Комплексные многообразия,

лекция 8

Миша Вербицкий

НМУ/НОЦ, Москва

15 ноября 2010

Лемма Пуанкаре-Дольбо-Гротендика

ОПРЕДЕЛЕНИЕ: Полидиск D^n есть произведение дисков $D \subset \mathbb{C}$.

ТЕОРЕМА: (Лемма Пуанкаре-Дольбо-Гротендика)

Пусть $\eta \in \Lambda^{0,p}(D^n) - \overline{\partial}$ -замкнутая форма на полидиске, гладко продолжающаяся в окрестность $D^n \subset \mathbb{C}^n$, и p>0. Тогда η $\overline{\partial}$ -точна.

ЗАМЕЧАНИЕ: В прошлой лекции, мы доказали, что для любой (0,1)-формы η с компактным носителем на \mathbb{C} , $\eta = \overline{\partial} \alpha$, где $\alpha \in C^{\infty}\mathbb{C}$ гладкая функция (не обязательно с компактным носителем, но убывающая как 1/|z|).

ЗАМЕЧАНИЕ: Из этого следует **лемма Пуанкаре-Дольбо-Гротендика для** n=1. Действительно, любая форма η на диске, продолжающаяся в окрестность $D \subset \mathbb{C}$, продолжается до формы на \mathbb{C} с компактным носителем, значит, **лежит в образе** $\overline{\partial}$.

ЗАМЕЧАНИЕ: Воспользовавшись разложением $\Lambda^{p,q}(D^n)\cong \Lambda^{p,0}(D^n)\otimes \Lambda^{0,q}(D^n)$, каждую форму можно предствить в виде суммы вида $\sum \alpha_i^{0,q}\wedge P_i^{p,0}$, где P_i – полиномы от координатных ковекторов dz_i с постоянными коэффициентами. Поскольку $\overline{\partial}(\alpha_i^{0,q}\wedge P_i^{p,0})=\overline{\partial}(\alpha_i^{0,q})\wedge P_i^{p,0}$, лемму Пуанкаре-Дольбо-Гротендика достаточно доказывать для (0,q)-форм.

Доказательство леммы Пуанкаре-Дольбо-Гротендика

Шаг 1: Пусть $\overline{\partial}_i$: $\Lambda^{0,q}(D^n) \longrightarrow \Lambda^{0,q+1}(D^n)$ есть оператор $\alpha \longrightarrow d\overline{z}_i \wedge \frac{d}{d\overline{z}_i}\alpha$, где z_i есть i-я координата на D^n . Тогда $\overline{\partial} = \sum_i \overline{\partial}_i$.

Шаг 2: В силу леммы Пуанкаре-Дольбо-Гротендика для n=1, когомологии $\overline{\partial}_i$ равны нулю. Обозначим за γ_i соответствующий оператор P_ξ , построенный в прошлой лекции. Если $\alpha=d\overline{z}_i\wedge\beta$, то $\{\overline{\partial}_i,\gamma_i\}(\alpha)=\alpha$, если в разложении α нет членов с $d\overline{z}_i$, то $\overline{\partial}_i\{\overline{\partial}_i,\gamma_i\}(\alpha)=0$. Из этого следует, что іт $\left[\{\overline{\partial}_i,\gamma_i\}-\mathrm{Id}\right]$ лежит в пространстве R_i форм, в разложении которых нет $d\overline{z}_i$, а все коэффициенты голоморфны по z_i .

Шаг 3: Свойства γ_i :

1. $\operatorname{im}\left[\{\overline{\partial}_i,\gamma_i\}-\operatorname{Id}\right] \overset{\iota}{\subset} R_i$. 2. $\{\overline{\partial}_i,\gamma_j\}=0$, если $i\neq j$. 3. $\left[\{\overline{\partial}_i,\gamma_i\}\right]\Big|_{R_i}=0$. 4. $\gamma_i(R_j)\subset R_j$, $\overline{\partial}_i(R_j)\subset R_j$ для $i\neq j$.

Свойство 1 доказано в шаге 2, 3 следует из того, что на формах α без $d\overline{z}_i$ в разложении имеем $\{\gamma_i, \overline{\partial}\}(\alpha) = \gamma_i(\overline{\partial}_i(\alpha))$. Свойства 2 и 4 следуют из явной формулы для γ_i .

Шаг 4: В силу свойств 1, 3 и 4,

$$\left[\left\{\overline{\partial}_{i},\gamma_{i}\right\}-\operatorname{Id}\right]\left(R_{i_{1}}\cap R_{i_{2}}\cap\ldots\cap R_{i_{k}}\right)\subset R_{i}\cap R_{i_{1}}\cap R_{i_{2}}\cap\ldots\cap R_{i_{k}}$$

для $i \neq i_1, i_2, ..., i_k$, и $\{\overline{\partial}_i, \gamma_i\}\Big|_{R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}} = 0$ в противном случае.

Доказательство леммы Пуанкаре-Дольбо-Гротендика (2)

Шаг 4: $\left[\{\overline{\partial}_i,\gamma_i\}-\operatorname{Id}\right](R_{i_1}\cap R_{i_2}\cap\ldots\cap R_{i_k})\subset R_i\cap R_{i_1}\cap R_{i_2}\cap\ldots\cap R_{i_k}$ для $i\neq i_1,i_2,...,i_k$, и $\left\{\overline{\partial}_i,\gamma_i\right\}\Big|_{R_{i_1}\cap R_{i_2}\cap\ldots\cap R_{i_k}}=0$ в противном случае.

Шаг 5: Пусть $\gamma:=\sum_i \gamma_i$. Поскольку $\{\overline{\partial}_i,\gamma_j\}=0$ при $i\neq j$, шаг 4 дает $\Big[\{\overline{\partial},\gamma\}-(n-k)\operatorname{Id}\Big](R_{i_1}\cap R_{i_2}\cap\ldots\cap R_{i_k})\subset \sum_{i\neq i_1,i_2,\ldots,i_k}R_i\cap R_{i_1}\cap R_{i_2}\cap\ldots\cap R_{i_k}\Big]$

Шаг 6: Пусть W_0 есть пространство (0,q)-форм на D^n , допускающих продолжение в некоторую окрестность D^n , а $W_k \subset W_{k-1} \subset ... -$ подпространство, порожденное всеми $R_{i_1} \cap R_{i_2} \cap ... \cap R_{i_k}$ для $i_1 < i_2 < ... < i_k$. В силу предыдущего шага, $\left[\{\overline{\partial},\gamma\} - (n-k)\operatorname{Id}\right]_{W_k} \subset W_{k+1}$.

Шаг 7: Легко видеть, что W_0 состоит из голоморфных функций, которые являются (0,p)-формами, то есть пусто в силу p>0. Воспользовавшись индукцией, можно считать, что каждая $\overline{\partial}$ -замкнутая форма в W_{k+1} $\overline{\partial}$ -точна. Пусть $\alpha\in W_k$ $\overline{\partial}$ -замкнута. Тогда $(n-k)\alpha-\{\overline{\partial},\gamma\}(\alpha)=(n-k)\alpha-\overline{\partial}\gamma(\alpha)$ лежит в W_{k+1} , то есть точна. Получаем $(n-k)\alpha-\overline{\partial}\gamma(\alpha)=\overline{\partial}\eta$.

Пучки

ОПРЕДЕЛЕНИЕ: Пучок \mathcal{F} на топологическом пространстве M — это набор векторных пространств $\mathcal{F}(U)$, заданных для каждого открытого подмножества $U\subset M$, с **отображениями ограничения** $\mathcal{F}(U)\stackrel{\varphi_{U,U'}}{\longrightarrow} \mathcal{F}(U')$ для каждого $U'\subset U$, и следующими свойствами

- (1) Композиция ограничений снова ограничение: если $U_1\subset U_2\subset U_3$ вложенные открытые множества, а φ_{U_1,U_2} , φ_{U_2,U_3} соответствующие отображения ограничений, то $\varphi_{U_1,U_2}\circ\varphi_{U_2,U_3}=\varphi_{U_1,U_3}$.
- (2) Если $U = \bigcup U_i$, а ограничение $f \in \mathcal{F}(U)$ на все U_i равно нулю, то f = 0.
- (3) ("склейка сечений") Пусть $\{U_i\}$ покрытие множества $U\subset M$, а $f_i\in \mathcal{F}(U_i)$ набор сечений, заданных для каждого элемента покрытия, и удовлетворяющих условию $f_i\big|_{U_i\cap U_j}=f_j\big|_{U_i\cap U_j}$, для любой пары элементов покрытия. Тогда существует $f\in \mathcal{F}(U)$ такой, что ограничения f на U_i дает f_i .

Пространство $\mathcal{F}(U)$ называется пространство сечений пучка \mathcal{F} над U, оно также обозначается $\mathcal{F}|_U$.

Паракомпактные многообразия

ОПРЕДЕЛЕНИЕ: Покрытие топологического пространства M есть набор открытых множеств $\{U_i\}$ такой, что $\bigcup U_i = M$. Измельчение покрытия $\{U_i\}$ есть покрытие $\{V_i\}$, такое, что каждый V_i содержится в каком-то из U_i .

ОПРЕДЕЛЕНИЕ: Топологическое пространство M называется **пара- компактным**, если любое покрытие M допускает локально конечное измельчение.

ЗАМЕЧАНИЕ: Любое паракомпактное многообразие M обладает следующим свойством. Каждое покрытие M допускает пару конечных измельчений $\{U_i\}$, и $\{V_i\}$ пронумерованных тем же набором индексов, причем все замыкания \overline{U}_i компактны и содержатся в V_i .

ЗАМЕЧАНИЕ: В дальнейшем все многообразия предполагаются паракомпактными.

Носитель сечения пучка

ОПРЕДЕЛЕНИЕ: Носитель сечения f пучка есть дополнение к объединению всех открытых множеств $U \subset M$ таких, что $f|_U = 0$.

УТВЕРЖДЕНИЕ: Пусть $f \in \mathcal{F}|_U$ — сечение пучка на многообразии $M \ni U$, причем носитель сечения f замкнут в M. **Тогда** f **принадлежит образу отображения ограничения** $\Gamma_M(\mathcal{F}) \longrightarrow \Gamma_U(\mathcal{F})$.

ДОКАЗАТЕЛЬСТВО: Рассмотрим покрытие $\{U_1 := U, U_2 := M \setminus K\}$, и пусть $f_1 \in \Gamma_{U_1}(\mathcal{F}) = f$, а $f_2 \in \Gamma_{U_2}(\mathcal{F}) = 0$. Тогда $f_i \big|_{U_1 \cap U_2} = 0$, склеив их, обретем искомое. \blacksquare

Разбиение единицы на пучке

ОПРЕДЕЛЕНИЕ: Пусть $\{U_i\}$, $\{V_i\}$ — пара локально конечных покрытий M, пронумерованных тем же набором индексов, причем для любого i замыкание V_i компактно, а замыкание U_i компактно и содержится в V_i . Обозначим за $F^c|_U$ группу сечений с компактным носителем над U. **Разбиение единицы** для пучка F есть такой набор гомоморфизмов $\psi_i: F|_{V_i} \longrightarrow F^c|_{V_i}$, и $\varphi_i: F|_{V_i} \longrightarrow F^c|_{V_i}$, что

- (i) $\sum_i \psi_i(f) = f$ для любого сечения f
- (ii) ψ_i обратимо на U_i : $\varphi_i(\psi_i(f))\big|_{U_i}=f\big|_{U_i}$

Пучок называется тонким, если он допускает разбиение единицы для любой пары таких покрытий.

ЗАМЕЧАНИЕ: Все пучки модулей над $C^{\infty}(M)$ и $C^{i}(M)$ – тонкие.

Ростки пучка

ОПРЕДЕЛЕНИЕ: Росток пучка \mathcal{F} в замкнутом множестве $Z\subset M$ есть класс эквивалентности сечений \mathcal{F} в окрестностях Z, по следующему отношению эквивалентности. Сечения $f\in \mathcal{F}|_U$ и $f'\in \mathcal{F}|_U'$ эквивалентны, если $f|_U=f'|_U$ для окрестности Z, $U\subset U_1\cap U_2$.

УТВЕРЖДЕНИЕ: Если \mathcal{F} — тонкий пучок, а $x \in M$ — точка то естественное отображение $\Gamma_M(\mathcal{F}) \longrightarrow \Gamma(\mathcal{F})$ в соответствующее пространство ростков сюрьективно.

ДОКАЗАТЕЛЬСТВО: : Возьмем росток f, определенный в $U \ni x$, ограничим его на $V_i \supset U_i \ni x$ в покрытии, связанном с разбиением единицы, тогда $\varphi_i(\psi_i(f))|_{U_i} = f|_{U_i}$. Значит, $f' := \varphi_i(\psi_i(f))$ имеет тот же росток. Это сечение продолжается до сечения $\Gamma_M(\mathcal{F})$, потому что у него компактный носитель.

Ацикличные пучки

ЗАМЕЧАНИЕ: $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ является точной последовательностью пучков \Leftrightarrow соответствующие последовательности ростков точные для каждого $x \in M$.

ОПРЕДЕЛЕНИЕ: Функтор Ф из категории пучков в векторные пространства называется **точным слева** если любая точная последовательность пучков $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ переводится в точную слева последовательность $0 \longrightarrow \Phi(A) \longrightarrow \Phi(B) \longrightarrow \Phi(C)$.

ПРИМЕР: Функтор глобальных сечений $\mathcal{F} \longrightarrow \Gamma_M(\mathcal{F})$ точен слева.

ОПРЕДЕЛЕНИЕ: Пучок A называется **ацикличным**, если для любого $U \subset M$ и точной последовательности пучков $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$, последовательность $0 \longrightarrow \Gamma_U(A) \longrightarrow \Gamma_U(B) \longrightarrow \Gamma_U(C) \longrightarrow 0$ точна.

УТВЕРЖДЕНИЕ: Любой тонкий пучок ацикличен.

ОПРЕДЕЛЕНИЕ: Пусть $0 \longrightarrow F \longrightarrow F_1 \longrightarrow F_2 \longrightarrow ...$ — точная последовательность пучков, которые ацикличны, начиная с F_1 . Такая последовательность называется ацикличной резольвентой F.

Когомологии пучков

ЗАМЕЧАНИЕ: В силу леммы Пуанкаре-Дольбо-Гротендика, $\Omega^p(M) \hookrightarrow \Lambda^{p,0}(M) \xrightarrow{\overline{\partial}} \Lambda^{p,1}(M) \xrightarrow{\overline{\partial}} \Lambda^{p,2}(M) \xrightarrow{\overline{\partial}} ... - ацикличная резольвента пучка голоморфных дифференциальных форм.$

ОПРЕДЕЛЕНИЕ: Пусть $F \longrightarrow F_1 \longrightarrow F_2 \longrightarrow ...$ — ацикличная резольвента. Группа когомологий $H^i(F)$ определяется как i-я группа когомологий соответствующего комплекса глобальных сечений,

$$\Gamma_M(F) \longrightarrow \Gamma_M(F_1) \longrightarrow \Gamma_M(F_2) \longrightarrow \dots$$

УТВЕРЖДЕНИЕ: (Свойства когомологий):

- 1. Группы $H^i(F)$ не зависят от выбора ацикличной резольвенты.
- 2. $H^i(F) = 0$ для всех i > 0 тогда и только тогда, когда F ацикличен.
- 3. Для любой точной последовательности пучков 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 имеет место **длинная точная последовательность**

$$0 \longrightarrow H^{0}(A) \longrightarrow H^{0}(B) \longrightarrow H^{0}(C) \longrightarrow H^{1}(A) \longrightarrow H^{1}(B) \longrightarrow H^{1}(C) \longrightarrow \dots$$