
Le
ture 5Re
e
tion Groups and Kaleidos
opes
In this le
ture, as in the previous one, we study geometries de�ned by
ertain dis
rete subgroups of the isometry group of the plane (and, moregenerally, of n-dimensional spa
e), namely the subgroups generated by re
e
-tions (
alled Coxeter groups after the 20th 
entury Canadian mathemati
ianwho invented them). These geometries are perhaps not as beautiful as thosestudied in the previous two le
tures, but are more important in the appli
a-tions (in algebra and topology). On the other hand, they do have an aestheti
origin: what one sees in a kaleidos
ope (a 
hild's toy very popular before the
omputer era) is an instan
e of su
h a geometry. Following E.B.Vinberg, we
all these geometries (in the two-dimensional 
ase) kaleidos
opes. We provethe 
lassi�
ation theorem for them in dimension 2 and state the 
orrespond-ing result without proof in higher dimensions (using the important notion ofCoxeter s
heme).Many ideas of this (geometri
) theory are similar to the very impor-tant (algebrai
) theory of group representation (studied in advan
ed algebra
ourses and used in modern physi
s). In parti
ular, the famous Dynkin dia-grams are similar to Coxeter s
hemes (de�ned below).
§5.1. An example: the kaleidos
ope. The kaleidos
ope is a 
hildren'stoy: bright little pie
es of glass are pla
ed inside a regular triangular prismand are multiply re
e
ted by three mirrors forming the lateral fa
es of theprism. Looking into the prism, you see a 
olorful (in�nitely) repeated pattern:the pi
ture in the triangle and its mirror image alternate, forming a hexagon(the union of six equilateral triangles), see Fig. 5.1 (a), surrounded by moreequilateral triangles ad in�nitum.Mathemati
ally, this is a two-dimensional phenomenon: the equilateraltriangle forming the base of the prism is the fundamental domain of a dis
retegroup a
ting on the plane of the base.
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e
tion Groups and Kaleidos
opesNow if the kaleidos
ope is deformed (e.g., the angles between the fa
es areslightly 
hanged), then the pi
ture be
omes fuzzy, no pattern 
an be seen.In su
h a situation, the images of the base triangle overlap in�nitely manytimes (see Fig. 5.1 (b)), the transformation group a
ting on the triangle isnot dis
rete; we will not study this \bad" 
ase: we only study the \ni
e"kaleidos
ope 
ase generalized to any dimension.
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(b)Fig. 5.1. The kaleidos
ope
§5.2. Coxeter polygons and polyhedra. Consider a dihedral anglea < p=2 formed by two plane two-sided mirrors �1; �2. What will the ob-server O see? Any pi
ture P inside the angle will be re
e
ted by �1; itsimage P ′ will be in turn be re
e
ted by the image of �1 by �2, and so on. Atthe same time, the pi
ture P inside the angle will be re
e
ted by �2; its im-age P ′′ will be in turn be re
e
ted by the image of �2 by �1, et
. Two 
asesare possible: either the re
e
tions 
oming from di�erent sides will overlap(Fig. 5.1 (b)) or the re
e
ted pi
tures will 
oin
ide (Fig. 5.1 (a)). Obviously,the pi
tures will 
oin
ide if (and only if) the angle a is of the form p=k, wherek = 2; 3; : : :Mathemati
ally, this situation is the following. On the Eu
lidean plane,we take two straight lines forming the angle a and 
onsider the group G of alltransformations of the plane generated by the re
e
tions in these two lines.Let F be the region bounded by the two half planes forming the angle a.Obviously, no two regions g(F ) and h(F ), g; h ∈ G, g 6= h, overlap if andonly if a = p=k, where k = 2; 3; : : : In that 
ase, G is the dihedral group Dk.



§5.3. Coxeter geometries on the plane 37Now suppose we are given a 
onvex polygon F in the plane with vertexangles less than or equal to p=2. Consider the group GF of transformationsof the plane generated by re
e
tions in the lines 
ontaining the sides of F .We say that GF is a
ts transitively on F if the images g(F ), g ∈ GF , neveroverlap. A ne
essary 
ondition for the transitive a
tion of GF on F is that allthe vertex angles of F be of the form p=k for various values of k; this followsfrom the argument in the previous paragraph. Obviously, this 
ondition isnot suÆ
ient.The previous arguments are the motivation for the following de�nition.A 
onvex polygon F is 
alled a Coxeter polygon if all its vertex angles are ofthe form p=k for various values of k = 2; 3; : : : and it generates a transitivea
tion of the group GF . Coxeter polygons will be 
lassi�ed below| thereare only four.The above 
an be generalized to three-dimensional spa
e. The 
orre-sponding de�nition is the following: a 
onvex polyhedron is 
alled a Coxeterpolyhedron P if all its dihedral angles are of the form p=k for various valuesof k = 2; 3; : : : and it generates a transitive a
tion of GP , where GP is thetransformation group generated by the re
e
tions in the planes 
ontainingthe fa
es of P . Coxeter polyhedra will be 
lassi�ed below (there are seven).
§5.3. Coxeter geometries on the plane. Let F be a Coxeter polygonin the plane R

2. The Coxeter geometry with fundamental region F is thegeometry (R2 : GF ), where GF is the group of transformations of the planegenerated by the re
e
tions in the lines 
ontaining the sides of the polygonF . The goal of this se
tion is to 
lassify all Coxeter geometries on the plane.Theorem 5.1. There are four Coxeter geometries in the plane; theirfundamental polygons are the re
tangle, the equilateral triangle, the isos
elesright triangle, and the right triangle with angles p=3 and p=6 (see Fig. 5.2).P r o o f. Let F be the fundamental polygon of a Coxeter geometry. If ithas n sides, then the sum of its angles is p(n− 2) and so the average value ofits angles is p(1− 2=n). Now n 
annot be greater than 4, be
ause F wouldthen have an obtuse angle (and this 
ontradi
ts the de�nition of Coxeterpolygon). If n = 4, then all angles of F are p(1− 2=4) = p=2 and F is are
tangle. Finally, if n = 3, and the angles of the fundamental triangle arep=k; p=l; p=m, then (sin
e their sum is p), we obtain a Diophantine equationfor k; l; m: 1k + 1l + 1m = 1 :
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Fig. 5.2. The four plane Coxeter geometriesThis equation has three solutions: (3; 3; 3), (2; 4; 4), (2; 3; 6). These solutions
orrespond to the three triangles listed in the theorem. �

§5.4. Coxeter geometries in Eu
lidean spa
e R
3. In this se
tion,we study the Coxeter geometries in R

3. A Coxeter polyhedron F ⊂ R
3 isa 
onvex polyhedron (i.e., the bounded interse
tion of a �nite number ofhalf-spa
es in R

3) with dihedral angles of the form p=k for various values ofk = 2; 3; : : : . A Coxeter geometry in R
d with fundamental polyhedron F isde�ned just as in the 
ase d = 2 (see §5.3).Theorem 5.2. There are seven Coxeter geometries in three-dimensionalspa
e; their fundamental polyhedra are the four right prisms over the there
tangle, the equilateral triangle, the isos
eles right triangle, and the righttriangle with a
ute angles p=3 and p=6, and the three (nonregular) tetrahedrashown in Fig. 5.3.It is not very diÆ
ult to prove that the seven polyhedra (listed in thetheorem) indeed de�ne Coxeter geometries. To prove that there are no other
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6Fig. 5.3. The seven Coxeter geometries in 3-spa
egeometries, nontrivial information from linear algebra (in parti
ular, the no-tion of Gramm matrix) is needed.Therefore, we omit the proof (it 
an be found in the arti
le by E.B.Vin-berg in Matemati
heskoye Prosvesh
henie, Ser. 3, #7, pp. 39|63).A remark about terminology. The term \Coxeter geometry" is not a stan-dard term. E. B. Vinberg uses the term \kaleidos
ope" instead. Also, wedo not use the term \Coxeter group" for the transformation group of aCoxeter geometry. This is be
ause \Coxeter group" is standardly used ina somewhat di�erent sense than \transformation group of a Coxeter geom-etry".Coxeter geometries are not only abstra
t mathemati
al obje
ts, they arealso important models in 
rystallography. For example, the polyhedron inFig. 5.3 (b) is the 
rystal of ordinary salt, while the polyhedron in Fig. 5.3 (a)is a diamond 
rystal.
§ 5.5. Coxeter s
hemes and the 
lassi�
ation theorem. In thisse
tion, we study the general 
ase of a Coxeter geometry in R

d for an arbitrarypositive integer d. A Coxeter polyhedron F ⊂ R
d is a 
onvex polyhedron(i.e., the bounded interse
tion of a �nite number of half-spa
es in R

d) withdihedral angles of the form p=k for various values of k = 2; 3; : : : su
h thatthe re
e
tions in the d-dimensionsal hyperplanes 
ontaining its fa
es generate



40 Le
ture 5. Re
e
tion Groups and Kaleidos
opesa transatively a
ting group GF . (The de�nition of the measure of a dihedralangle in Eu
lidean spa
e of arbitrary dimension d appears in the linear algebra
ourse.) A Coxeter geometry in R
d with fundamental polyhedron F is de�nedjust as in the 
ases d = 2 and d = 3 (see §§5.2, 5.3).A Coxeter s
heme is a graph (with integer weights on the edges) en
odinga Coxeter polyhedron (in parti
ular, polygons) in any dimension d. Thes
heme of a given Coxeter polyhedron is 
onstru
ted as follows: its verti
es
orrespond to the fa
es of the polyhedron, two verti
es whose 
orrespondingfa
es form an angle of p=m, m ≥ 3, are joined by an edge with weight m−2; if two fa
es are parallel, the 
orresponding verti
es are joined by an edgewith weight∞. (Note that verti
es 
orresponding to perpendi
ular edges arenot joined by any edge.)Graphi
ally, instead of writing the weights 2; 3; 4 on the edges of a s
heme,we draw double, triple, quadruple edges; instead of writing ∞ on an edge,we draw a very thi
k edge.For example, the Coxeter s
heme of the re
tangle 
onsists of two 
ompo-nents, ea
h of whi
h has two verti
es joined by an edge with weight ∞, whilethe s
heme of an equilateral triangle has three verti
es joined 
y
li
ally bythree edges with weights 1.Theorem 5.3. The Coxeter geometries in all dimensions are 
lassi�edby the 
onne
ted 
omponents of their Coxeter s
hemes listed in Fig. 5.4.We omit the proof (see the arti
le by V.O.Bugaenko inMatemati
heskoyeProsvesh
henie, Ser. 3, #7, pp. 82|106).

§5.6. Problems.5.1. Three planes P1; P2; P3 passing through the z-axis of Eu
lideanspa
e R
3 are given. The angles between P1 and P2, P2 and P3 are a and b,respe
tively.(a) Under what 
onditions on a and b will the group generated by re
e
-tions with respe
t to the three planes be �nite?(b) If these 
onditions are satis�ed, how 
an one �nd the fundamentaldomain of this a
tion?5.2. Three straight lines L1; L2; L3 in the Eu
lidean plane form a trianglewith interior angles a, b, and g.(a) Under what 
onditions on a, b, g will the group generated by re
e
-tions with respe
t to the three lines be dis
rete?(b) If these 
onditions are satis�ed, how 
an one �nd the fundamentaldomain of this a
tion?



§5.6. Problems 41Name Coxeter s
heme dim #(fa
es) view in R
3Ã1 1 2Ãn .

.

.

.

.

.

n− 1 nB̃n ... n− 1 nC̃n ... n− 1 nD̃n ... n− 1 n > 5 none!D̃4 4 5 none!F̃4 4 5 none!G̃2 2 3 π

3Ẽ6 none!Ẽ7 none!Ẽ8 none!Fig. 5.4. Coxeter s
hemes5.3. Consider the six lines L1; : : : ; L6 
ontaining the six sides of a regularplane hexagon and denote by G the group generated by re
e
tions with re-spe
t to these lines. Does this group determine a Coxeter geometry? Justify
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ture 5. Re
e
tion Groups and Kaleidos
opesyour answer by using the 
lassi�
ation theorem of plane Coxeter geometriesand without using that theorem.5.4. Let F be a Coxeter triangle, s1; s2; s3 be the re
e
tions with respe
tto its sides, and GF the 
orresponding transformation group.(a) Give a geometri
 des
ription and a des
ription by means of words inthe alphabet s1; s2; s3 of all the elements of GF that leave a 
hosen vertexof F �xed.(b) Give a geometri
 des
ription and a des
ription by means of words inthe alphabet s1; s2; s3 of all the elements of GF whi
h are parallel transla-tions.Consider the three 
ases of di�erent Coxeter triangles separately.5.5. Draw the Coxeter s
hemes of(a) all the Coxeter triangles;(b) all the three-dimensional Coxeter polyhedra.5.6. Prove that there are exa
tly three edges at ea
h vertex of any three-dimensional Coxeter polyhedron.5.7. Let (F : GF ) be a Coxeter Geometry of arbitrary dimension. Provethat(a) if s ∈ GF is the re
e
tion in a hyperplane P , then, for any g ∈ GF ,gsg−1 is the re
e
tion in the hyperplane gP ;(b) any re
e
tion from the group GF is 
onjugate to the re
e
tion in oneof the fa
es of the polyhedron F ,5.8. Des
ribe some four-dimensional Coxeter polyhedron other than thefour-dimensional 
ube.5.9. (a) Does the transformation group generated by the re
e
tions inthe fa
es of regular tetrahedron de�ne a Coxeter geometry?(b) Same question for the 
ube.(
) Same question for the o
tahedron.(d) Same question for the dode
ahedron.


