Convex Optimization for Data Science

Gasnikov Alexander

gasnikov.av@mipt.ru

Lecture 4. Stochastic optimization. Randomized methods

November, 2016

Main books:

Polyak B.T., Juditsky A.B. Acceleration of stochastic approximation by averaging // SIAM J. Control Optim. – 1992. – V. 30. – P. 838–855. Sridharan K. Learning from an optimization viewpoint. PhD Thesis, 2011. Juditsky A., Nemirovski A. First order methods for nonsmooth convex largescale optimization, I, II. // Optimization for Machine Learning. // Eds. S. Sra, S. Nowozin, S. Wright. – MIT Press, 2012. Shapiro A., Dentcheva D., Ruszczynski A. Lecture on stochastic programming. Modeling and theory. – MPS-SIAM series on Optimization, 2014. Guiges V., Juditsky A., Nemirovski A. Non-asymptotic confidence bounds for the optimal value of a stochastic program // e-print, 2016 arXiv:1601.07592 Duchi J.C. http://stanford.edu/~jduchi/PCMIConvex/Duchi16.pdf Gasnikov A.V. Searching equilibriums in large transport networks. Doctoral Thesis. MIPT, 2016. https://arxiv.org/ftp/arxiv/papers/1607/1607.03142.pdf https://www.youtube.com/user/PreMoLab (see course of A.V. Gasnikov)

Structure of Lecture 4

- Auxiliary facts (Azuma–Hoeffding's inequality; Heavy-tails, large deviations; Le Cam lower bound)
 - Stochastic Mirror Descent
 - Rate of convergence
 - Lower bounds
- Nesterov's problem about Mage and Experts (Parallelization)
 - Conditional Stochastic optimization
 - SAA vs SA
- Acceleration of Stochastic Approximation by proper Averaging
 - Randomized MD for huge QP
 - Randomized MD for Antagonistic matrix game

Auxiliary facts

Azuma–Hoeffding's inequality: Let $\{\chi_t\}_t$ – a scalar random sequence is martingale-difference

$$\chi_{t} = Y_{t} - Y_{t-1}, E\left[Y_{t} | F_{\sigma-\text{algebra}}(Y_{1}, ..., Y_{t-1})\right] = Y_{t-1},$$

such that

$$E\left[\exp\left(\chi_{t}^{2}/M^{2}\right)|\chi_{1},...,\chi_{t-1}\right] \leq \exp(1) \text{ for all } t=1,2,...,N.$$

Then (s > 0)

$$P\left(\sum_{t=1}^{N} \gamma_t \chi_t \ge sM \sqrt{\sum_{t=1}^{N} \gamma_t^2}\right) \le \exp\left(-s^2/3\right),$$
$$P\left(\sum_{t=1}^{N} \gamma_t \chi_t^2 \ge M^2 \sum_{t=1}^{N} \gamma_t + M^2 \max\left\{\sqrt{6.6s \sum_{t=1}^{N} \gamma_t^2}, 6.6s \frac{1}{N} \sum_{t=1}^{N} \gamma_t\right\}\right) \le \exp\left(-s\right).$$

Heavy-tails, large deviations: Let scalar random sequence
$$\{\chi_t\}_t - i.i.d.$$
,
 $E[\chi_t] = 0$, $\operatorname{Var}[\chi_t] = D$, $P(\chi_t > s) = V(s) = O(s^{-\alpha})$, $\alpha > 2$.
Then $P\left(\sum_{t=1}^N \chi_t \ge s\right) \underset{N \gg 1}{\simeq} 1 - \Phi\left(\frac{s}{\sqrt{DN}}\right) + N \cdot V(s)$, $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy$,
 $P\left(\sum_{t=1}^N \chi_t \ge s\right) \underset{N \gg 1}{\simeq} 1 - \Phi\left(\frac{s}{\sqrt{DN}}\right)$, $s \le \sqrt{(\alpha - 2)DN \ln N}$, (CLT regime)
 $P\left(\sum_{t=1}^N \chi_t \ge s\right) \underset{N \gg 1}{\simeq} N \cdot V(s)$, $s > \sqrt{(\alpha - 2)DN \ln N}$. (heavy-tails regime)
Note: $0.2e^{-2x^2/\pi} \le 1 - \Phi(x) \le e^{-x^2/2}$, $x \gg 1$.

These estimations can be generalized for the weighted sums of scalar martingale-differences and weighted sums of squares of martingale-differences. **Two coins comparison:** Consider two coins: p = 0.5 and $p = 0.5 + \varepsilon$. How many observations $y = (y^1, y^2, ..., y^N)$ we have to do to decide with probability $y \ge 1 - \sigma$ what is a best coin? Let's introduce some decision rule $\varphi(y)$ that takes values [0,1] (we interpret $\varphi(y)$ as a probability to decide in favor of the second coin if we observe y). Then the probability of right decision is

$$E\left[\varphi(y)\right|p=0.5+\varepsilon\left]-E\left[\varphi(y)\right|p=0.5\right]\geq 2-2\sigma$$

Since for all measurable $0 \le \varphi(y) \le 1$ (Pinsker's inequality + chain rule)

$$\left| E_{P^{N}} \left[\varphi(y) \right] - E_{Q^{N}} \left[\varphi(y) \right] \right| \leq \left\| P^{N} - Q^{N} \right\|_{1}^{2} \leq 2KL \left(P^{N}, Q^{N} \right) = 2N \cdot KL \left(P, Q \right),$$

$$KL \left(P, Q \right) = \left(0.5 + \varepsilon \right) \ln \left(\left(0.5 + \varepsilon \right) / 0.5 \right) + \left(0.5 - \varepsilon \right) \ln \left(\left(0.5 - \varepsilon \right) / 0.5 \right) \approx 4\varepsilon^{2},$$

we have that $N \geq C\varepsilon^{-2}$. One can show that indeed: $N \geq C \ln \left(\sigma^{-1} \right) \varepsilon^{-2}$.
Another way to use Rao–Cramer's inequality for Bernoulli scheme (Lect. 2).

Stochastic Mirror Descent

Consider convex optimization problem (see Lecture 3)

 $f(x) \to \min_{x \in Q},$

with stochastic oracle, returns such stochastic subgradient $\partial_x f(x,\xi)$ that:

$$E_{\xi}\left[\partial_{x}f\left(x,\xi\right)\right] = \partial f\left(x\right), \ E_{\xi}\left[\left\|\partial_{x}f\left(x,\xi\right)\right\|_{*}^{2}\right] \leq M^{2}.$$

Method (the main tools for numerical stochastic programming!)

$$x^{k+1} = \operatorname{Mirr}_{x^{k}}\left(h\partial_{x}f\left(x^{k},\xi^{k}\right)\right), \operatorname{Mirr}_{x^{k}}\left(v\right) = \arg\min_{x\in Q}\left\{\left\langle v, x-x^{k}\right\rangle + V\left(x,x^{k}\right)\right\}.$$

The main property of MD-step ($\{\xi^k\}$ – i.i.d.)

$$2V\left(x,x^{k+1}\right) \le 2V\left(x,x^{k}\right) + 2h\left\langle\partial_{x}f\left(x^{k},\xi^{k}\right),x-x^{k}\right\rangle + h^{2}\left\|\partial_{x}f\left(x^{k},\xi^{k}\right)\right\|_{*}^{2}$$

$$f\left(x^{k}\right) - f\left(x\right) \leq \left\langle \partial f\left(x^{k}\right), x^{k} - x \right\rangle \leq \left\langle \partial f\left(x^{k}\right) - \partial_{x} f\left(x^{k}, \xi^{k}\right), x^{k} - x \right\rangle + \\ + \frac{1}{h} \left(V\left(x, x^{k}\right) - V\left(x, x^{k+1}\right) \right) + \frac{h}{2} \left\| \partial_{x} f\left(x^{k}, \xi^{k}\right) \right\|_{*}^{2} \right| \quad E\left[\cdot |\xi^{1}, ..., \xi^{k-1} \right], \\ f\left(x^{k}\right) - f\left(x\right) \leq \left\langle \partial f\left(x^{k}\right), x^{k} - x \right\rangle \leq \\ \leq \frac{1}{h} \left(V\left(x, x^{k}\right) - E\left[V\left(x, x^{k+1}\right) \right] \xi^{1}, ..., \xi^{k-1} \right] \right) + \frac{h}{2} \underbrace{E\left[\left\| \partial_{x} f\left(x^{k}, \xi^{k}\right) \right\|_{*}^{2} \right] \xi^{1}, ..., \xi^{k-1} \right]}_{\leq M^{2}}.$$

If we sum all these inequalities from k = 0, ..., N-1 and take the total mathematical expectation from the both sides of the result with $x = x_*$, then due to the convexity of f(x) we obtain (as in deterministic case)

$$E\left[f\left(\bar{x}^{N}\right)\right] - f_{*} \leq (hN)^{-1}V(x_{*}, x^{0}) + M^{2}h/2 \leq \sqrt{2M^{2}R^{2}/N},$$

where

$$R^{2} = V\left(x_{*}, x^{0}\right), \ \overline{x}^{N} = \frac{1}{N} \sum_{k=0}^{N-1} x^{k}, \ h = \frac{R}{M} \sqrt{\frac{2}{N}} = \frac{\varepsilon}{M^{2}}.$$

In other words, after $\boxed{N = 2M^{2}R^{2}/\varepsilon^{2}}$ oracle calls $\boxed{E\left[f\left(\overline{x}^{N}\right)\right] - f_{*} \le \varepsilon}.$
Absolutely the same result (even constants) as it was in deterministic case!
If one will use adaptive stepsize policy
 $x^{k+1} = \operatorname{Mirr}_{x^{k}}\left(h_{k}\partial_{x}f\left(x^{k},\xi^{k}\right)\right), \ h_{k} = \frac{R}{\sqrt{\sum_{i=0}^{k}}\left\|\partial_{x}f\left(x^{i},\xi^{i}\right)\right\|_{*}^{2}}, \ R = \max_{x \in Q} V\left(x_{*},x\right),$
Then after $N = 9M^{2}R^{2}/\varepsilon^{2}$ oracle calls $E\left[f\left(\overline{x}^{N}\right)\right] - f_{*} \le \varepsilon.$
In deterministic case one can take $h_{k} = \varepsilon/\left\|\partial_{x}f\left(x^{k}\right)\right\|_{*}^{2}$.

From the convergence in average due to the Markov's inequality

$$P\left(f\left(\overline{x}^{N}\right)-f_{*}\geq 2\varepsilon\right)\leq \frac{E\left[f\left(\overline{x}^{N}\right)\right]-f_{*}}{2\varepsilon}\leq \frac{1}{2}$$

So we can run in parallel ~ $\log_2(\sigma^{-1})$ MD-trajectories. Let's denote by \overline{x}_{\min}^N such \overline{x}^N from these trajectories that minimize $f(\overline{x}^N)$. Here we assume that we have an oracle for the value of function f(x).

So after (see formulas in frame on the previous slide)

$$N = \frac{8M^2R^2}{\varepsilon^2}\log_2(\sigma^{-1})$$

oracle calls one can obtain

$$P\Big(f\Big(\overline{x}_{\min}^N\Big)-f_*\geq 2\varepsilon\Big)\leq\sigma.$$

But what we should do if there is no oracle for the value of the function? Assume that $\|\partial_x f(x,\xi)\|_* \le M$ a.s. for ξ , then

$$P\left(f\left(\overline{x}^{N}\right) - f_{*} \leq M\sqrt{\frac{2}{N}}\left(R + 2\tilde{R}\sqrt{\ln\left(2/\sigma\right)}\right)\right) \geq 1 - \sigma,$$

where $\tilde{R} = \sup_{x \in \tilde{Q}} \left\|x - x_{*}\right\|, \quad \tilde{Q} = \left\{x \in Q : \left\|x - x_{*}\right\|^{2} \leq 65R^{2}\ln\left(4N/\sigma\right)\right\}.$

More generally, one can show (using Azuma–Hoeffding's inequality) that

• if
$$\left\|\partial_{x}f(x,\xi)\right\|_{*} \leq M$$
, then

$$N \sim \frac{M^2 R^2 \ln(\sigma^{-1})}{\varepsilon^2};$$

• if
$$E\left(\exp\left(\left\|\partial_{x}f\left(x,\xi\right)\right\|_{*}^{2}/M^{2}\right)\right) \le \exp(1)$$
 and $\varepsilon \le MR$ then
$$\frac{M^{2}R^{2}\ln\left(\sigma^{-1}\right)}{\varepsilon^{2}}.$$

Using heavy-tails large deviations estimations one can obtain

• if
$$P\left(\left\|\partial_{x}f\left(x,\xi\right)\right\|_{*}^{2}/M^{2} \ge s\right) = O\left(s^{-\alpha}\right), \alpha > 2$$
 then

$$N \sim M^{2}R^{2} \max\left\{\frac{\ln\left(\sigma^{-1}\right)}{\varepsilon^{2}}, \left(\frac{1}{\sigma\varepsilon^{\alpha}}\right)^{\frac{2}{3\alpha-2}}\right\}.$$

All these bounds are optimal up to a multiplicative constants.

Using the restarts technique (see Lecture 5) one can generalize all the results mentioned above to μ -strongly convex functions in norm $\| \|$. In all the estimations we leave non-euclidian prox-factor $\omega_n = O(\ln^\beta n) (Q \subseteq \mathbb{R}^n)$.

• if
$$\|\partial_x f(x,\xi)\|_* \leq M$$
, then
 $N \sim \frac{M^2 \ln((\ln N)/\sigma)}{\mu\varepsilon};$
• if $E\left(\frac{\|\partial_x f(x,\xi)\|_*^2}{M^2}\right) \leq \exp(1)$ and $\varepsilon \leq MR$ then
 $N \sim \frac{M^2 \ln((\ln N)/\sigma)}{\mu\varepsilon};$

• if
$$P\left(\left\|\partial_x f\left(x,\xi\right)\right\|_*^2 / M^2 \ge s\right) = O\left(s^{-\alpha}\right), \ \alpha > 2$$
 then

$$N \sim \max\left\{\frac{M^2 \ln((\ln N)/\sigma)}{\mu\varepsilon}, \left(\frac{M^2}{\mu\varepsilon}\right)^{\frac{\alpha}{3\alpha-2}} \left(\frac{\ln N}{\sigma}\right)^{\frac{2}{3\alpha-2}}\right\}$$

All these bounds are optimal up to a $\ln N$ -factor of σ . We don't know at the moment is it possible to eliminate this factor and the ω_n -factor.

Juditsky A., Nesterov Yu. Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization // Stoch. System. -2014. - V. 4. - no. 1. - P. 44-80.

Is Markov's inequality always rough?

Consider sum-type convex optimization problem

$$f(x) = \frac{1}{m} \sum_{k=1}^{m} f_k(x) + h(x) \rightarrow \min_{x \in Q},$$

where $\|\nabla f_k(y) - \nabla f_k(x)\|_2 \le L \|y - x\|_2$ and h(x) is μ -strongly convex in $\|\|_2$. As we've seen later (Lecture 6) one can obtain $E\left[f\left(x^{N(\varepsilon)}\right)\right] - f_* \le \varepsilon$ after $N(\varepsilon) \sim \left(m + \min\left\{L/\mu, \sqrt{mL/\mu}\right\}\right) \ln\left(\Delta f/\varepsilon\right)$ iterations (calculations of $\nabla f_k(x)$ solely). Using rough Markov's inequality

$$P\Big(f\Big(x^{N(\varepsilon\sigma)}\Big) - f_* \ge \varepsilon\sigma/\sigma\Big) \le \frac{E\Big[f\Big(x^{N(\varepsilon\sigma)}\Big)\Big] - f_*}{\varepsilon\sigma/\sigma} \le \sigma,$$

one can obtain unimprovable large deviations bound ~ $\ln(\sigma^{-1})$.

Simple lower bounds Consider non strongly convex case

$$\mathcal{E}x \to \min_{x \in [-1,1]}.$$

Assume that the oracle return $\nabla f(x,\xi) = \varepsilon + \xi$, $\xi \in N(0,1)$. At each call ξ chooses independently. Assume we know in advance all the details except of ε sign – but we can observe $y^k = \varepsilon + \xi^k$. So we know in advanced that we should choose $x = \pm 1$. How many oracle's calls we need to determine with probability $\ge 1 - \sigma$ the right sign? Due to Neyman–Pirson's lemma the

best strategy is
$$\hat{x}_N = -\operatorname{sign} \sum_{k=1}^N y^k$$
. $P(\hat{x}_N = 1 | \varepsilon > 0) = P\left(\sum_{k=1}^N y^k < 0\right) \simeq Ce^{-\varepsilon^2 N}$,
when $\varepsilon > 0$, we have the following lower bound $N \ge C \ln(\sigma^{-1})/\varepsilon^2$.

Consider strongly convex case. Probabilistic model:

$$y^{k} = x + \xi^{k}, \ \xi^{k} \in N(0,1) \ // \ \text{loglikelihood:} \ -(y-x)^{2}/2;$$

 $x_{*} = \arg \min_{x} (x-x_{*})^{2}/2 = \arg \min_{x} E\left[(y-x)^{2}/2\right], y \in N(x_{*},1).$ (*)
One can consider (*) to be the stochastic programming problem with the oracle returns stochastic gradients $y^{k} - x, \ y^{k} \in N(x_{*},1).$ Due to Rao–
Cramer's inequality (Lecture 2) we have $E\left[\left(\hat{x}_{N}\left(y^{1},...,y^{N}\right)-x_{*}\right)^{2}\right] \ge N^{-1}.$
Since normal distribution (with mathematical expectation as parameter) be-
longs to Exponential family, for MLE $\hat{x}_{N} = \arg \min_{x} \frac{1}{2} \sum_{k=1}^{N} (y^{k} - x)^{2} = \frac{1}{N} \sum_{k=1}^{N} y^{k}$
we have equality in Rao–Cramer's inequality. Since that we have a precise
lower bound for that case $N \simeq C \ln(\sigma^{-1})/\varepsilon$. The other example – Bernoulli

scheme (here one can also use lower bound for two coins comparison).

General lower bounds (A. Nemirovski)

Consider convex optimization problem

$$f(x) \to \min_{x \in B_p^n(R)}$$

with stochastic oracle, return such $\partial f(x,\xi)$ that:

$$E_{\xi}\left[\partial f(x,\xi)\right] = \partial f(x), \ E_{\xi}\left[\left\|\partial f(x,\xi)\right\|_{q}^{2}\right] \le M_{p}^{2} \ (1/p+1/q=1).$$

We'd like to obtain lower bound for the oracle calls N, that guarantee x^N

$$E\left[f\left(x^{N}\right)\right]-f_{*}\leq\varepsilon.$$

Nemirovski A. Efficient methods in convex programming. Technion, 1995. <u>http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf</u> Lower bounds for the **Stochastic Oracle** are (MD achieves these bounds)

- $N \ge c_p M_p^2 R^2 / \varepsilon^{\max(2,p)}$, under $N \ll n$, where $c_p = O(\ln n)$ (this estimation of c_p become precise when $p \rightarrow 1+0$);
- $N \ge c_p M_p^2 R^2 n^{1-2/\max(2,p)} / \varepsilon^2$, under $N \gg n$.

For the **Deterministic Oracle** (when oracle returns subgradient $\partial f(x)$ with the property $\|\partial f(x)\|_p \le M_p$) we have lower bound

• $N \ge cn \ln \left(M_p R / \varepsilon \right)$, under $N \gg n$. // differs only in this regime

Agarwal A., Bartlett P.L., Ravikumar P., Wainwright M.J. Informationtheoretic lower bounds on the oracle complexity of stochastic convex optimization // IEEE Trans. of Inform. $-2012. - V. 58. - N_{\odot} 5. - P. 3235-3249.$

Nesterov's problem about Mage and Experts (Parallelization)

Assume that the optimal configuration determines by convex problem

$$f(x) \to \min_{x \in Q}.$$

But each day one can only observe independent stochastic subgradients

$$\partial_{x}f(x,\xi)$$
: $E_{\xi}\left[\partial_{x}f(x,\xi)\right] = \partial f(x), \left\|\partial_{x}f(x,\xi)\right\|_{*} \leq M.$

Mage can live $N \sim M^2 R^2 \ln(\sigma^{-1}) / \varepsilon^2$ iterations and Expert $N \sim M^2 R^2 / \varepsilon^2$.

What is better to ask a solution from Mage or from $K \sim \ln(\sigma^{-1})$ Experts?

Answer (arXiv:1701.01830): In both of the cases we obtain (up to constant factors) the same (ε, σ) -quality.

Indeed, as we've already known clever Mage (this Mage know MD algorithm) can give us (ε, σ) -solutions. That is return such a point that

$$P\left(f\left(\overline{x}^{N}\right)-f_{*}\leq\varepsilon\right)\geq1-\sigma$$

On the other hand clever Expert returns such $\overline{x}^{N,i}$ that $E\left[f\left(\overline{x}^{N,i}\right)\right] - f_* \leq \varepsilon$.

Therefore without loss of generality one can assume that (see above)

$$f(\overline{x}^{N,i}) - f_* \in N(\varepsilon,\varepsilon^2).$$

Since we assume Experts to be independent and f(x) is convex

$$f\left(\overline{x}^{K}\right) - f_{*} \leq \frac{1}{K} \sum_{i=1}^{K} \left(f\left(\overline{x}^{N,i}\right) - f_{*}\right) \in N\left(\varepsilon, \frac{\varepsilon^{2}}{K}\right), \quad \overline{x}^{K} = \frac{1}{K} \sum_{i=1}^{K} \overline{x}^{N,i}$$

Hence, $P\left(f\left(\overline{x}^{K}\right) - f_{*} \leq \varepsilon\right) \geq 1 - \exp\left(-K\right) \simeq 1 - \sigma$.

It'd be interesting to generalize this result for the other cases (see above).

Conditional Stochastic optimization $f(x) \rightarrow \min_{g(x) \le 0; x \in Q}$,

where

$$E_{\xi}\left[\partial_{x}f\left(x,\xi\right)\right] = \partial f\left(x\right), \ E_{\xi}\left[\partial_{x}g\left(x,\xi\right)\right] = \partial g\left(x\right),$$
$$E_{\xi}\left[\left\|\partial_{x}f\left(x,\xi\right)\right\|_{*}^{2}\right] \leq M_{f}^{2}, \ E_{\xi}\left[\left\|\partial_{x}g\left(x,\xi\right)\right\|_{*}^{2}\right] \leq M_{g}^{2}.$$

Let's

$$\begin{split} h_{g} &= \varepsilon_{g} \left/ M_{g}^{2}, \ h_{f} = \varepsilon_{g} \left/ \left(M_{f} M_{g} \right), \\ x^{k+1} &= \operatorname{Mirr}_{x^{k}} \left(h_{f} \partial_{x} f\left(x^{k}, \xi^{k} \right) \right), \ \text{ if } g\left(x^{k} \right) \leq \varepsilon_{g}, \\ x^{k+1} &= \operatorname{Mirr}_{x^{k}} \left(h_{g} \partial_{x} g\left(x^{k}, \xi^{k} \right) \right), \ \text{ if } g\left(x^{k} \right) > \varepsilon_{g}, \end{split}$$

and the set $I(N_I = |I|)$ of such indexes k, that $g(x^k) \le \varepsilon_g$.

Then if
$$N \ge 2M_g^2 R^2 / \varepsilon_g^2$$
 then $N_I \ge 1$ with probability $\ge 1/2$ and
 $E\left[f\left(\overline{x}^N\right)\right] - f_* \le \varepsilon_f = \frac{M_f}{M_g}\varepsilon_g, \ g\left(\overline{x}^N\right) \le \varepsilon_g, \ \overline{x}^N = \frac{1}{N_I}\sum_{k\in I} x^k$.
If additionally $\left\|\partial_x f\left(x,\xi\right)\right\|_* \le M_f, \left\|\partial_x g\left(x,\xi\right)\right\|_* \le M_g$, then for all
 $N \ge \frac{81M_g^2 \tilde{R}^2}{2} \ln(\sigma^{-1})$ up to a constant factor and $R \to \tilde{R}$ the same

 $\mathcal{E}_{g}^{2} \qquad \text{inv} \qquad J$ as it was in unconditional case (see above)

with probability $\geq 1 - \sigma$ it's true $N_1 \geq 1$ and

$$f\left(\overline{x}^{N}\right) - f_{*} \leq \varepsilon_{f}, \ g\left(\overline{x}^{N}\right) \leq \varepsilon_{g},$$

where $\tilde{R}^2 = \sup V(x, y)$. $x, y \in O$

A. Bayandina generalizes it to strongly convex case, using restarts technique. Here we have still an open problem: to generalize on composite optimization.

SAA vs SA (Nemirovski–Juditsky–Lan–Shapiro, 2007)

Stochastic Average Approximation (Empirical Risk Minimization, Monte Carlo) approach proposes to change Stochastic convex optimization problem

$$E_{\xi}\left[f\left(x,\xi\right)\right] \to \min_{x \in Q}$$

by **non stochastic** sum-type **SAA-problem** ($\{\xi^k\}_{k=1}^m$ – i.i.d. realizations from ξ)

$$\frac{1}{m}\sum_{k=1}^{m}f\left(x,\xi^{k}\right) \to \min_{x\in Q}$$

Unfortunately, for the absolutely accurate solution of SAA-problem to be (ε, σ) -solution of initial one, one should take at least $(\|\partial_x f(x, \xi)\|_* \le M)$ $m \ge C \cdot M^2 R^2 (n \ln(MR/\varepsilon) + \ln(\sigma^{-1})) / \varepsilon^2$ terms. Stochastic Approximation approach (Robbins–Monro, 1951) in our sense is nothing more than Mirror Descent. So we can find (ε, σ) -solution of initial stochastic programming problem for

$$N \sim M^2 R^2 \ln(\sigma^{-1}) / \varepsilon^2 \ll m // \text{SA is better SAA}$$

oracle calls (i.e. calculations of stochastic subgradients $\partial_x f(x,\xi)$). It seems too strange (*n*-factor in *m* can be eliminated via regularization, N. Srebro)! But it should be mentioned that one can find (ε, σ) -solution of SAA-problem for

$$N \sim M^2 R^2 \ln(\sigma^{-1}) / \varepsilon^2$$

calculations of stochastic subgradients of the terms of the sum chose at random. Indeed, let's introduce

$$f(x,\eta) = \begin{cases} f(x,\xi^{1}), \text{ with probability } 1/m \\ \dots \\ f(x,\xi^{m}), \text{ with probability } 1/m \end{cases}$$

Non stochastic sum-type SAA-problem can be considered as simple stochastic problem (bootstrap trick)

$$E_{\eta}\left[f\left(x,\eta\right)\right] \to \min_{x\in Q},$$

with stochastic subgradient: $\partial_x f(x,\eta) = \partial_x f(x,\xi^{\eta}), \eta \in R[1,...,m]$. One can generate η for $O(\log_2 m)$ arithmetic operations. Since $\|\partial_x f(x,\eta)\|_* \leq M$ one can easily obtain that $N \sim M^2 R^2 \ln(\sigma^{-1})/\varepsilon^2$ QED. But sometimes SAA-approach isn't substantial at all instead of SA (K. Sridharan's example).

Acceleration of Stochastic Approximation by proper Averaging

Let $\mathbf{x}_k, k = 1, ..., N - i.i.d.$ with density function $p_{\mathbf{x}}(\mathbf{x}|\theta)$ (supp. doesn't depend on θ), depends on unknown vector of parameters θ . Then for all statistics $\tilde{\theta}(\mathbf{x}) (E_{\mathbf{x}}[\tilde{\theta}(\mathbf{x})^2] < \infty)$: $E_{\mathbf{x}}[(\tilde{\theta}(\mathbf{x}) - \theta)(\tilde{\theta}(\mathbf{x}) - \theta)^T] \succ [I_{p,N}]^{-1}$, $I_{p,N} = E_{\mathbf{x}}[\nabla_{\theta} \ln p_{\mathbf{x}}(\mathbf{x}|\theta)(\nabla_{\theta} \ln p_{\mathbf{x}}(\mathbf{x}|\theta))^T] = NI_{p,1}$ (see Lecture 2).

In 1990 B. Polyak (see also Polyak–Juditsky, 1992) showed that for

$$\theta^{k+1} = \theta^k + \gamma_k \nabla_{\theta} \ln p_x \left(\mathbf{x}_k \big| \theta^k \right), \ \overline{\theta}^N = \frac{1}{N} \sum_{k=1}^N \theta^k, \ \gamma_k = \gamma \cdot k^{-\beta}, \ \beta \in (0,1),$$

$$\sqrt{N} \cdot \left(\overline{\theta}^N - \theta_* \right) \xrightarrow{d} N \left(0, \left[I_{p,1} \right]^{-1} \right), \ E_x \left[N \cdot \left(\overline{\theta}^N - \theta_* \right) \left(\overline{\theta}^N - \theta_* \right)^T \right] \rightarrow \left[I_{p,1} \right]^{-1}.$$

SAA approach leads to analogues result (Fisher's theorem, Lecture 2).

Randomized MD for huge QP (Juditsky–Nemirovski randomization)

Let's consider QP problem ($n \times n$ matrix $A \succ 0$ is fully completed, $|A_{ij}| \le M$)

$$\frac{1}{2}\langle x, Ax \rangle \to \min_{x \in S_n(1)}.$$

Using STM (see Lecture 3), one can find ε -solution for

 $O(n^2 \sqrt{M \ln n/\varepsilon})$ arithmetic operations. // not good since $n \gg 1$ is huge But if one use randomized MD with stochastic gradient $A^{\langle i[x] \rangle} - i[x]$ column of matrix A and $P(i[x] = j) = x_j$, j = 1,...,n (one can generate i[x]for O(n) arithmetic operations), than one can find (ε, σ) -solutions for

$$O(nM^2 \ln n \cdot \ln(\sigma^{-1})/\varepsilon^2)$$
 arithmetic operations.

Randomized MD for Antagonistic matrix game (Grigoriadis–Khachiyan)

As we've already known (see Lecture 2) Google problem can be reduced to the saddle-point problem (\tilde{A} is *s*-row and *s*-column sparse, Lecture 3)

 $\min_{x\in S_n(1)}\max_{\omega\in S_{2n}(1)}\langle \omega, \tilde{A}x\rangle.$

Assume that there are two players A and B. All the players know matrix $\tilde{A} = \|\tilde{a}_{ij}\|$, where $|\tilde{a}_{ij}| \le 1$, \tilde{a}_{ij} – prize of A (loss of B) in case when A plays *i* and B plays *j*. We play for the player B. Assume that the game is repeated $N \gg 1$ times. Let's introduce loss-function at the step *k*

$$f_k(x) = \langle \omega^k, \tilde{A}x \rangle, x \in S_n(1),$$

where $\omega^k \in S_{2n}(1)$ – such a vector with all zero components except one component, that component corresponds to the A's choice at the step k –

this components equals 1. This vector in principle could depends on all the history for that moment (but it can't depends on the realization of the randomized strategy of player B at the step k). Analogously, vector x^k has only one non zero component, corresponds to the choice of player B at the step k. One can introduce the price of the game (C = 0)

$$C = \max_{\omega \in S_{2n}(1)} \min_{x \in S_n(1)} \langle \omega, \tilde{A}x \rangle = \min_{x \in S_n(1)} \max_{\omega \in S_{2n}(1)} \langle \omega, \tilde{A}x \rangle.$$
 (von Neumann theorem)

The solution of the saddle-point problem (ω, x) is Nash equilibrium. Since that (Hannan)

$$\min_{x\in S_n(1)}\frac{1}{N}\sum_{k=1}^N f_k(x) \leq C.$$

So if we (player B) will choose $\{x^k\}$ at random according to the following randomized MD-strategy (randomization under KL-projection!):

1.
$$p^1 = (n^{-1}, ..., n^{-1});$$

2. Choose at random j(k) such, that $P(j(k) = j) = p_j^k$;

3. Put
$$x_{j(k)}^{k} = 1, x_{j}^{k} = 0, j \neq j(k);$$

4. Recalculate

$$p_j^{k+1} \sim p_j^k \exp\left(-\sqrt{\frac{2\ln n}{N}}\tilde{a}_{i(k)j}\right), \ j=1,...,n,$$

where i(k) – the choice of A at the step k;

then with probability $\geq 1 - \sigma$ (see Lecture 3 for MD in a simplex)

$$\frac{1}{N}\sum_{k=1}^{N}f_{k}\left(x^{k}\right)-\min_{x\in S_{n}(1)}\frac{1}{N}\sum_{k=1}^{N}f_{k}\left(x\right)\leq\sqrt{\frac{2}{N}}\left(\sqrt{\ln n}+2\sqrt{2\ln(\sigma^{-1})}\right),$$

i.e. with probability $\geq 1 - \sigma$ our (B's player) loss can be bounded

$$\frac{1}{N}\sum_{k=1}^{N}f_k\left(x^k\right) \leq C + \sqrt{\frac{2}{N}}\left(\sqrt{\ln n} + 2\sqrt{2\ln\left(\sigma^{-1}\right)}\right).$$

The worst case – when A is also know this strategy and use it when choosing $\{\omega^k\}$ (it should be mentioned that A solve max-type problem). If A and B will use this strategy then they converges to Nash's equilibrium according to the following estimation.

With probability
$$\geq 1 - \sigma$$

$$0 \leq \left\| A\overline{x}^{N} \right\|_{\infty} = \max_{\omega \in S_{2n}(1)} \left\langle \omega, \widetilde{A}\overline{x}^{N} \right\rangle - \max_{\omega \in S_{2n}(1)} \min_{x \in S_{n}(1)} \left\langle \omega, \widetilde{A}x \right\rangle \leq \\ \leq \max_{\omega \in S_{2n}(1)} \left\langle \omega, \widetilde{A}\overline{x}^{N} \right\rangle - \frac{1}{N} \sum_{k=1}^{N} \left\langle \omega^{k}, \widetilde{A}x^{k} \right\rangle + \frac{1}{N} \sum_{k=1}^{N} \left\langle \omega^{k}, \widetilde{A}x^{k} \right\rangle - \min_{x \in S_{n}(1)} \left\langle \overline{\omega}^{N}, \widetilde{A}x \right\rangle \leq \\ \leq \sqrt{\frac{2}{N}} \left(\sqrt{\ln(2n)} + 2\sqrt{2\ln(2/\sigma)} \right) + \sqrt{\frac{2}{N}} \left(\sqrt{\ln n} + 2\sqrt{2\ln(2/\sigma)} \right) \leq \\ \leq 2\sqrt{\frac{2}{N}} \left(\sqrt{\ln(2n)} + 2\sqrt{2\ln(2/\sigma)} + 2\sqrt{2\ln(2/\sigma)} \right),$$

where

$$\overline{x}^{N} = \frac{1}{N} \sum_{k=1}^{N} x^{k}, \ \overline{\omega}^{N} = \frac{1}{N} \sum_{k=1}^{N} \omega^{k}.$$

So when

$$N=16\frac{\ln(2n)+8\ln(2/\sigma)}{\varepsilon^2},$$

then with probability $\geq 1 - \sigma$ one can guarantee $||A\overline{x}^N||_{\infty} \leq \varepsilon$. The total num-

ber of arithmetic operations can be estimated as follows

$$O\left(n+\frac{s\ln n\cdot\ln(n/\sigma)}{\varepsilon^2}\right).$$

To be continued...