from elementary plane
geometry. Denote by R the plane R2 with an added extra point (called the
point at infinity and denoted by ∞). The set R := R2 ∪ ∞ can also be
interpreted as the complex numbers C with the “point at infinity” added; it
is then called the Riemann sphere and denoted by C.

An inversion of center O ∈ R2 and radius r > 0 is the transformation of
R that maps each point M to the point N on the ray OM so that

|OM | · |ON | = r2 (7.1)

and interchanges the points O and ∞. Sometimes inversions are called re-
flections with respect to the circle of inversion, i.e., the circle of radius r
centered at O.
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There is a simple geometric way of constructing the image of a point M
under an inversion of center O and radius r: draw the circle of inversion,
lower the perpendicular to OM from M to its intersection point T with the
circle and construct the tangent to the circle at T to its intersection point N
with the ray OM ; then N will be the image of M under the given inversion.
Indeed, the two right triangles OMT and OTN are similar (they have a
common acute angle at O), and therefore

|OM |
|OT |

=
|OT |
|ON |

,

and since |OT | = r, we obtain (7.1).

O

r

M

N

T

Figure 7.1. Inversion |OM | · |ON | = r2

If the extended plane R is interpreted as the Riemann sphere C, then
an example of an inversion (of center O and radius 1) is the map z 7→ 1/z,
where the bar over z denotes complex conjugation.

It follows immediately from the definition that inversions are bijections
of R = C that leave the points of the circle of inversion in place, “turn the
circle inside out” in the sense that points inside the circle are taken to points
outside it (and vice versa), and are involutions (i.e., the composition of an
inversion with itself is the identity). Further, inversions possess the following
important properties.

(i) Inversions map any circle or straight line into a circle or straight line.
In particular, lines passing through the center of inversion are mapped to
themselves (but are “turned inside out” in the sense that O goes to ∞ and
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vice versa, while the part of the line inside the circle of inversion goes to the
outside part and vice versa); circles passing through the center of inversion
are taken to straight lines, while straight lines not passing through the center
of inversion are taken to circles passing through that center (see Fig.7.2).

∞

Figure 7.2. Images of circles and lines under inversion

(ii) Inversions preserve (the measure of ) angles; here by the measure of
an angle formed by two intersecting curves we mean the ordinary (Euclidean)
measure of the angle formed by their tangents at the intersection point.

(iii) Inversions map any circle or straight line orthogonal to the circle of
inversion into itself. Look at Fig.7.3, which shows two orthogonal circles CO

and CI of centers O and I, respectively.

It follows from the definition of orthogonality that the tangent from the
center O of CO to the other circle CI passes through the intersection point T
of the two circles. Now let us consider the inversion of center O and radius
r = |OT |. According to property (iii) above, it takes the circle CI to itself;
in particular, the point M is mapped to N , the point T (as well as the other
intersection point of the two circles) stays in place, and the two arcs of CI

cut out by CO are interchanged. Note further that, vice versa, the inversion
in the circle CI transforms CO in an analogous way.
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Figure 7.3. Orthogonal circles

The (elementary) proofs of properties (i)–(iii) are left to the reader (see
Exercises 7.1–7.3).

7.1.2. Construction of orthogonal circles. We have already noted the
important role that orthogonal circles play in inversion (see 7.1.1.(iii)). Here
we will describe several constructions of orthogonal circles that will be used
in subsequent sections.

7.1.3. Lemma. Let A be a point inside a circle C centered at some
point O; then there exists a circle orthogonal to C such that the reflection in
this circle takes A to O.

Proof. From A draw the perpendicular to line OA to its intersection T
with the circle C (see Fig.7.4).

O T

I

A

Figure 7.4. Inversion taking an arbitrary point A to O

Draw the tangent to C at T to its intersection at I with OA. Then the
circle of radius IT centered at I is the one we need. Indeed, the similar right
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triangles OAT and ITO yield |IA|/|IT | = |IT |/|IO|, whence we obtain
|IA| · |IO| = |IT |2, which means that O is the reflection of A in the circle of
radius |IT | centered at I, as required. �

7.1.4. Corollary. (i) Let A and B be points inside a circle C0 not lying
on the same diameter; then there exists a unique circle orthogonal to C0 and
passing through A and B.

(ii) Let A be a point inside a circle C0 and P a point on C0, with A and P
not lying on the same diameter; then there exists a unique circle orthogonal
to C0 passing through A and P .

(iii) Let P and Q be points on a circle C0 of center O such that PQ is not
a diameter; then there exists a unique circle C orthogonal to C0 and passing
through P and Q.

(iv) Let A be a point inside a circle C0 of center O and D be a circle
orthogonal to C0; then there exists a unique circle C orthogonal to both C0

and D and passing through A.

Proof. To prove (i), we describe an effective step-by-step construction,
which can be carried out by ruler and compass, yielding the required circle.
The construction is shown on Figure 7.5, with the numbers in parentheses
near each point indicating at which step the point was obtained.

A′ = 0 I(2)

T (1)

A

N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)N(5)

M(5)

B

B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)B′(4)

S(3)

Figure 7.5. Circle orthogonal to C0 containing A, B
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First, we apply Lemma 7.1.3, to define an inversion ϕ taking A to the
center O of the given circle; to do this, we raise a perpendicular from A to
OA to its intersection T (1) with C, then draw the perpendicular to OT from
T to its intersection I (2) with OA; the required inversion is centered at I
and is of radius |IT |. Joining B and I, we construct the tangent BS (3)
to the circle of the inversion ϕ and find the image B′ (4) of B under ϕ by
dropping a perpendicular from S to IB.

Next, we draw the line B′O and obtain the intersection points M, N of
this line with the circle of the inversion ϕ. Finally, we draw the circle C
passing through the points M, N, I. Then C “miraculously” passes through
A and B and is orthogonal to C0! Of course, there is no miracle in this: C
passes through A and B because it is the inverse image under ϕ of the line
OB′ (see 7.1.1(i)), it is orthogonal to C0 since so is OB′ (see 7.1.1(ii)).

Uniqueness is obvious in the case A = O and follows in the general case
by 7.1.1(i)-(ii). �

The proof of (ii) is analogous: we send A to O by an inversion ϕ, join O
and ϕ(P ) and continue the argument as above. �

To prove (iii), construct lines OP and OQ, draw perpendiculars to these
lines from P and Q respectively and denote by I their intersection point.
Then the circle of radius |IP | centered at I is the required one. Its uniqueness
is easily proved by contradiction. �

To prove (iv), we again use Lemma 7.1.3 to construct an inversion ϕ that
takes C0 to itself and sends A to O. From the point O, we draw the (unique)
ray R orthogonal to ϕ(L). Then the circle ϕ−1(R) is the required one. �

7.2. Definition of the disk model

7.2.1. The disk model of the hyperbolic plane is the geometry (H2 : M)
whose points are the points of the open disk

H2 :=
{
(x, y) ∈ R2 |x2 + y2 < 1

}
,

and whose transformation group M is the group generated by reflections in
all the circles orthogonal to the boundary circle A := {(x, y) : x2 +y2 = 1} of
H2, and by reflections in all the diameters of the circle A. Now M is indeed
a transformation group of H2: the discussion in 7.1.1 implies that a reflection
of the type considered takes points of H2 to points of H2 and, being its own
inverse, we have the implication ϕ ∈M =⇒ ϕ−1 ∈M.
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We will often call H2 the hyperbolic plane. The boundary circle A (which
is not part of the hyperbolic plane) is called the absolute.

7.2.2. We will see later that M is actually the isometry group of hyper-
bolic geometry with respect to the hyperbolic distance, which will be defined
in the next chapter. We will see that although the Euclidean distance be-
tween points of H2 is always less than 2, the hyperbolic plane is unbounded
with respect to the hyperbolic distance. Endpoints of a short segment (in
the Euclidean sense!) near the absolute are very far away from each other in
the sense of hyperbolic distance.

Figure 7.6 gives an idea of what an isometric transformation (the simplest
one – a reflection in a line) does to a picture. Note that from our Euclidean
point of view, the reflection changes the size and the shape of the picture,
whereas from the hyperbolic point of view, the size and shape of the image
is exactly the same as that of the original. It should also be clear that
hyperbolic reflections reverse orientation.

H
2

Figure 7.6. An isometry in the hyperbolic plane

7.3. Points and lines in the hyperbolic plane

7.3.1. First we define points of the hyperbolic plane simply as points of
the open disk H2. We then define the lines on the hyperbolic plane as the
intersections with H2 of the (Euclidean) circles orthogonal to the absolute as
well as the diameters (without endpoints) of the absolute (see Fig.7.7).

Note that the endpoints of the arcs and the diameters do not belong to
the hyperbolic plane: they lie in the absolute, whose points are not points of
our geometry.

Figure 7.7 shows that some lines intersect in one point, others have no
common points, and none have two common points (unlike lines in spherical
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B

Figure 7.7. Lines on the hyperbolic plane

geometry). This is not surprising, because we have the following statement.

7.3.2. Theorem. One and only one line passes through any pair of
distinct points of the hyperbolic plane.

Proof. The theorem immediately follows from Corollary 7.1.4, (i). �

7.4. Perpendiculars

7.4.1. Two lines in H2 are called perpendicular if they are orthogonal in
the sense of elementary Euclidean geometry. When both are diameters, they
are perpendicular in the usual sense, when both are arcs of circles, they have
perpendicular tangents at the intersection point, when one is an arc and the
other a diameter, then the diameter is perpendicular to the tangent to the
arc at the intersection point.

7.4.2. Theorem. There is one and only one line passing through a
given point and perpendicular to a given line.

Proof. The theorem immediately follows from Corollary 7.1.4, (iv). �

7.5. Parallels and nonintersecting lines

7.5.1. Let l be a line and P be a point of the hyperbolic plane H2 not
contained in the line l. Denote by P and Q the points at which l intersects
the absolute. Consider the lines k = PA and m = PB and denote their
second intersection points with the absolute by A′ and B′. Clearly, the lines
k and m do not intersect l. Moreover, any line passing through P between k
and m (i.e., any line containing P and joining the arcs AA′ and BB′) does
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not intersect l. The lines APA′ and BPB′ are called parallels to l passing
through P , and the lines between them are called nonintersecting lines with
l.

l

H
2

P

K

A
B

A
′

B
′

P

l

Figure 7.8. Perpendiculars and parallels

We have proved the following statement.

7.5.2. Theorem. There are infinitely many lines passing through a
given point P not intersecting a given line l if P /∈ l. These lines are all
located between the two parallels to l. �

This theorem contradicts Euclid’s famous Fifth Postulate, which, in its
modern formulation, says that one and only one parallel to a given line passes
through a given point. For more than two thousand years, many attempts to
prove that the Fifth Postulate follows from Euclid’s other postulates (which,
unlike the Fifth Postulate, were simple and intuitively obvious) were made by
mathematicians and philosophers. Had such a proof been found, Euclidean
geometry could have been declared to be an absolute truth both from the
physical and the philosophical point of view, it would have been an example of
what the German philosopher Kant called the category of synthetic apriori.
For two thousand years, the naive belief among scientists in the absolute
truth of Euclidean geometry made it difficult for the would be discoverers of
other geometries to realize that they had found something worthwhile. Thus
the appearance of a consistent geometry in which the Fifth Postulate does
not hold was not only a crucial development in the history of mathematics,
but one of the turning points in the philosophy of science.
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7.6. Sum of the angles of a triangle

7.6.1. Consider three points A, B, C not on one line. The three segments
AB, BC, CA (called sides) form a triangle with vertices A, B, C. The angles
of the triangle, measured in radians, are defined as equal to the (Euclidean
measure of the) angles between the tangents to the sides at the vertices.

7.6.2. Theorem. The sum of the angles α, β, γ of a triangle ABC is
less than two right angles:

α + β + γ < π .

Proof. In view of Lemma 7.1.3, we can assume without loss of generality
that A is O (the center of H2). But then if we compare the hyperbolic triangle
OBC with the Euclidean triangle OBC, we see that they have the same angle
at O, but the Euclidean angles at B and C are larger than their hyperbolic
counterparts (look at Fig.7.9), which implies the claim of the theorem. �

O = A

C

B

Figure 7.9. Sum of the angles of a hyperbolic triangle

It is easy to see that very small triangles have angles sums very close to
π, in fact the least upper bound of the angle sum of hyperbolic triangles is
exactly π. Further, the greatest lower bound of these sums is 0. To see this,
divide the absolute into three equal arcs by three points P, Q, R and construct
three circles orthogonal to the absolute passing through the pairs of points P
and Q, Q and R, R and P . These circles exist by Corollary 7.1.2, item (iii).
Then all the angles of the “triangle” PQR are zero, so its angle sum is zero.
Of course, PQR is not a real triangle in our geometry (its vertices, being
on the absolute, are not points of H2), but if we take three points P ′, Q′, R′
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close enough to P, Q, R, then the angle sum of triangle P ′Q′R′ will be less
than any prescribed ε > 0.

R

P

Q

A

B

C

Figure 7.10. Ordinary triangle and “triangle” with angle sum 0

7.7. Rotations and circles in the hyperbolic plane

We mentioned previously that distance between points of the hyperbolic
plane will be defined later. Recall that the hyperbolic plane is the geometry
(H2 : M), in which, by definition, M is the transformation group generated
by all reflections in all the lines of H2. If we take the composition of two
reflections in two intersecting lines, then what we get should be a “rotation”,
but we can’t assert that at this point, because we don’t have any definition
of rotation: the usual (Euclidean) definition of a rotation or even that of a
circle cannot be given until distance is defined.

But the notions of rotation and of circle can be defined without appealing
to distance in the following natural way: a rotation about a point P ∈ H2 is,
by definition, the composition of any two reflections in lines passing through
P . If O and A are distinct points of H2, then the (hyperbolic) circle of center
O and radius OA is the set of images of A under all rotations about O.

7.7.1. Theorem. A (hyperbolic) circle in the Poincaré disk model is a
Euclidean circle, and vice versa, any Euclidean circle inside H2 is a hyperbolic
circle in the geometry (H2 : M).

Proof. Let C be a circle of center I and radius OA in the geometry
(H2 : M). Using Lemma 7.1.3, we can send I to the center O of H2 by a
reflection ϕ. Let ρ be a rotation about I determined by two lines l1 and
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l2. Then the lines d1 := ϕ(l1) and d2 := ϕ(l2) are diameters of the absolute
and the composition of reflections in these diameters is a Euclidean rotation
about O (and simultaneously a hyperbolic one). This rotation takes the
point ϕ(A) to a point on the circle C ′ of center O and radius Oϕ(A), which
is simultaneously a hyperbolic and Euclidean circle. Now by Corollary 7.1.4
item (i), the inverse image of ϕ−1(C ′) will be a (Euclidean!) circle. But
ϕ−1(C ′) coincides with C) by construction, so C) is indeed a Euclidean circle
in our model.

The proof of the converse assertion is similar and is left to the reader (see
Exercise 7.7).

7.8. Hyperbolic geometry and the physical world

In his famous book Science et Hypothèse, Henri Poincaré describes the
physics of a small “universe” and the physical theories that its inhabitants
would create. The universe considered by Poincaré is Euclidean, plane (two-
dimensional), has the form of an open unit disk. Its temperature is 100◦

Farenheit at the center of the disk and decreases linearly to absolute zero at
its boundary. The lengths of objects (including living creatures) are propor-
tional to temperature.

How will a little flat creature endowed with reason and living in this disk
describe the main physical laws of his universe? The first question he/she
may ask could be: Is the world bounded or infinite? To answer this question,
an expedition is organized; but as the expedition moves towards the boundary
of the disk, the legs of the explorers become smaller, their steps shorter –
they will never reach the boundary, and conclude that the world is infinite.

The next question may be: Does the temperature in the universe vary?
Having constructed a thermometer (based on different expansion coefficients
of various materials), scientists carry it around the universe and take mea-
surements. However, since the lengths of all objects change similarly with
temperature, the thermometer gives the same measurement all over the uni-
verse – the scientists conclude that the temperature is constant.

Then the scientists might study straight lines, i.e., investigate what is
the shortest path between two points. They will discover that the shortest
path is what we perceive to be the arc of the circle containing the two points
and orthogonal to the boundary disk (this is because such a circular path
brings the investigator nearer to the center of the disk, and thus increases the
length of his steps). Further, they will find that the shortest path is unique
and regard such paths as “straight lines”.
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Continuing to develop geometry, the inhabitants of Poincaré’s little flat
universe will decide that there is more than one parallel to a given line passing
through a given point, the sum of angles of triangles is less than π, and obtain
other statements of hyperbolic geometry.

Thus they will come to the conclusion that they live in an infinite flat
universe with constant temperature governed by the laws of hyperbolic ge-
ometry. But this not true – their universe is a finite disk, its temperature is
variable (tends to zero towards the boundary) and the underlying geometry
is Euclidean, not hyperbolic!

The philosophical conclusion of Poincaré’s argument is not agnosticism –
he goes further. The physical model described above, according to Poincaré,
shows not only that the truth about the universe cannot be discovered, but
that it makes no sense to speak of any “truth” or approximation of truth in
science – pragmatically, the inhabitants of his physical model are perfectly
right to use hyperbolic geometry as the foundation of their physics because
it is convenient, and it is counterproductive to search for any abstract Truth
which has no practical meaning anyway.

This conclusion has been challenged by other thinkers, but we will not
get involved in this philosophical discussion.

7.8. Problems

7.1. Prove that inversion maps circles and straight lines to circles or
straight lines.

7.2. Prove that inversion is conformal (i.e., it preserves the measure of
angles).

7.3. Prove that inversion maps any circle orthogonal to the circle of
inversion into itself.

7.4. Prove that if P is point lying outside a circle γ and A, B are the
intersection points with the circle of a line l passing through P , then the
product |PA| · |PB| (often called the power of P with respect to γ) does not
depend on the choice of l.

7.5. Prove that if P is point lying inside a circle γ and A, B are the
intersection points with the circle of a line l passing through P , then the
product |PA| · |PB| (often called the power of P with respect to γ) does not
depend on the choice of l.
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7.6. Prove that inversion with respect to a circle orthogonal to a given
circle C maps the disk bounded by C bijectively onto itself.

7.7. Prove that any Euclidean circle inside the disk model is also a
hyperbolic circle. Does the ordinary (Euclidean) center coincide with its
“hyperbolic center”?

Figure 7.11. A pattern of lines in H2

7.8. Study Figure 7.11. Does it demonstrate any tilings of H2 by regular
polygons? Of how many sides? Do you discern a Coxeter geometry in this
picture with “hyperbolic Coxeter triangles” as fundamental domains? What
are their angles?

7.9. Prove that any inversion of C preserves the cross ratio of four points:

〈z1, z2, z3, z4〉 :=
z3 − z1

z3 − z2

:
z4 − z1

z4 − z2

.

7.10*. Using complex numbers, invent a formula for the distance between
points on the Poincaré disk model and prove that “symetry with respect to
straight lines” (i.e., inversion) preserves this distance.
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7.11. Prove that hyperbolic geometry is homogeneous in the sense that
for any two flags (i.e., half planes with a marked point on the boundary)
there exists an isometry taking one flag to the other.

7.12. Prove that the hyperbolic plane (as defined via the Poincaré disk
model) can be tiled by regular pentagons.

7.13. Define inversion (together with the center and the sphere of inver-
sion) in Euclidean space R3, state and prove its main properties: inversion
takes planes and spheres to planes or spheres, any sphere orthogonal to the
sphere of inversion to itself, any plane passing through the center of inversion
to itself.

7.14. Using the previous exercise, prove that any inversion in R3 takes
circles and straight lines to circles or straight lines.

7.15. Prove that any inversion in R3 is conformal (preserves the measure
of angles).

7.16. Construct a model of hyperbolic space geometry on the open unit
ball (use Exercise 7.13).


