
Leture 5Reetion Groups and Kaleidosopes
In this leture, as in the previous one, we study geometries de�ned byertain disrete subgroups of the isometry group of the plane (and, moregenerally, of n-dimensional spae), namely the subgroups generated by ree-tions (alled Coxeter groups after the 20th entury Canadian mathematiianwho invented them). These geometries are perhaps not as beautiful as thosestudied in the previous two letures, but are more important in the applia-tions (in algebra and topology). On the other hand, they do have an aesthetiorigin: what one sees in a kaleidosope (a hild's toy very popular before theomputer era) is an instane of suh a geometry. Following E.B.Vinberg, weall these geometries (in the two-dimensional ase) kaleidosopes. We provethe lassi�ation theorem for them in dimension 2 and state the orrespond-ing result without proof in higher dimensions (using the important notion ofCoxeter sheme).Many ideas of this (geometri) theory are similar to the very impor-tant (algebrai) theory of group representation (studied in advaned algebraourses and used in modern physis). In partiular, the famous Dynkin dia-grams are similar to Coxeter shemes (de�ned below).
§5.1. An example: the kaleidosope. The kaleidosope is a hildren'stoy: bright little piees of glass are plaed inside a regular triangular prismand are multiply reeted by three mirrors forming the lateral faes of theprism. Looking into the prism, you see a olorful (in�nitely) repeated pattern:the piture in the triangle and its mirror image alternate, forming a hexagon(the union of six equilateral triangles), see Fig. 5.1 (a), surrounded by moreequilateral triangles ad in�nitum.Mathematially, this is a two-dimensional phenomenon: the equilateraltriangle forming the base of the prism is the fundamental domain of a disretegroup ating on the plane of the base.



36 Leture 5. Reetion Groups and KaleidosopesNow if the kaleidosope is deformed (e.g., the angles between the faes areslightly hanged), then the piture beomes fuzzy, no pattern an be seen.In suh a situation, the images of the base triangle overlap in�nitely manytimes (see Fig. 5.1 (b)), the transformation group ating on the triangle isnot disrete; we will not study this \bad" ase: we only study the \nie"kaleidosope ase generalized to any dimension.
Π1

Π2

P

(a)

Π1

Π2

P
′

P

(b)Fig. 5.1. The kaleidosope
§5.2. Coxeter polygons and polyhedra. Consider a dihedral anglea < p=2 formed by two plane two-sided mirrors �1; �2. What will the ob-server O see? Any piture P inside the angle will be reeted by �1; itsimage P ′ will be in turn be reeted by the image of �1 by �2, and so on. Atthe same time, the piture P inside the angle will be reeted by �2; its im-age P ′′ will be in turn be reeted by the image of �2 by �1, et. Two asesare possible: either the reetions oming from di�erent sides will overlap(Fig. 5.1 (b)) or the reeted pitures will oinide (Fig. 5.1 (a)). Obviously,the pitures will oinide if (and only if) the angle a is of the form p=k, wherek = 2; 3; : : :Mathematially, this situation is the following. On the Eulidean plane,we take two straight lines forming the angle a and onsider the group G of alltransformations of the plane generated by the reetions in these two lines.Let F be the region bounded by the two half planes forming the angle a.Obviously, no two regions g(F ) and h(F ), g; h ∈ G, g 6= h, overlap if andonly if a = p=k, where k = 2; 3; : : : In that ase, G is the dihedral group Dk.



§5.3. Coxeter geometries on the plane 37Now suppose we are given a onvex polygon F in the plane with vertexangles less than or equal to p=2. Consider the group GF of transformationsof the plane generated by reetions in the lines ontaining the sides of F .We say that GF is ats transitively on F if the images g(F ), g ∈ GF , neveroverlap. A neessary ondition for the transitive ation of GF on F is that allthe vertex angles of F be of the form p=k for various values of k; this followsfrom the argument in the previous paragraph. Obviously, this ondition isnot suÆient.The previous arguments are the motivation for the following de�nition.A onvex polygon F is alled a Coxeter polygon if all its vertex angles are ofthe form p=k for various values of k = 2; 3; : : : and it generates a transitiveation of the group GF . Coxeter polygons will be lassi�ed below| thereare only four.The above an be generalized to three-dimensional spae. The orre-sponding de�nition is the following: a onvex polyhedron is alled a Coxeterpolyhedron P if all its dihedral angles are of the form p=k for various valuesof k = 2; 3; : : : and it generates a transitive ation of GP , where GP is thetransformation group generated by the reetions in the planes ontainingthe faes of P . Coxeter polyhedra will be lassi�ed below (there are seven).
§5.3. Coxeter geometries on the plane. Let F be a Coxeter polygonin the plane R

2. The Coxeter geometry with fundamental region F is thegeometry (R2 : GF ), where GF is the group of transformations of the planegenerated by the reetions in the lines ontaining the sides of the polygonF . The goal of this setion is to lassify all Coxeter geometries on the plane.Theorem 5.1. There are four Coxeter geometries in the plane; theirfundamental polygons are the retangle, the equilateral triangle, the isoselesright triangle, and the right triangle with angles p=3 and p=6 (see Fig. 5.2).P r o o f. Let F be the fundamental polygon of a Coxeter geometry. If ithas n sides, then the sum of its angles is p(n− 2) and so the average value ofits angles is p(1− 2=n). Now n annot be greater than 4, beause F wouldthen have an obtuse angle (and this ontradits the de�nition of Coxeterpolygon). If n = 4, then all angles of F are p(1− 2=4) = p=2 and F is aretangle. Finally, if n = 3, and the angles of the fundamental triangle arep=k; p=l; p=m, then (sine their sum is p), we obtain a Diophantine equationfor k; l; m: 1k + 1l + 1m = 1 :



38 Leture 5. Reetion Groups and Kaleidosopes

Fig. 5.2. The four plane Coxeter geometriesThis equation has three solutions: (3; 3; 3), (2; 4; 4), (2; 3; 6). These solutionsorrespond to the three triangles listed in the theorem. �

§5.4. Coxeter geometries in Eulidean spae R
3. In this setion,we study the Coxeter geometries in R

3. A Coxeter polyhedron F ⊂ R
3 isa onvex polyhedron (i.e., the bounded intersetion of a �nite number ofhalf-spaes in R

3) with dihedral angles of the form p=k for various values ofk = 2; 3; : : : . A Coxeter geometry in R
d with fundamental polyhedron F isde�ned just as in the ase d = 2 (see §5.3).Theorem 5.2. There are seven Coxeter geometries in three-dimensionalspae; their fundamental polyhedra are the four right prisms over the theretangle, the equilateral triangle, the isoseles right triangle, and the righttriangle with aute angles p=3 and p=6, and the three (nonregular) tetrahedrashown in Fig. 5.3.It is not very diÆult to prove that the seven polyhedra (listed in thetheorem) indeed de�ne Coxeter geometries. To prove that there are no other



§5.5. Coxeter shemes and the lassi�ation theorem 39
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6Fig. 5.3. The seven Coxeter geometries in 3-spaegeometries, nontrivial information from linear algebra (in partiular, the no-tion of Gramm matrix) is needed.Therefore, we omit the proof (it an be found in the artile by E.B.Vin-berg in Matematiheskoye Prosveshhenie, Ser. 3, #7, pp. 39|63).A remark about terminology. The term \Coxeter geometry" is not a stan-dard term. E. B. Vinberg uses the term \kaleidosope" instead. Also, wedo not use the term \Coxeter group" for the transformation group of aCoxeter geometry. This is beause \Coxeter group" is standardly used ina somewhat di�erent sense than \transformation group of a Coxeter geom-etry".Coxeter geometries are not only abstrat mathematial objets, they arealso important models in rystallography. For example, the polyhedron inFig. 5.3 (b) is the rystal of ordinary salt, while the polyhedron in Fig. 5.3 (a)is a diamond rystal.
§ 5.5. Coxeter shemes and the lassi�ation theorem. In thissetion, we study the general ase of a Coxeter geometry in R

d for an arbitrarypositive integer d. A Coxeter polyhedron F ⊂ R
d is a onvex polyhedron(i.e., the bounded intersetion of a �nite number of half-spaes in R

d) withdihedral angles of the form p=k for various values of k = 2; 3; : : : suh thatthe reetions in the d-dimensionsal hyperplanes ontaining its faes generate



40 Leture 5. Reetion Groups and Kaleidosopesa transatively ating group GF . (The de�nition of the measure of a dihedralangle in Eulidean spae of arbitrary dimension d appears in the linear algebraourse.) A Coxeter geometry in R
d with fundamental polyhedron F is de�nedjust as in the ases d = 2 and d = 3 (see §§5.2, 5.3).A Coxeter sheme is a graph (with integer weights on the edges) enodinga Coxeter polyhedron (in partiular, polygons) in any dimension d. Thesheme of a given Coxeter polyhedron is onstruted as follows: its vertiesorrespond to the faes of the polyhedron, two verties whose orrespondingfaes form an angle of p=m, m ≥ 3, are joined by an edge with weight m−2; if two faes are parallel, the orresponding verties are joined by an edgewith weight∞. (Note that verties orresponding to perpendiular edges arenot joined by any edge.)Graphially, instead of writing the weights 2; 3; 4 on the edges of a sheme,we draw double, triple, quadruple edges; instead of writing ∞ on an edge,we draw a very thik edge.For example, the Coxeter sheme of the retangle onsists of two ompo-nents, eah of whih has two verties joined by an edge with weight ∞, whilethe sheme of an equilateral triangle has three verties joined ylially bythree edges with weights 1.Theorem 5.3. The Coxeter geometries in all dimensions are lassi�edby the onneted omponents of their Coxeter shemes listed in Fig. 5.4.We omit the proof (see the artile by V.O.Bugaenko inMatematiheskoyeProsveshhenie, Ser. 3, #7, pp. 82|106).

§5.6. Problems.5.1. Three planes P1; P2; P3 passing through the z-axis of Eulideanspae R
3 are given. The angles between P1 and P2, P2 and P3 are a and b,respetively.(a) Under what onditions on a and b will the group generated by ree-tions with respet to the three planes be �nite?(b) If these onditions are satis�ed, how an one �nd the fundamentaldomain of this ation?5.2. Three straight lines L1; L2; L3 in the Eulidean plane form a trianglewith interior angles a, b, and g.(a) Under what onditions on a, b, g will the group generated by ree-tions with respet to the three lines be disrete?(b) If these onditions are satis�ed, how an one �nd the fundamentaldomain of this ation?



§5.6. Problems 41Name Coxeter sheme dim #(faes) view in R
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n− 1 nB̃n ... n− 1 nC̃n ... n− 1 nD̃n ... n− 1 n > 5 none!D̃4 4 5 none!F̃4 4 5 none!G̃2 2 3 π

3Ẽ6 none!Ẽ7 none!Ẽ8 none!Fig. 5.4. Coxeter shemes5.3. Consider the six lines L1; : : : ; L6 ontaining the six sides of a regularplane hexagon and denote by G the group generated by reetions with re-spet to these lines. Does this group determine a Coxeter geometry? Justify



42 Leture 5. Reetion Groups and Kaleidosopesyour answer by using the lassi�ation theorem of plane Coxeter geometriesand without using that theorem.5.4. Let F be a Coxeter triangle, s1; s2; s3 be the reetions with respetto its sides, and GF the orresponding transformation group.(a) Give a geometri desription and a desription by means of words inthe alphabet s1; s2; s3 of all the elements of GF that leave a hosen vertexof F �xed.(b) Give a geometri desription and a desription by means of words inthe alphabet s1; s2; s3 of all the elements of GF whih are parallel transla-tions.Consider the three ases of di�erent Coxeter triangles separately.5.5. Draw the Coxeter shemes of(a) all the Coxeter triangles;(b) all the three-dimensional Coxeter polyhedra.5.6. Prove that there are exatly three edges at eah vertex of any three-dimensional Coxeter polyhedron.5.7. Let (F : GF ) be a Coxeter Geometry of arbitrary dimension. Provethat(a) if s ∈ GF is the reetion in a hyperplane P , then, for any g ∈ GF ,gsg−1 is the reetion in the hyperplane gP ;(b) any reetion from the group GF is onjugate to the reetion in oneof the faes of the polyhedron F ,5.8. Desribe some four-dimensional Coxeter polyhedron other than thefour-dimensional ube.5.9. (a) Does the transformation group generated by the reetions inthe faes of regular tetrahedron de�ne a Coxeter geometry?(b) Same question for the ube.() Same question for the otahedron.(d) Same question for the dodeahedron.


