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Lecture 6

SPHERICAL GEOMETRY

So far we have studied finite and discrete geometries, i.e., geometries in
which the main transformation group is either finite or discrete. In this lec-
ture, we begin our study of infinite continuous geometries with spherical ge-
ometry, the geometry (S2:O(3)) of the isometry group of the two-dimensional
sphere, which is in fact the subgroup of all isometries of R3 that map the
origin to itself; O(3) is called the orthogonal group in linear algebra courses.

But first we list the classical continuous geometries that will be studied
in this course. Some of them may be familiar to the reader, others will be
new.

6.1. A list of classical continuous geometries

Here we merely list, for future reference, several very classical geometries
whose transformation groups are “continuous” rather than finite or discrete.
We will not make the intuitively clear notion of continuous transformation
group precise (this would involve defining the so-called topological groups or
even Lie groups), because we will not study this notion in the general case:
it is not needed in this introductory course. The material of this section is
not used in the rest of the present chapter, so the reader who wants to learn
about spherical geometry without delay can immediately go on to Sect. 6.3.

6.1.1. Finite-dimensional vector spaces over the field of real numbers are
actually geometries in the sense of Klein (the main definition of Chapter 1).
From that point of view, they can be written as

(Vn : GL(n)) ,

where Vn denotes the n-dimensional vector space over R and (GL(n) is the
general linear group, i.e., the group of all nondegenerate linear transforma-
tions of Vn to itself.

The subgeometries of (Vn : GL(n)) obtained by replacing the group
GL(n) by its subgroup O(n) (consisting of orthogonal transformations) is
called the n-dimensional orthonormed vector space and denoted

(Vn : O(n)) .
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These “geometries” are rather algebraic and are usually studied in linear
algebra courses. We assume that the reader has some background in linear
algebra and remembers the first basic definitions and facts of the theory.

6.1.2. Affine spaces are, informally speaking, finite-dimensional vector
spaces “without a fixed origin”. This means that their transformation groups
Aff(n) contain, besides GL(n), all parallel translations of the space (i.e.,
transformations of the space obtained by adding a fixed vector to all its
elements). We denote the corresponding geometry by

(Vn : Aff(n)) or (Rn : Aff(n)) ,

the later notation indicating that the elements of the space are now regarded
as points, i.e., the endpoints of the vectors (issuing from the origin) rather
than the vectors themselves). This is a more geometric notion than that of
vector space, but is also usually studied in linear algebra courses.

6.1.3. Euclidean spaces are geometries that we denote

(Rn : Sym(Rn)) ;

here Sym(Rn) is the isometry group of Euclidean space Rn, i.e., the group of
distance-preserving transformations of Rn. This group has, as a subgroup,
the orthogonal group O(n) that consists of isometries leaving the origin fixed
(the group O(n) should be familiar from the linear algebra course), but also
contains the subgroup of parallel translations.

We assume that, for n = 2, 3, the reader knows Euclidean geometry from
school (of course it was introduced differently, usually via some modification
of Euclid’s axioms) and is familiar with the structure of the isometry groups
of Euclidean space for n = 2, 3.

The reader who feels uncomfortable with elementary Euclidean plane and
space geometry can consult Appendix I. A rigorous axiomatic exposition
of Euclidean geometry in dimensions d = 2, 3 (based on Hilbert’s axioms)
appears in Appendix III.

Note that the transformation groups of these three geometries (vector
spaces, affine and Euclidean spaces) act on the same space (Rn and Vn can
be naturally identified), but the geometries that they determine are different,
because the four groups GL(n), O(n), Aff(n), Sym(R3) are different. The
corresponding geometries will not be studied in this course: traditionally,
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this is done in linear algebra courses, and we have listed them here only to
draw a complete picture of classical geometries.

Our list continues with three more classical geometries that we will study,
at least in small dimensions (mostly for dim= 2).

6.1.4. Hyperbolic spaces Hn (called Lobachevsky spaces in Russia) are
“spaces of constant negative curvature” (you will learn what this means
much later, in differential geometry courses) with transformation group the
isometry group of the hyperbolic space (i.e., the group of transformations
preserving the “hyperbolic distance”). We will only study the hyperbolic
space of dimension n = 2, i.e., the hyperbolic plane. Three models of H2 will
be studied, in particular, the Poincaré disk model,

(H2 : M) ;

here H2 := {(x, y) ∈ R2|x2 + y2 < 1} is the open unit disk and M is the
group of Möbius transformations (the definition appears in Chapter 7) that
take the disk to itself.

We will also study two other models of hyperbolic plane geometry (the
half-plane model, also due to Poincaré, and the Cayley–Klein model). A spe-
cial chapter will be devoted to the axiomatic construction of hyperbolic plane
geometry and the dramatic history of its creation by Gauss, Lobachevsky and
Bolyai.

6.1.5. Elliptic spaces Elln are “spaces of constant positive curvature”
(what this means is explained in differential geometry courses). We will only
study the two-dimensional case, i.e., the elliptic plane, in the present chapter
after we are done with spherical geometry, which is the main topic of this
chapter, but can also be regarded as the principal building block of elliptic
plane geometry.

6.1.6. Projective spaces RP n are obtained from affine spaces by “adding
points at infinity” in a certain way, and taking, for the transformation group,
a group of linear transformations on the so-called “homogeneous coordinates”
of points (x1 : · · · : xn : xn+1) ∈ RP n. We can write this geometry as

(RP n : Proj(n)) .

For arbitrary n, projective geometry is usually studied in linear algebra
courses. We will study the projective plane RP 2 in this course, and only
have a quick glance at projective space RP 3 (see Chapter 12).
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6.2. Some basic facts from Euclidean plane geometry

Here we list several fundamental facts of Euclidean plane geometry (in-
cluding modern formulations of some of Euclid’s postulates) in order to com-
pare and contrast them with the corresponding facts of spherical, elliptic,
and hyperbolic geometry.

I. There exist a unique (straight) line passing through two given distinct
points.

II. There exists a unique perpendicular to a given line passing through
a given point. (A perpendicular to a given line is a line forming four equal
angles, called right angles, with the given one).

III. There exists a unique circle of given center and given radius.

IV. Given a point on a line and any positive number, there exist exactly
two points on the line whose distance from the given point is equal to the
given number.

V. There exists a unique parallel to a given line passing through a given
point not on the given line. (A parallel to a given line is a line without com-
mon points with the given one.) This is the modern version of Euclid’s fifth
postulate, sometimes described as the single most important and controver-
sial scientific statement of all time.

VI. The parameters of a triangle ABC, namely the angles α, β, γ at the
vertices A, B, C and the sides a, b, c opposite to these vertices, satisfy the
following formulas.

(i) Angle sum formula: α + β + γ = π.

(ii) Sine formula:
a

sin α
=

b

sin β
=

c

sin γ
.

(ii) Cosine formula: c2 = a2 + b2 − 2ab cos γ.

6.3. Lines, distances, angles, polars, and perpendiculars on S2

Let S2 be the unit sphere in R3:

S2 := {(x, y, z) ∈ R3|x2 + y2 + z2 = 1};

our present aim is to study the geometry (S2 : O(3)), where O(3) is the
orthogonal group (i.e., the group of isometries of R3 leaving the origin in
place).
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6.3.1. Basic definitions. By a line on the sphere we mean a great circle,
i.e., the intersection of S2 with a plane passing through the sphere’s center.
For example, the equator of the sphere, as well as any meridian, is a line. The
angle between two lines is defined as the dihedral angle (measured in radians)
between the two planes containing the lines. For example, the angle between
the equator and any meridian is π/2. The distance between two points A
and B is defined as the measure (in radians) of the angle AOB. Thus the
distance between the North and South Poles is π, the distance between the
South Pole and any point on the equator is π/2.

Obviously, the transformation group O(3) preserves distances between
points. It can also be shown (we omit the proof) that, conversely, O(3) can
be characterized as the group of distance-preserving transformations of the
sphere (distance being understood in the spherical sense, i.e., as explained
above).

6.3.2. Poles, polars, perpendiculars, circles. Let us look at the analogs
in spherical geometry of the Euclidean postulates.

IS. There exist a unique line passing through two given distinct points,
except when the two points are antipodal, in which case there are infinitely
many. All the meridians joining the two poles give an example of the excep-
tional situation.

IIS. There exists a unique perpendicular to a given line passing through a
given point, except when the point lies at the intersection of the perpendicular
constructed from the center O of the sphere to the plane in which the line lies,
in which case there are infinitely many such perpendiculars. The exceptional
situation is exemplified by the equator and, say, the North Pole: all the

N
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Figure 6.1. Perpendiculars, poles, and polars
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meridians (which all pass through the pole) are perpendicular to the equator.
More generally, the polar of a point P is the (spherical) line obtained by

cutting the sphere by the plane passing through O and perpendicular to the
(Euclidean!) straight line PP . Conversely, given a (spherical) line l, the poles
of that line are the two antipodal points Pl and P ′

l for which the (Euclidean)
line PlP

′
l is perpendicular to the plane determined by l. The assertion IIS

may now be restated as follows: there exists a unique perpendicular to a given
line passing through a given point, except when the point is a pole of that
line, in which case all the lines passing through the pole are perpendicular
to the given line.

IIIS. There exists a unique circle of given center C and given radius ρ,
provided 0 < ρ < π. It is defined as the set of points whose (spherical)
distance from C is equal to ρ. It is easy to see that any (spherical) circle
is actually a Euclidean circle, namely the one obtained as the intersection
of the sphere with the plane perpendicular to the Euclidean line OC and
passing through the point I on that line such that OI = cos ρ. Note that the
radius of that Euclidean circle will be less than ρ.

Given a spherical circle of center C and radius ρ, note that it can be
regarded as the circle of radius π−ρ and center C ′, where C ′ is the antipode
of C. Further, note that the largest circle centered at C is the polar of the
point C; its radius is π/2.

IVS. Given a point on a line and any positive number, there exist exactly
two points on the line whose distance from the given point is equal to the
given number, provided the number is less than π.

VS. Any two lines intersect in two antipodal points, i.e., in two points
symmetric with respect to the center of the sphere S2. Therefore there are
no parallel lines in spherical geometry. If two points A, B are not antipodal,
then there is only one line joining them and one shortest line segment with
endpoints at A and B. For opposite points, there is an infinity of lines joining
them (for the North and South poles, these lines are the meridians).

6.3.3. Lines as shortest paths. It is proved in differential geometry
courses that spherical lines are geodesics, i.e., they are the shortest paths
between two points. To do this, one defines the length of a curve as a curvi-
linear integral and uses the calculus of variations to show that the curve (on
the sphere) of minimal length joining two given points is indeed the arc of
the great circle containing these points.
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6.4. Biangles and triangles in S2

6.4.1. Biangles. Two lines l and m on the sphere intersect in two (antipo-
dal) points P and P ′ and divide the sphere into four domains; each of them
is called a biangle, it is bounded by two halves of the lines l and m, called its
sides, and has two vertices (the points P and P ′). The four domains form
two congruent pairs; two biangles from a congruent pair touch each other at
the common vertices P and P ′, and have the same angle at P and P ′. The
main parameter of a biangle is the measure α of the angle between the lines
that determine it; if α 6= π/2, the two biangles not congruent to the biangle
of measure α are called complementary, their angle is π − α. Note that the
angle measure α determines the corresponding biangle up to an isometry of
the sphere.

6.4.2. Areas of figures in the sphere. In order to correctly measure areas
of figures on the plane, on the sphere, or on other surfaces, one must define
what an area is, specify what figures are measurable (i.e., possess an area),
and devise methods for computing areas. For the Euclidean plane, there are
several approaches to area: many readers have probably heard of the theory of
Jordan measure; more advanced readers may have studied Lebesgue measure;
readers who have taken multivariable calculus courses know that areas may
be computed by means of double integrals.

In this book, we will not develop a rigorous measure theory for the ge-
ometries that we study. In this subsection, we merely sketch an axiomatic
approach for determining areas of spherical figures; this approach is similar
to Jordan measure theory in the Euclidean plane. The theory says that there
is a family of sets in S2, called measurable, satisfying the following axioms.

(i) Invariance. Two congruent measurable figures have the same area.

(ii) Normalization. The whole sphere is measurable and its area is 4π.

(iii) Countable additivity. If a measurable figure F is the union of a
countable family of measurable figures {Fi} without common interior points,
then its area is equal to the sum of areas of the figures Fi.

An obvious consequence of these axioms is that the area of the North
hemisphere is 2π, while each of the triangles obtained by dividing the hemi-
sphere into four equal parts is of area π/2.

6.4.3. Area of the biangle. From the axioms formulated in the previous
subsection, it is easy to deduce that the area Sπ/2 of a biangle with angle
measure π/2 is π. Indeed, the sphere is covered by four such non-overlapping
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biangles, which are congruent to each other; they have the same area by (i),
the sum of their areas is that of the sphere by (iii), and the latter is 4π by
(ii), whence Sπ/2 = (4π)/4 = π.

For the case in which the angle measure α of a biangle is a rational
multiple of π, a similar argument shows that

Sα = 2α . (6.1)

This formula is actually true for any α, but for the case in which π/α is
irrational, its proof requires a passage to the limit based on an additional
“continuity axiom” that we have not explicitly stated. We therefore omit
the proof, but will use the above formula for all values of α in what follows.

6.4.4. Area of the triangle. Let A, B, C be three distinct points of S2, no
two of which are opposite. The union of the shortest line segments joining
the points A and B, B and C, C and A is called the triangle ABC. For
a triangle ABC, we always denote by α, β, γ the measure of the angles at
A, B, C respectively and by a, b, c the lengths of the sides opposite to A, B, C
(recall that the length a of BC is equal to the measure of the angle BOC in
R3).

6.4.5. Theorem. The area SABC of a spherical triangle with angles
α, β, γ is equal to

SABC = α + β + γ − π .

Proof. There are 12 spherical biangles formed by pairs of lines AB, BC, CA.
Choose six of them, namely those that contain triangle ABC or the antipodal
triangle A1B1C1 formed by the three points antipodal to A, B, C. Denote
their areas by

SI , S
′
I , SII , S

′
II , SIII , S

′
III .

Each point of the triangles ABC and A1B1C1 is covered by exactly three of
the chosen six biangles, while the other points of the sphere are covered by
exactly one such biangle (we ignore the points on the lines). Therefore, using
relation (6.1), we can write

4π = SI + S ′
I + SII + S ′

II + SIII + S ′
III − 2SABC − 2SA1B1C1

= 2α + 2β + 2γ + 2α + 2β + 2γ − 2SABC − 2SA1B1C1

= 4(α + β + γ)− 4SABC ,
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Figure 6.2. Area and sine theorem for the triangle

because the two triangles ABC A1B1C1 have the same area (since they are
congruent). Clearly, the previous formula implies the required equality. �

This theorem has the following fundamental consequence.

6.4.6. Corollary. The sum of angles of any triangle is more than π.

The analog of the sine formula for the Euclidean triangle is the following
statement about spherical triangles.

6.4.7. Theorem. (The spherical sine theorem.)

sin a

sin α
=

sin b

sin β
=

sin c

sin γ
.

In order to establish this formula, we will use the following statement,
sometimes called the “theorem of the three perpendiculars”.

6.4.8. Lemma. Let A ∈ R3 be a point outside a plane P , let H be its
perpendicular projection on P and let L be its perpendicular projection on
a line l contained in P . Then HL is perpendicular to l.

Proof of the lemma. The line l is perpendicular to the plane AHL be-
cause it is perpendicular to two nonparallel lines of AHL, namely to AL and
AH (to the latter since AH is orthogonal to any line in P). Therefore l is
perpendicular to any line of the plane AHL, and in particular to LH. �

Proof of the theorem. Let H be the projection of A on the plane ABC,
let L and M be the projections of A on the lines OB and OC. Then by
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the lemma, L and M coincide with the projections of H on OB and OC.
Therefore,

AH = LA sin β = sin c sin β, AH = MA sin γ = sin b sin γ.

Thus, sin b : sin β = sin c : sin γ. Similarily, by projecting C on the plane
AOB and arguing as above, we obtain sin b : sin β = sin a : sin α. This
immediately implies the required equality. �

6.5. Other theorems about triangles.

In this section, we state a few more theorems about spherical triangles.
Their proofs are relegated to the exercises appearing at the end of this chap-
ter.

6.5.1. Theorem. (The first cosine theorem.)

cos a = cos b cos c + sin b sin c cos α

6.5.2. Theorem. (The second cosine theorem.)

cos α = cos β cos γ + sin β sin γ cos c

6.5.3. Corollary. (Analogs of the Pythagoras theorem.) If triangle
ABC has a right angle at C, then

cos α = cos β cos γ and cos a = cos b cos c .

6.5.4. Theorem. The medians of any triangle intersect at a single
point.

6.5.5. Theorem. The altitudes of any triangle contained in one
hemisphere intersect at a single point.

6.6. Coxeter triangles on the sphere S2

We will not develop the theory of tilings on the sphere S2 and Cox-
eter geometry on the sphere in full generality, but only consider Coxeter
triangles, i.e., spherical triangles all of whose angles are of the form π/m,
m = 2, 3, . . . . It follows from Theorem 6.4.5 that any spherical Coxeter tri-
angle (π/p, π/q, π/r), N copies of which cover the sphere, must satisfy the
Diophantine equation

N/p + N/q + N/r = N + 4.
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The transformation group of the corresponding Coxeter geometry is finite,
and so Theorem 3.2.6 tells us what group it has to be: it must be either
one of the dihedral groups, or the tetrahedral, hexahedral, or dodecahedral
group. The dihedral groups yield an obvious infinite series of tilings, one of
which is shown in Figure 6.3.

π/5

G
(3)
3

π/5

π/3

H3

π/4

π/3

B3

π/3

A3

Figure 6.3. Four Coxeter tilings of the sphere

The three other groups yield three possibilities for N : N = 24, 48, 120,
and we easily find the corresponding values of (p, q, r) in each of the three
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cases. Finally, the solutions of our Diophantine equation are:

(2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 2, n) for n = 2, 3, . . . .

The corresponding tilings of the sphere (and their Coxeter schemes) are
shown in Figure 6.3.

6.7. Two-dimensional elliptic geometry

6.7.1. Spherical geometry is closely related to the elliptic geometry in-
vented by Riemann. Elliptic geometry is obtained from spherical geometry
by “identifying opposite points of S2”. The precise definition can be stated
as follows. Consider the set E2 whose elements are pairs of antipodal points
(x,−x) on the unit sphere S2 ⊂ R3. The group O(3) acts on this set (be-
cause isometries of S2 take antipodal pairs of points to antipodal pairs),
thus defining the geometry in the sense of Klein (E2 : O(3)), which we call
two-dimensional elliptic geometry.

Lines in elliptic geometry are defined as great circles of the sphere S2, an-
gles and distances are defined as in spherical geometry, and the trigonometry
of triangles in elliptic geometry is the same as in spherical geometry. More
generally, one can say that elliptic geometry is locally the same as spheri-
cal, but these geometries are drastically different globally. In particular, in
elliptic geometry

• one and only line passes through any two distinct points;

• for a given line and any given point (except one, called the pole of that
line) there exists a unique perpendicular to that line passing through the
point.

The relationship between the two geometries is best expressed by the fol-
lowing statement, which yields simple proofs of the statements about elliptic
geometry made above,

6.7.2. Theorem. There exists a surjective morphism

D : (S2 : O(3)) → (E2 : O(3)),

of spherical geometry onto elliptic geometry which is a local isomorphism (in
the sense that any domain contained in a half-sphere is mapped bijectively
and isometrically onto its image).

Proof. The map D is the obvious one: D : x 7→ (x,−x), while the
homomorphism of the transformation groups is the identity isomorphism.
All the assertions of the theorem are immediate. �



13

As we noted above, globally the two geometries are very different. Being
metric spaces, they are topological spaces (in the metric topology) which are
not even homeomorphic: one is a two-sided surface (S2), the other (RP 2) is
one-sided (it contains a Möbius strip).

6.8. Problems

In all the problems below a, b, c are the sides and α, β, γ are the opposite
angles of a spherical triangle. The radius of the sphere is R = 1.

6.1. Prove the first cosine theorem on the sphere S2:
cos a = cos b cos c + sin b sin c cos α.

6.2. Prove the second cosine theorem on the sphere S2:
cos α = cos β cos γ + sin β sin γ cos a.

6.3. Prove that a + b + c < 2π.

6.4. Does the Pythagorean theorem hold in spherical geometry? Prove
the analogs of that theorem stated in Corollary 6.5.3.

6.5. Does the Moscow–New York flight fly over Spain? Over Iceland?
Check your answer by stretching a thin string between Moscow and NY on
a globe.

6.6. Find the infimum and the supremum of the sum of the angles of an
equilateral triangle on the sphere.

6.7. The city A is located at the distance 1000km from the cities B
and C, the trajectories of the flights from A to B and from A to C are
perpendicular to each other. Estimate the distance between B and C. (You
can take the radius of the sphere equal to 6400km)

6.8. Find the area of the spherical disk of radius r (i.e., the domain
bounded by a spherical circle of radius r).

6.9. Find fundamental domains for the actions of the isometry groups
of the tetrahedron, the cube, the dodecahedron, and the icosahedron on the
2-sphere and indicate the number of their images under the corresponding
group action. Show that the fundamental domains and the Coxeter geome-
tries on the sphere are the same for the cube and the tetrahedron groups.

6.10. Prove that any spherical triangle has a circumscribed and an in-
scribed circle.
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6.11. Prove that the medians of a spherical triangle interest at one point.

6.12. Do the altitudes of a spherical triangle always interest at one point?
Give an example when this is not the case, and find conditions under which
this is always true.

6.13. Suppose that the medians and the altitudes of a spherical triangle
interest at the points M and A respectively. Can it happen that M = A?


