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Structure of Lecture 7 

 
 

 How to solve convex optimization problems with affine equality constraints 

in case when we have possibility to build explicitly dual problem 

  How to solve convex optimization problems with affine restrictions in 

case when we don’t have possibility to build explicitly dual problem 

  How to get acceleration in solving convex optimization problems with 

affine restrictions in case when we have proximal-friendly functional 

 Decentralized distributed optimization. Consensus 

 How to improve conditional number 

 About the cost of gossip step 

 Time-varying gossip graphs 
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How to solve convex optimization problems with affine restrictions in 

the case when we have a possibility to build explicitly a dual problem 

1.a Strongly convex case (most important case because of regularization) 

We have to solve the following convex optimization problem 

 
,

min
Ax b x Q

f x
 

 ,                                           (1) 

where  f x  is  -strongly convex function in p -norm  1 2p  . We build 

dual problem (by Demyanov–Danskin’s formula    y Ax y b   ) 

         max , , min
yx Q

y y Ax b f x y Ax y b f x y


       .  (2) 

In many applications the main contribution in computational complexity of 

one iteration comes from calculations of Ax , TA y. To find  x y  one can use  

optimal (including randomized) numerical methods (A. Nemirovski, Yu. 

Nesterov). But we assume first that we can calculate  x y  explicitly. 
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To solve problem (2) let us use Adaptive Similar Triangles Methods 

(ASTM) of Yu. Nesterov, 2016 (in STM L  is known and fixed) 

Initialization ( 0k  , 0 0y  ) arXiv:1604.05275; arXiv:1706.07622 

Put 

0

0 0 01 1A L   , 0k  , 0 0j  ;  0 0 0 0

0: :y u y y     . 

While 

{      
0 2

0 0 0 0 0 0 00,
2

j
L

y y y y y y y          } 

Do 

{ 0 0: 1j j  ; 0 0 0

0 0: 2
j j

L L ;  
0

0 0

0

1
: :

j
A

L
  ,  0 0 0 0

0: :y u y y      }. 

https://arxiv.org/abs/1604.05275
https://arxiv.org/abs/1706.07622
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1. Put 0

1 2kj

k kL L  , 1 0kj   . 

 
1 20 0

0
1 1

1

1 1
:

2 4

k
k

k k
k

A

L LL
 

 


   , 1 1:k k kA A    , 

1 1

1

k k
k k k

k

u A y
y

A

 







,  1 1

1

k k k

ku u y  

   , 
1

1 1

1

k k
k k k

k

u A y
y

A

 
 







 . 

2. While 

{      
1 2

1 1 1 1 1 1 11

2
,

2

kj
k k k k k k kkL

y y y y y y y  


              } 

Do 

{ 1 1: 1k kj j   ; 1 1 0

1 12k kj j

k kL L 

  ; 
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 1 1
1

1 2

1 1
1

1 1
:

2 4
k k

k

k
k j j

j
k k

k

A

L LL


 




 


   , 1 1:k k kA A    ; 

1 1

1

:
k k

k k k

k

u A y
y

A

 







,  1 1

1:k k k

ku u y  

   , 
1

1 1

1

:
k k

k k k

k

u A y
y

A

 
 







 }. 

3. If stopping rule is not satisfied, put : 1k k   and go to 1. 

Put                         
0

N
N k

k

k

x x y


 , k k NA  . 

Since ( *x  – solution of (1)) 

       *

N N Nf x f x y f x   . 

Note: ASTM (because of adaptability) can be applied below only for centralized context. 
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Theorem 1. Let we solve problem (1) by passing to the dual problem  (2), 

according to the formulas mentioned above. Let us choose the following 

stopping rule for ASTM  

   N Ny f x   , 
2

NAx b   . 

 Then ASTM is terminated by making no more than (
21

21
max

p
x

L Ax  


  ) 

2

6 max ,
L R L R 

 

  
  

  


                                          (3) 

iterations ("6 " "15 "    calculations of Ax , TA y), where 
22

* 2
R y , *y  – 

solution of the problem (2) (if the solution is not unique, we can choose such 

a solution *y  that minimizes 
2R ). arXiv:1602.01686  & arXiv:1606.08988 

https://arxiv.org/abs/1602.01686
https://arxiv.org/abs/1606.08988
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1.b Strongly convex case. Primal-duality via regularization 

  Let us introduce  -strongly convex in 2-norm problem ( 0  ) 

   
2

0

2
min

2 x Q
F x F x x x 


    .                               (4) 

Let *F   – is optimal value in (4),  * *F F x  – optimal value in (4) with 0  . 

Proposition 1 (regularization). Let 

2 2
0

* 2

Rx x

 
  


, 

and there exists such Nx Q  that 

  * 2NF x F    .  

Then 

  *

NF x F   . 
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Idea: regularize dual problem (2)  

   
2

2
min

2 y
y y y 

    ,                           (5) 

where 2R  . Since we typically don’t know 
22

* 2
R y , we can restart on 

 . The cost of that is just 8-multiplicative factor in the final estimate. 

To solve (5), one can use Nesterov’s Fast Gradient Descent (FGM) 

0 0 0y y  , 

 1 1k k ky y y
L





     ,  (we use  N Nx x y  for solution of (1)) 

 1 1 1k k k k
L

y y y y
L









  


  


 . 

One can generalize this approach to adapt one in L  (arXiv:1604.05275). 

https://arxiv.org/abs/1604.05275
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Note, that 

     
2 2

*2 2

1 1

2 2
y y y

L

   



   


     , 

      * 2 2
f x y f x y Ax y b   . 

We use the stopping rule:  

 
2 2

N Ny Ax y b   ,  
2

NAx y b    . 

Number of oracle calls (calculations of Ax , TA y) does not exceed 

        
,

2 2

4 min min 2

l
2 2

.n
x Q Ax b x Q

L f xL
N

f x RR
   

  

  

    
 
 


 





  





        (6) 

https://arxiv.org/ftp/arxiv/papers/1410/1410.7719.pdf 

https://arxiv.org/ftp/arxiv/papers/1410/1410.7719.pdf
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2. Smooth & Strongly convex case (Euclidian set up) 

We have to solve the following convex optimization problem 

 
0

min
Ax

f x


 ,                                           (7) 

where  f x  is  -strongly convex function in 2-norm, which has L -Lipchitz 

continuous gradient in 2-norm: 

   
22

f y f x L y x    . 

System 0Ax   is assumed to be compatible. Matrix A might be not a full 

row rank matrix. This causes the multiple dual solution in the form 

 * Ker Ty A . Denote  

     max max max 0 : 0 :T TA A A x A Ax x          and  

   min min 0 : 0 : TA x A Ax x       . 
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Our goal is to build a dual problem of the problem (one can easily generalize 

all the results in case 0b  ) 

      * max ,T T

x
y f A y A y x f x     

    , minT T T

y
A y x A y f x A y   . 

We assume that function  *f z  is 1 L-strongly convex function in 2-norm 

and has 1  -Lipchitz continuous gradient in 2-norm. Then function  y  is 

 min A L  -strongly convex function in 2-norm in  Ker TA


 and has 

 maxL A   -Lipchitz continuous gradient in 2-norm. Denote 

     max min

TA A A A   . 
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We use stopping rule:  
2 2

N Ny Ax y  ,  
2

NAx y  .                                   

Nesterov’s FGM give us for this case the following number of calls of oracle: 

      22 ln max 4 ,2 .TN L L R L R L A A                  (8) 

 

3. Smooth case (Euclidian set up) 

Now we assume that  f x  has L -Lipchitz continuous gradient in 2-norm. In 

this case, we can regularize (see (4)) primal problem (7) with 2

xR  , 
2

2 0

* 2xR x x  . Then from (8) we obtain (up to a logarithmic factor) that 

   2~ T

xN LR A A  .                                    (9) 



15 

 

 

4. Convex case without assumptions (Euclidian set up) 

Now we assume that  f x  is just a convex function. In this case, we can also 

regularize (see (4)) primal problem (7) with 2

xR  . And then we can use 

(3) or (6). We obtain correspondently (up to constant factor and log-factor) 

   2 2 2

max max

2
~ max ,

x xA R R A RR
N

 

 

  
 
  


,                    (10) 

   2

max

2

2
~

xA R R
N

  



  


.                                  (11) 
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Now we explain how we can compare formulas  (3), (6) with (8) and (10), 

(11) with (9). We use Slater’s arguments (for general problem (1)) 

     
222 2

* * min min2 2
R y f x A M A     .               (12) 

http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2017/02/DCS20170131.pdf Theorem 3 

Formulas (3), (8), (10) are unimpovable up to a constant factor, formulas (6), 

(9), (11) are unimpovable up to a logarithmic factor (in precision). 

http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2017/02/DCS20170131.pdf
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So let us summarize all the results in a compact form. We consider 

 
0

min
Ax

f x


 . 

If  f x  is  -strongly convex function in 2-norm and has L -Lipchitz 

continuous gradient in 2-norm then    TN L L A A     . If 

0   one can take 2

xR  ,    2~ T

xN LR A A  . If L    then 0   

and one can take  2 2

minR A M    ,     2~ TN M A A   

(here and in the next formula we assume R   ). If 0   and L    one 

can take 2

xR  ,  2 2

minR A M    ,    2 2 2~ T

xN M R A A  . 

One can generalize case 1), 4) to non Euclidian setup (we skip the details). 
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How to solve convex optimization problems with affine restrictions in the 

case when we don’t have a possibility to build explicitly dual problem 

In cases 2, 3 (see above), one can solve auxiliary problem 

       max , ,
x Q

y Ax b f x y Ax y b f x y


                  (13) 

to find  x y  by fast gradient methods (in case 3 one should make additional 

regularization 2

xR  ) applied to the strongly convex (concave) problem. 

So we can find   x y  in a logarithmic number of iteration in the desired 

relative precision  . This fact allows us to consider  x y  to be almost the 

precise and don’t think about the inaccuracy in of  x y  calculation. In case 2, 

we can solve (13) in  1lnN L     oracle calls (here oracle call is a 

calculation of  f x ), in case 3 this can be done in  2 1lnxN LR     
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calls. Both estimates are optimal up to a logarithmic factor. So, in cases 2, 3 

we propose totally optimal methods. 

Unfortunately this is not the true in cases 1, 4. In these cases one might 

use another approach, that gives optimal estimates in both sense: total 

number of  f x  calculations and total number of Ax , TA y multiplications.  

Let us start with the case 4 and applied Nesterov’s smoothing technique 

     
0

min min max ,
Ax x y

f x y Ax f x


   

   max min ,
xy

f x y Ax   – one of the dual problems.           (14) 

Since we have the bound (12), we can replace   max ,
y

F Ax y Ax  by 

      
2 22 2

2 2
max , 2 2

y
F Ax y Ax R y R Ax     . One can show that 



20 

 

the function  F Ax  has   2

max

TA R  –Lipschitz continuous gradient in 

2-norm. Note, that    max max

TA A  . 

So we have to solve composite type mixed smooth/non-smooth type 

problem 

   
2

-Lipchitz1 -Lipchitz gradient

min
xx R

M

F Ax f x




 




,                              (15) 

where the gradient oracle for  F Ax  requires  1  Ax  multiplications (since 

we can write explicit formula for  F z ) and gradient oracle for  f x  

require one  f x  calculation. Using Lan’s accelerated gradient sliding  

http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2016/02/GS-nonsmooth-stochastic6-11-submit.pdf  

one can find  -solution (in functional value) of (15) (without any auxiliary 

dual problems) after (see summarized slide above): 

http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2016/02/GS-nonsmooth-stochastic6-11-submit.pdf
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2 2 2 2
max

2

x Tx

Ax

A R R M R
N A A

 


 
  and 

 
2 2 2

xf x
N M R 

  
   (16) 

Ax-multiplications and gradient  f x -calculations. Unfortunately in this 

approach we can guarantee 
2

NAx R  only in the best case. 

Using restart technique 

https://hal.archives-ouvertes.fr/hal-00508933v1/document 

http://www2.isye.gatech.edu/~nemirovs/MLOptChapterI.pdf 

one can posptpone Lan’s accelerated gradient sliding for  -strongly convex in 

2-norm  f x  (case 1). At k -th restart, 
     2

maxAx
N A R   and 

   2 2 22k

xf x
N M R

  
 . This trick allows to improve estimates (16) for the 

problem (15) in the following manner (see summarized slide above): 

https://hal.archives-ouvertes.fr/hal-00508933v1/document
http://www2.isye.gatech.edu/~nemirovs/MLOptChapterI.pdf
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22

lnT x

Ax

RM
N A A




 

 
 
 

  and 
   2

f x
N M 

  
                  (17) 

Ax-multiplications and gradient  f x -calculations. 

Estimations (16), (17) are also unimprovable up to a logarithmic factor. 

One can spread formulas (16), (17) for stochastic convex optimization 

problems (these estimations don’t changes) 
http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2017/02/DCS20170131.pdf 

http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2017/02/DCS20170131.pdf
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How to get acceleration in solving convex optimization problems with 

affine restrictions in case when we have proximal-friendly functional 

 

Let us consider case 4 and return to (14) 

    

 

 

0

2

2

,

min max min ,

1
max min min ,

2

Ax xy

z xy

G y z

f x f x y Ax

f x y Ax x z


  

 
    

 

. 

Due to the assumptions, we can solve auxiliary strongly convex problem 

   
2

2,

1
prox arg min ,

2
T

T

f A y x
z f x A y x x z

 
    

 
 

explicitly or in a cheap way.  
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Since 

   
2 22

, , y zG y z G y z L y y L z z         , 

one can find  -solution (in terms of duality gap) of a saddle-point problem  

 
2

max min ,
zy R

G y z


 

after 
 

1
Ax

N   Ax-multiplications 

https://arxiv.org/pdf/1405.4980.pdf, item 5.2. 

 So we’ve obtained the well known result (see case 4 above) but in another 

manner. But unfortunately, we haven’t gained any acceleration. Moreover, to 

find  
,

prox Tf A y
z  typically one have to find  -solution of strongly convex 

optimization problem. It can be done in 1    f x -calculations. So, the total 

number of iterations will be of the order 
 

21
f x

N 
  

 . 

https://arxiv.org/pdf/1405.4980.pdf
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Now let us propose another approach 

     
2 2

2 20 0 , :

1 1
min min min max ,

2 2Ax Ax x z Az Ax y
f x f x Ax f x y Az Az

  

   
         

   
 

 
2

2,

1
min max , max ,

2

Az u

x z y y
f x y Az y Az Ax Az





 
       

 
 

 
2

2, Im

1
min max , max ,

2

Az u
T

y y x u A
A y x f x y y u u



 

                
 

 
 

 
2

*

, Ker
2

1
min proj

2 T

T

y y A
f A y y y



  
     

  

. 

If  * Tf A y  is proximal-friendly, we can solve auxiliary problem (this 

problem is just proximal version of standard dual problem) explicitly or in a 

cheap manner, then using accelerated proximal gradient descent (in space y ) 
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http://web.stanford.edu/~boyd/papers/prox_algs.html 

https://arxiv.org/pdf/1506.02186.pdf (allows to postpone on randomized methods) 

one can find  -solution of dual problem (it would be useful to spread this 

result for the discussion of the duality gap) in 1 2N    proximal steps. We 

obtain acceleration! But the natural question here as is foolows: since we 

have such a “magic” proximal oracle, why we can’t solve the standard dual 

problem? The answer as is follows: typically we don’t have a possibility to 

calculate explicitly 
 

 *prox Tf A y
y


. But if we additionally assume that  f x  is 

1-strongly convex function in 2-norm, then we can find 
 

 *prox Tf A y
y


 with 

the relative precision   after 
 

1ln
Ax

N   . However, the total number of Ax-

multiplications and  f x -calculations (up to a logarithmic factor) will be 

the same as above in case 1 (but for another approach). 
https://arxiv.org/pdf/1507.06243.pdf 

http://web.stanford.edu/~boyd/papers/prox_algs.html
https://arxiv.org/pdf/1506.02186.pdf
https://arxiv.org/pdf/1507.06243.pdf
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Decentralized distributed optimization. Preliminaries 

https://arxiv.org/pdf/1702.08704.pdf  

Assume we have a connected undirected graph ,G V E  with n  vertexes 

(nodes). Let A  be adjacency matrix of this graph: A 1ij  ,  ,i j E ; A 0ij  , 

 ,i j E . Let us introduce gossip matrix W  (one can generalize the results 

mentioned below for general weighted symmetric communication’s matrix) 

1

A ,

A ,

ij

n
ij

ij

j

i j

W
i j



 


 





. 

One can verify that W  is nonnegative semidefinite matrix, with the following 

properties: 10 ... mWv v v    ,    max maxW W  .  

https://arxiv.org/pdf/1702.08704.pdf
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Consensus 

Assume that initially at k -th node ( 1,...,k m ) of the graph ,G V E  stored 

unique number kv . Each node can obtain at each iteration average of its 

neighbors. How many iterations N  required (and what is the proper 

algorithm) to reach the consensus  
1

m
N

i i
v


: 

2 2

1 1 1 1

1 1m m m m
N

i j i j

i j i j

v v v v
n n


   

   
     

   
    ? 

To answer for this questions let us consider convex optimization problem 

1
, min

2
W


   .                                         (18) 
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One can solve this problem by Nesterov’s FGM for strongly convex problem. 

So one can obtain   1lnN W    (  W  often reflects the diameter of 

the graph). This estimate is unimprovable up to a constant factor.  The most 

important thing here is that FGM ( 0 0

i i iv   ), 

 
1

max

1k k kW
W

  


    , 

  
   

   
 

max min
1 1 1

max min

k k k k
W W

v v v v

W W

 

 

  


  



 . 

satisfy the condition “each node obtains at each iteration average of its 

neighbors” because of matrix-vector multiplication kW  (all other 

calculations are fully separable).  
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Note: one can consider 
1 1

diag A

m
n

ij

j i

W D P P
 

 
    

 
   to be Laplacian 

matrix. So one can applied simple power method 1 1k k kP D P       (see 

ergodic theorem for Markov chain). Here “each node also obtains at each 

iteration average of its neighbors” because of matrix-vector multiplication 
kP . Unfortunately, the number of required iterations will be 

  1lnN W   . But this result is still be the truth when ,G V E  is 

directed graph (P  is not symmetric matrix). One should also mention that 

procedure 1k kP    can be considered as a (non accelerated) weighted 

gradient descent for the problem (18). 

The next important step is to consider kv  to be vectors from 
n . In this case 

10 ... mWv v v    , where : n nW W I    – Kronecker product, 1n n

ijI   . 

Let us consider convex optimization problem 
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1

min
n

m

k
x

k

f x f x




 


. 

Let us introduce  1,...,
mn

mx x x   ( 2 2

x xR mR , 2 2R mR ) 

   
1 ...

1

min
m

m

k k
x x

k

f x f x
 



  . 

One can rewrite this problem in two different ways 

   
0

1

min
m

k k
Wx

k

f x f x




  ,                                    (19) 

    
0

1

min
m

k k
W x

k

f x f x




  .                                   (20) 
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If  k kf x  is k -strongly convex function in 2-norm and has kL -Lipchitz 

continuous gradient in 2-norm then  f x  is 
1,...,

min k
k m

 


 -strongly convex 

function in 2-norm and has 
1,...,

max k
k m

L L


 -Lipchitz continuous gradient in 2-

norm.  

 

The main observations (
TW W ): 

 

1) If one put A W  then all the results on summarized slide can be applied 

to (19);  
 

2) If one put A W  then all the results mentioned above (not only 

collected on summarized slide) can be applied to (20) if we change (when it’s 

required) dual variables W y z : 
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   1 1 1k k k k kW y y y y W x W y
L L 

         , 

 1 1 1k k k k
L

W y y y y
L

 

 





  


   


 . 

This leads to the 

 1 1k k kz z Wx z
L

    ,  1 1 1k k k k
L

z z z z
L

 

 





  


  


 . 

The last formulas can be fulfilled in a distributed manner since we have only 

Wx interaction term. It’s obvious that one should use (20) because in this case 

we have    TA A W   instead of      2TW W W W     (in case 

(19)). Note, that for star topology  W m  , for totally connected graphs 
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   diam 1W G   , for linear graphs    diamW G m   , for regular 

networks    diam lnW G m  . So we can observe that  W  typically 

corresponds to the diameter of the graph G  and square root of spectral gap of 

stochastic matrix P . Note that for star topology  diam 2G   (one master and 

1m  slaves, master connect to each slave; slaves don’t connect to each 

other). Is it possible to change  W  to  diam G  in cases 1, 4? Yes, but in 

general without gossip consensus communication!;  
 

3) The main auxiliary problem (in both of the cases 1) and 2)) 

     
, 1,...,

arg max , arg max ,
k

T T

k k kkx x k m
A y x f x A y x f x


      

can be also spitted in a distributed manner. 
 

Unfortunately, in the case 2 in described above approach L   can be too big! 
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How to improve conditional number L   (case 2) 

As we’ve already mentioned above 
1,...,

min k
k m

 


 , 
1,...,

max k
k m

L L


 . This is not 

good in general, because L   can be too large if one of the k  is small. To 

eliminate this drawback one can reformulate (20) as 

   
0

1

, min
2

m

k k
W x

k

f x f x x Wx






   .                      (21) 

Note that  f x  is  min

1

min ,
m

k

k

W  


 
  

 
 -strongly convex in 2-norm  

and has   max
1,...,

max k
k m

L L W


  -Lipchitz continuous gradient in 2-norm. If 

we put  min

1

m

k

k

W  


 , then one can solve (21) with relative precision   
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(see first half of this presentation to understand what does it mean, but due to 

the additional term in functional this is not the same) after (see also 

https://arxiv.org/pdf/1607.03218.pdf) 

       1,..., 2 1

1

max
ln

k
k m

Wx m

k

k

L
N W W  



 



 
 
  
 
 
 


                   (22) 

consensus (gossip/communication) steps and 
     1 1ln

Wxf x
N N  

  
  

gradient  f x  calculations. 

Using regularization technique (with  2 2

kk x xmR R    ) one can 

postpone this result to the case 3. 

https://arxiv.org/pdf/1607.03218.pdf
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How one can understand mentioned above results? Naive explanation 

Let us look once again at the estimations on summarized slide 

   N L W  ,    2~ xN LR W  ,                 (23) 

    2~N M W  ,    2 2 2~ xN M R W  .           (24) 

In the smooth cases L   (cases 2, 3) these estimations follows (up to a 

logarithmic factor) from the classical (non-distributive) estimations  

 2ln xN L R   , 
2~ xN LR  , 

and the fact that one has to additionally do   1lnW    consensus 

(communications) steps on each iteration of classical (non-distributive) FGM 

(analogously (22)). We’ve talked about it above (see the consensus slides). 
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Almost in all the calculations above we significantly use the fact that 
TW W . Unfortunately, at the moment we know how to use reduction 

philosophy described above only in this ( TW W ) case. But one can split 

primal and dual steps in different networks (dual to each other). In this case 

networks can be directed. But this is a very special case (we have two 

communication networks dual to each other). But if one returns to the 

consensus slides and simple power method (with matrix P , not necessarily 

symmetric) one can work on directed graph. The payment for that is    

 N L W  ,  2~ xN LR W  . 

Unfortunately, in non-smooth cases (cases 1, 4) at the moment we don’t have 

such a simple explanation in general case (in special cases, i.e.  f x  admit 

explicitly calculated Nesterov’s smoothing representation, it is possible). 
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Now let us return to the question: how to reduce in (23) (cases 2, 3) 

 W  to  diam G ? Do to this we have to change the philosophy from 

decentralize to centralize. That is we fixed one node to be a master node. This 

node from  diam G  communications steps can collect full gradient from the 

slave’s nodes and then make a standard iteration of FGM. Then master spread 

new values to the slaves (it also takes  diam G  communication steps). But 

this philosophy typically required more assumptions about synchronization 

delays (the slowest slave determine the performance), sensitivity to errors in 

master node and computational power of master node. Moreover in time-

varying graph (it is typical for some applications) it is hardly possible to 

organize efficiently such a procedure. At the end let us mentioned that in 

cases 1, 4 (see also (24)) it seems impossible to reduce  W  to  diam G  

because here we have that the number of gossip steps is smaller the number 

of gradient-oracle calls (as far as we know it’s an open question to explain it).  



40 

 

About the cost of gossip step 

CPUs in these days can read and write the memory at over 10 GB per second 

whereas communication over TCP/IP is about 10 MB per second. Therefore, 

the gap between intra-node computation and inter-node communication is 

about 3 orders of magnitude. Communication start-up cost itself is also not 

negligible as it usually takes a few milliseconds. 

So let us to consider that one node can calculate  k kf x  (or even calculate 

 kx y ) to the 1 unite of time and the communication (gossip) step takes   

unites of time. In case 1   all the results above seem reasonable, because 

we first think of communication steps. But if 1   one should use Chebyshev 

acceleration (see https://arxiv.org/pdf/1702.08704.pdf): 
   Poly
W

ChebW W


 , 

   Poly
W

ChebW W


  is also gossip matrix with   1W   . 

https://arxiv.org/pdf/1702.08704.pdf


41 

 

Time-varying gossip graphs 

Let us return to consensus problem 

1
, min

2
W


   . 

But now we assume that from time to time matrix W  changes, remaining 

every time the gossip matrix, hence every time 10 ... mWv v v    . So we 

have a family of nonnegative semi-definite quadratic functions with the same 

 Ker W  (in our case this kernel described by 1 ... mv v  ). How to find a 

projection of 0 0

1 ,..., mv v  on this set working at each iteration with different 

matrixes W ? One can solve (18) (with relative precision  ) by the simple 

gradient descent method for   1lnW    gossip steps because of this dynamic 

has Lyapunov function: square distance between current point and  Ker W .  
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But we know that if W  is fixed one can accelerate to   1lnW    gossip 

steps. Is it possible in general case? We don’t know the exact answer for the 

moment. All known to us different versions of Nesterov’s accelerated 

gradient descent (even for the variants with line and 2-plane search): 
https://ie.technion.ac.il/~mcib/sesop_report_version301005.pdf ; https://arxiv.org/pdf/1405.4980.pdf, items 3.6, 3.7 

https://arxiv.org/pdf/1407.1537.pdf ; https://arxiv.org/pdf/1506.02186.pdf ; https://arxiv.org/pdf/1512.07516.pdf ; 

https://www.lccc.lth.se/media/LCCC2017/WorkshopOptimization/slides/Lessard%20LCCC%20slides.pdf  

don’t allows such a generalization directly. But if one can detect the moment 

of changes of W  and such changes don’t happen very often one can use 

restart technique that allows to obtain the following estimation of gossip steps 

     1

max minmax ln
W

W W    . 

https://arxiv.org/pdf/1609.07358.pdf ; https://arxiv.org/ftp/arxiv/papers/1703/1703.00267.pdf Remark 1 

One can show that this result postpones to the general dual problem (14). 

https://ie.technion.ac.il/~mcib/sesop_report_version301005.pdf
https://arxiv.org/pdf/1405.4980.pdf
https://arxiv.org/pdf/1407.1537.pdf
https://arxiv.org/pdf/1506.02186.pdf
https://arxiv.org/pdf/1512.07516.pdf
https://www.lccc.lth.se/media/LCCC2017/WorkshopOptimization/slides/Lessard%20LCCC%20slides.pdf
https://arxiv.org/pdf/1609.07358.pdf
https://arxiv.org/ftp/arxiv/papers/1703/1703.00267.pdf
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To be continued… 

  

 


