Lecture 5

Reflection Groups and Kaleidoscopes

In this lecture, as in the previous one, we study geometries defined by
certain discrete subgroups of the isometry group of the plane (and, more
generally, of n-dimensional space), namely the subgroups generated by reflec-
tions (called Coxeter groups after the 20th century Canadian mathematician
who invented them). These geometries are perhaps not as beautiful as those
studied in the previous two lectures, but are more important in the applica-
tions (in algebra and topology). On the other hand, they do have an aesthetic
origin: what one sees in a kaleidoscope (a child’s toy very popular before the
computer era) is an instance of such a geometry. Following E.B. Vinberg, we
call these geometries (in the two-dimensional case) kaleidoscopes. We prove
the classification theorem for them in dimension 2 and state the correspond-
ing result without proof in higher dimensions (using the important notion of
Coxeter scheme).

Many ideas of this (geometric) theory are similar to the very impor-
tant (algebraic) theory of group representation (studied in advanced algebra
courses and used in modern physics). In particular, the famous Dynkin dia-
grams are similar to Coxeter schemes (defined below).

§5.1. An example: the kaleidoscope. The kaleidoscope is a children’s
toy: bright little pieces of glass are placed inside a regular triangular prism
and are multiply reflected by three mirrors forming the lateral faces of the
prism. Looking into the prism, you see a colorful (infinitely) repeated pattern:
the picture in the triangle and its mirror image alternate, forming a hexagon
(the union of six equilateral triangles), see Fig. 5.1 (a), surrounded by more
equilateral triangles ad infinitum.

Mathematically, this is a two-dimensional phenomenon: the equilateral
triangle forming the base of the prism is the fundamental domain of a discrete
group acting on the plane of the base.
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Now if the kaleidoscope is deformed (e.g., the angles between the faces are
slightly changed), then the picture becomes fuzzy, no pattern can be seen.
In such a situation, the images of the base triangle overlap infinitely many
times (see Fig. 5.1 (b)), the transformation group acting on the triangle is
not discrete; we will not study this “bad” case: we only study the “nice”
kaleidoscope case generalized to any dimension.

Fig. 5.1. The kaleidoscope

§5.2. Coxeter polygons and polyhedra. Consider a dihedral angle
o < /2 formed by two plane two-sided mirrors II;, II,. What will the ob-
server O see? Any picture P inside the angle will be reflected by IIy; its
image P’ will be in turn be reflected by the image of II; by II, and so on. At
the same time, the picture P inside the angle will be reflected by Ils; its im-
age P” will be in turn be reflected by the image of I, by IIy, etc. Two cases
are possible: either the reflections coming from different sides will overlap
(Fig. 5.1 (b)) or the reflected pictures will coincide (Fig. 5.1 (a)). Obviously,
the pictures will coincide if (and only if) the angle « is of the form n/k, where
k=23, ...

Mathematically, this situation is the following. On the Euclidean plane,
we take two straight lines forming the angle o and consider the group G of all
transformations of the plane generated by the reflections in these two lines.
Let F be the region bounded by the two half planes forming the angle o.
Obviously, no two regions g(F) and h(F), g, h € G, g # h, overlap if and
only if o = /k, where k = 2, 3, ... In that case, G is the dihedral group Dy.
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Now suppose we are given a convex polygon F' in the plane with vertex
angles less than or equal to 1/2. Consider the group G of transformations
of the plane generated by reflections in the lines containing the sides of F.
We say that G is acts transitively on F if the images g(F'), g € G, never
overlap. A necessary condition for the transitive action of Gr on F is that all
the vertex angles of F' be of the form n/k for various values of k; this follows
from the argument in the previous paragraph. Obviously, this condition is
not sufficient.

The previous arguments are the motivation for the following definition.
A convex polygon F' is called a Cozeter polygon if all its vertex angles are of
the form n/k for various values of k =2, 3, ... and it generates a transitive
action of the group Gr. Coxeter polygons will be classified below — there
are only four.

The above can be generalized to three-dimensional space. The corre-
sponding definition is the following: a convex polyhedron is called a Cozeter
polyhedron P if all its dihedral angles are of the form n/k for various values
of k=2, 3, ... and it generates a transitive action of Gp, where Gp is the
transformation group generated by the reflections in the planes containing
the faces of P. Coxeter polyhedra will be classified below (there are seven).

§5.3. Coxeter geometries on the plane. Let F' be a Coxeter polygon
in the plane R%. The Cozeter geometry with fundamental region F is the
geometry (R? : Gr), where G is the group of transformations of the plane
generated by the reflections in the lines containing the sides of the polygon
F. The goal of this section is to classify all Coxeter geometries on the plane.

Theorem 5.1. There are four Cozeter geometries in the plane; their
fundamental polygons are the rectangle, the equilateral triangle, the isosceles
right triangle, and the right triangle with angles 7/3 and n/6 (see Fig. 5.2).

Proof. Let F be the fundamental polygon of a Coxeter geometry. If it
has n sides, then the sum of its angles is n(n — 2) and so the average value of
its angles is 1(1 — 2/n). Now n cannot be greater than 4, because F' would
then have an obtuse angle (and this contradicts the definition of Coxeter
polygon). If n =4, then all angles of F are n(1 —2/4) =7/2 and F is a
rectangle. Finally, if n = 3, and the angles of the fundamental triangle are
n/k, n/l, n/m, then (since their sum is 1), we obtain a Diophantine equation
for k, I, m:
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Fig. 5.2. The four plane Coxeter geometries

This equation has three solutions: (3, 3, 3), (2, 4, 4), (2, 3, 6). These solutions
correspond to the three triangles listed in the theorem. O

§5.4. Coxeter geometries in Euclidean space R3. In this section,
we study the Coxeter geometries in R3. A Coxeter polyhedron F C R? is
a convex polyhedron (i.e., the bounded intersection of a finite number of
half-spaces in R?) with dihedral angles of the form nt/k for various values of
k=2,3,.... A Cozxeter geometry in R? with fundamental polyhedron F is
defined just as in the case d = 2 (see §5.3).

Theorem 5.2. There are seven Cozeter geometries in three-dimensional
space; their fundamental polyhedra are the four right prisms over the the
rectangle, the equilateral triangle, the isosceles right triangle, and the right
triangle with acute angles n/3 and /6, and the three (nonregular) tetrahedra
shown in Fig. 5.3.

It is not very difficult to prove that the seven polyhedra (listed in the
theorem) indeed define Coxeter geometries. To prove that there are no other
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Fig. 5.3. The seven Coxeter geometries in 3-space

geometries, nontrivial information from linear algebra (in particular, the no-
tion of Gramm matrix) is needed.

Therefore, we omit the proof (it can be found in the article by E.B. Vin-
berg in Matematicheskoye Prosveshchenie, Ser.3, # 7, pp.39—63).

A remark about terminology. The term “Coxeter geometry” is not a stan-
dard term. E.B. Vinberg uses the term “kaleidoscope” instead. Also, we
do not use the term “Coxeter group” for the transformation group of a
Coxeter geometry. This is because “Coxeter group” is standardly used in
a somewhat different sense than “transformation group of a Coxeter geom-
etry”.

Coxeter geometries are not only abstract mathematical objects, they are
also important models in crystallography. For example, the polyhedron in
Fig. 5.3 (b) is the crystal of ordinary salt, while the polyhedron in Fig. 5.3 (a)
is a diamond crystal.

§5.5. Coxeter schemes and the classification theorem. In this
section, we study the general case of a Coxeter geometry in R? for an arbitrary
positive integer d. A Coxeter polyhedron F C R? is a convex polyhedron
(i.e., the bounded intersection of a finite number of half-spaces in RY) with
dihedral angles of the form n/k for various values of k = 2, 3, ... such that
the reflections in the d-dimensionsal hyperplanes containing its faces generate
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a transatively acting group Gr. (The definition of the measure of a dihedral
angle in Euclidean space of arbitrary dimension d appears in the linear algebra
course.) A Cozeter geometry in R? with fundamental polyhedron F is defined
just as in the cases d = 2 and d = 3 (see §§5.2, 5.3).

A Cozxeter scheme is a graph (with integer weights on the edges) encoding
a Coxeter polyhedron (in particular, polygons) in any dimension d. The
scheme of a given Coxeter polyhedron is constructed as follows: its vertices
correspond to the faces of the polyhedron, two vertices whose corresponding
faces form an angle of t/m, m > 3, are joined by an edge with weight m —
2; if two faces are parallel, the corresponding vertices are joined by an edge
with weight co. (Note that vertices corresponding to perpendicular edges are
not joined by any edge.)

Graphically, instead of writing the weights 2, 3, 4 on the edges of a scheme,
we draw double, triple, quadruple edges; instead of writing co on an edge,
we draw a very thick edge.

For example, the Coxeter scheme of the rectangle consists of two compo-
nents, each of which has two vertices joined by an edge with weight oo, while
the scheme of an equilateral triangle has three vertices joined cyclically by
three edges with weights 1.

Theorem 5.3. The Cozeter geometries in all dimensions are classified
by the connected components of their Cozeter schemes listed in Fig. 5.4.

We omit the proof (see the article by V.O.Bugaenko in Matematicheskoye
Prosveshchenie, Ser.3, # 7, pp-82—106).

§5.6. Problems.

5.1. Three planes P;, P5, P3 passing through the z-axis of Euclidean
space R? are given. The angles between P, and P>, P» and P; are a and B,
respectively.

(a) Under what conditions on a and 3 will the group generated by reflec-
tions with respect to the three planes be finite?

(b) If these conditions are satisfied, how can one find the fundamental
domain of this action?

5.2. Three straight lines L1, Ly, L3 in the Euclidean plane form a triangle
with interior angles o, 3, and .

(a) Under what conditions on a, B, y will the group generated by reflec-
tions with respect to the three lines be discrete?

(b) If these conditions are satisfied, how can one find the fundamental
domain of this action?
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Name Coxeter scheme dim #(faces) view in R3

A, 1 2 — —
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i, N n-1 n
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ﬁn 2)@@ n—1 n=5 none!
ﬁ4 2>O<2 4 5 none!

F, oO—O0—0——0—-=0 4 5 none!

|
Eﬁ E g none!

E; none!
Eg none!

Fig. 5.4. Coxeter schemes
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5.3. Consider the six lines Ly, ..., Lg containing the six sides of a regular
plane hexagon and denote by G the group generated by reflections with re-
spect to these lines. Does this group determine a Coxeter geometry? Justify
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your answer by using the classification theorem of plane Coxeter geometries
and without using that theorem.

5.4. Let F be a Coxeter triangle, sy, s2, s3 be the reflections with respect
to its sides, and G the corresponding transformation group.

(a) Give a geometric description and a description by means of words in
the alphabet si, s3, s3 of all the elements of G that leave a chosen vertex
of F' fixed.

(b) Give a geometric description and a description by means of words in
the alphabet s1, sq, s3 of all the elements of G which are parallel transla-
tions.

Consider the three cases of different Coxeter triangles separately.

5.5. Draw the Coxeter schemes of

(a) all the Coxeter triangles;

(b) all the three-dimensional Coxeter polyhedra.

5.6. Prove that there are exactly three edges at each vertex of any three-
dimensional Coxeter polyhedron.

5.7. Let (F : Gr) be a Coxeter Geometry of arbitrary dimension. Prove
that

(a) if s € G is the reflection in a hyperplane P, then, for any g € Gp,
gsg~! is the reflection in the hyperplane gP;

(b) any reflection from the group G is conjugate to the reflection in one
of the faces of the polyhedron F,

5.8. Describe some four-dimensional Coxeter polyhedron other than the
four-dimensional cube.

5.9. (a) Does the transformation group generated by the reflections in
the faces of regular tetrahedron define a Coxeter geometry?

(b) Same question for the cube.

(c) Same question for the octahedron.

(d) Same question for the dodecahedron.



