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Structure of Lecture 4

o Auxiliary facts (Azuma—Hoeffding’s inequality; Heavy-tails,

large deviations; Le Cam lower bound)

e Stochastic Mirror Descent
e Rate of convergence
e Lower bounds

e Nesterov’s problem about Mage and Experts (Parallelization)

e Conditional Stochastic optimization

e SAA VS SA
e Acceleration of Stochastic Approximation by proper Averaging
e Randomized MD for huge QP
e Randomized MD for Antagonistic matrix game



Auxiliary facts

Azuma—Hoeffding’s inequality: Let { | — a scalar random sequence
IS martingale-difference

A Y Y—l’ E |:Y ‘ |:a—algebra (Yl’ ""Yt—l)] = Yt—l’
such that

| exp(22/M?)

Then (s >0)
N N
P(Z%ZtZSM\/Z%Z]SEXF)(_SZ/B)’
t=1 t=1
N N 1
P Z%Zt M ZVt+M max \/GGSZytZ,(S-GSNZ% Sexp(—s).
t=1

;(1,...,;&_1} <exp(l) forall t=12,.. N.




Heavy-tails, large deviations: Let scalar random sequence { , |, —i.i.d.,

E[x]=0. Var[%]=D, P(x >s)=V(s)=0(s), a>2.
®(x)- = [ e ey

then (P[22, 25 2 1-0 2 Ny (o) o) - |
P Z;(t_st;ll CI)(\/;T\I] SS\/(a—Z)DN INN, (CLT regime)

\_ t=1

(th>st 1N -V (s), s>\/ (¢—2)DN InN . (heavy-tails regime)

Note: 0.2e" <1-®(x)<e™? x> 1.

These estimations can be generalized for the weighted sums of scalar mar-
tingale-differences and weighted sums of squares of martingale-differences.



Two coins comparison: Consider two coins: p=0.5 and p=0.5+¢. How
many observations y =(y*,y*,...,y") we have to do to decide with probabili-

ty >1—-o what is a best coin? Let’s introduce some decision rule ¢(y) that
takes values [0,1] (we interpret ¢(y) as a probability to decide in favor of
the second coin if we observe y). Then the probability of right decision is

‘E[gp(y)‘ p=05+¢|-E[p(y)|p =O.5]‘22—20.
Since for all measurable 0 < ¢(y) <1 (Pinsker’s inequality + chain rule)
E.[0(¥)]-E, [gp(y)]‘ <|P" -Q"[[ <2KL(P",Q")=2N-KL(P.Q)
KL(P,Q)=(0.5+¢)In((0.5+¢)/0.5)+(0.5-¢)In((0.5-¢)/0.5) = 4¢?,

we have that N>Cg°. One can show that indeed: |N ZCIn(a‘l)g‘z.

Another way to use Rao—Cramer’s inequality for Bernoulli scheme (Lect. 2).
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Stochastic Mirror Descent
Consider convex optimization problem (see Lecture 3)

f(x)—>r£1€|Qn,

with stochastic oracle, returns such stochastic subgradient o, f (x,&) that:

[0, (x&)] =0t (x). E.| o, f (&) [<m?

Method (the main tools for numerical stochastic programming!)

X'= Mirr , (h@xf (xk,fk)), Mirr, (v) =arg nxweiQn {<v X — x">+V (x, X" )}

The main property of MD-step ({fk} —1.1.d.)

2

0, f(x.& |

*

2V(x,xk+1)£2V(x,xk)+2h<8xf (x‘<,§k),x—xk>+h2




If we sum all these inequalities from k =0,...,N -1 and take the total ma-
thematical expectation from the both sides of the result with x = x,, then

due to the convexity of f (x) we obtain (as in deterministic case)
E|F(X") ] f.<(hN)7V (x.,x°)+ M?h/2<2M°R?/N,,




where

R* =V (x*,xo), X\ =

In other words, after

N =2M2R?/&?

1 &, R /2 g
X", h= =—.
N = MYN M

oracle calls E[f (YN )]— f, <eg|

Absolutely the same result (even constants) as it was in deterministic case!

If one will use adaptive stepsize policy

Ki= Mirr, (R, f (X, &), h, =

R

, R=maxV (x.,x),

Bl

=0

Then after N =9M2R?/£? oracle calls E| f (YN )]— f,<e.

In deterministic case one can take h, = g/

6Xf(xk)2

*




From the convergence in average due to the Markov’s inequality

E| f(X")|-f.
RICH Y
2¢ 2
So we can run in parallel ~ log, (a‘l) MD-trajectories. Let’s denote by X,

P(f(YN)—f*EZg)S

such X" from these trajectories that minimize f (YN ) Here we assume that

we have an oracle for the value of function f (x)

So after (see formulas in frame on the previous slide)

2P 2
N = 8M82R log, (o)

oracle calls one can obtain
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But what we should do if there iIs no oracle for the value of the function?

Assume that |0, f (x,&)|, <M a.s. for &, then

P[f (X")- . < M\/%(R+2I§\/In(2/a))]21—a,

> <65R”In(4N/o)|.

where R = sup||x — .||, Qz{XEQ: [x —x.

xeQ
More generally, one can show (using Azuma—Hoeffding’s inequality) that

o if |5, f (x,&)|, <M, then

M ?R? |n(a—1) |

2
E

N ~
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o if E(exp(

0, f (fo)HZ/M 2)) <exp(1) and & < MR then

M ?R? |n(a—1)

2
&

N ~

Using heavy-tails large deviations estimations one can obtain

.ifP(

0, f (x,§)Hf/I\/I2 25):0(3‘“), a > 2 then

N ~ M ?R* max- In(al)’( 1aj3;2 .

'

All these bounds are optimal up to a multiplicative constants.



Using the restarts technique (see Lecture 5) one can generalize all the re-

sults mentioned above to u-strongly convex functions in norm | |. In all

the estimations we leave non-euclidian prox-factor @, =O(In”n) (Q = R").

o |f

0, f (X&), <M, then

I\/Izln((InN)/a);

UE

N ~

2

0. T (X,
o if E[ - (25)*]<exp(1) and &£ < MR then
M

I\/Izln((InN)/a);

UE

N ~
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-ifP(

o, f (x,f)”f/l\/l2 2S)=O(s‘“), a > 2 then

N

,Mz|n((|nN)/a)’[sz3;“z(m_Nj3§2

ue UE o

N ~ max:-

J

All these bounds are optimal up to a In N -factor of o. We don’t know at
the moment is it possible to eliminate this factor and the @ -factor.

Juditsky A., Nesterov Yu. Deterministic and stochastic primal-dual subgra-
dient algorithms for uniformly convex minimization // Stoch. System. —
2014. -V.4.-no. 1. —P. 44-80.
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Is Markov’s inequality always rough?
Consider sum-type convex optimization problem
f(x)== 3" f,(x)+h(x) - min,
m =) xeQ
where  |Vf, (y)—Vf, (x)|, <L|y—x|, and h(x) is u-strongly convex in

H H2 As we’ve seen later (Lecture 6) one can obtain E[f (XN(‘S))}— f <c¢

after N(g)~(m+min{L/y,«/mL/y})ln(Af /€) iterations (calculations of
Vf, (x) solely). Using rough Markov’s inequality

P( f (XN(‘”))— f, > EG/G)S E[f (XN(M))J_ - <o,

£o/o

one can obtain unimprovable large deviations bound ~ In(a‘l).
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Simple lower bounds
Consider non strongly convex case

EX— min .
Xef—ll]

Assume that the oracle return Vf (x,&)=¢+¢&, £eN(0,1). At each call &

chooses independently. Assume we know in advance all the details except
of & sign — but we can observe y*“ =g+&*. So we know in advanced that

we should choose x=#41. How many oracle’s calls we need to determine
with probability >1— o the right sign? Due to Neyman—Pirson’s lemma the

N N
best strategy is X, =-sign > y*. P(%, =1]&>0)= P(Z y¥ < Oj ~Ce M,
k=1 k=1

when ¢ >0, we have the following lower bound [N =C In(o-‘l)/g2 .
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Consider strongly convex case. Probabilistic model:
y< = x+&5 £ e N(0,1) // loglikelihood: —(y—x)”/2;

X, = arg min(x—x*)z/z =argmin E[(y—x)z/Z] y € N(x.,1). (*)
One can consider (*) to be the stochastic programming problem with the
oracle returns stochastic gradients y*—x, y* eN(x*,l). Due to Rao-—

2
Cramer’s inequality (Lecture 2) we have E[()?N (yl,...,y'\')—x*) }2 N~
Since normal distribution (with mathematical expectation as parameter) be-
N N
longs to Exponential family, for MLE %X, =arg min%Z(yk - x)2 = %Zyk
X k=1 k=1

we have equality in Rao—Cramer’s inequality. Since that we have a precise
lower bound for that case [N =C In(a‘l)/g. The other example — Bernoulli

scheme (here one can also use lower bound for two coins comparison).
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General lower bounds (A. Nemirovski)

Consider convex optimization problem

-

with stochastic oracle, return such of (x,ej) that:

E-[of (x8)]=at (x). &, Jof (x &), | <M} /p+1/a=D)

We’d like to obtain lower bound for the oracle calls N, that guarantee x"

E[f(xN)]— f.<e.

Nemirovski A. Efficient methods in convex programming. Technion, 1995.
http://www?2.isye.gatech.edu/~nemirovs/Lec_ EMCO.pdf
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Lower bounds for the Stochastic Oracle are (MD achieves these bounds)
e N>c, M2R? /&™) "under N <n, where ¢, =0O(Inn) (this estima-
tion of ¢, become precise when p —1+0);
e N>c, MZRn"Z™P) /22 ‘under N > n.

For the Deterministic Oracle (when oracle returns subgradient of (x) with

the property |of (x)| <M ) we have lower bound
p P

e N>cnln(M R/e), under N > n. // differs only in this regime

Agarwal A., Bartlett P.L., Ravikumar P., Wainwright M.J. Information-
theoretic lower bounds on the oracle complexity of stochastic convex opti-
mization // IEEE Trans. of Inform. —2012. — V. 58. — Ne 5. — P. 3235-3249.
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Nesterov’s problem about Mage and Experts (Parallelization)
Assume that the optimal configuration determines by convex problem

f(x)—>rI1€|Qn.

But each day one can only observe independent stochastic subgradients
0,f(x&) E;|0,f(x&)]=af(x),

Mage can live N ~ M?R?In(o ™) /& iterations and Expert N ~ M?R?/&”.

What is better to ask a solution from Mage or from K ~ In(o™) Experts?

Answer (arXiv:1701.01830): In both of the cases we obtain (up to con-
stant factors) the same (&, o)-quality.
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Indeed, as we’ve already known clever Mage (this Mage know MD al-
gorithm) can give us (&,o)-solutions. That is return such a point that

P(f(iN)— f, £5)21—J.
On the other hand clever Expert returns such X"* that E[ f(x" )] —f.<e.

Therefore without loss of generality one can assume that (see above)
f (YN’i)— f.eN (5,52).

Since we assume Experts to be independent and f (x) IS convex
.|: = K .|:< 1 8 f =N, f N ‘92 oK 1 - =N,
(x )— _EZ( (x )— *)e enc ] X _EZX

Hence, P( f (YK)— f, < g)Zl—eXp(—K):l—a.

It’d be interesting to generalize this result for the other cases (see above).
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Conditional Stochastic optimization
f(x)—> min |,

9(x)<0; xeQ
where ) )
E.[0,F(x.&)]=0f (x), E.[2,9(x.&) |=dg(x),
e | [, (x,g‘)”SMf E. Xg(x,g)\f]swlg.
Let’s

hy =&, /Mg h, :gg/(MfMG)’
Xk = I\/Iirrxk(hfﬁxf(xk,gk)), ifg(x)<e
W H = Mirr (hg@Xg(xk,gk))’ ifg(xk)>g

and the set | (N, =|1|) of such indexes k, that g(x) <&,
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Then if [N > 2MZR? /2| then N, >1 with probability >1/2 and
M

E[f(i“)]—f*ggf:M—;gg,g(YN) , =—|§x
(%&)]. <My, [8,9(x,€)|. <M, then for all

81M ’R? up to a constant factor and R — R the same

> ( —1) . . .
-2 n\o as It was in unconditional case (see above)
g

with probability >1—-o it’s true N, >1 and
f(x")-f.<e, g(x")<g,
where R* = supV (X, y).

X,yeQ
A. Bayandina generalizes it to strongly convex case, using restarts technigue.

Here we have still an open problem: to generalize on composite optimization.
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SAA vs SA (Nemirovski—Juditsky—Lan-Shapiro, 2007)

Stochastic Average Approximation (Empirical Risk Minimization, Monte
Carlo) approach proposes to change Stochastic convex optimization problem

E.| f(x¢) — min

by non stochastic sum-type SAA-problem ({gk}:ﬂ —i.i.d. realizations from &)
lzm: f(x,&4)— min.
m =] xeQ

Unfortunately, for the absolutely accurate solution of SAA-problem to
be (&,0)-solution of initial one, one should take at least (||o, f (x,£)|, <M)

m>C-M?R? (n In(MR/¢)+ In(o-‘l))/g2 terms.
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Stochastic Approximation approach (Robbins—Monro, 1951) in our sense
is nothing more than Mirror Descent. So we can find (&, o)-solution of ini-

tial stochastic programming problem for

N ~ M 2R? In(a‘l)/g2 < m /I SA is better SAA

oracle calls (i.e. calculations of stochastic subgradients 0, f (x,é)). It seems too

strange (n-factor in m can be eliminated via regularization, N. Srebro)! But it
should be mentioned that one can find (&, o)-solution of SAA-problem for

N ~ M?2R? |n(a—1)/g2

calculations of stochastic subgradients of the terms of the sum chose at ran-

dom. Indeed, let’s introduce
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(x,&"), with probability 1/m

f(X,n):< .............................................
f (x,£™), with probability 1/m

Non stochastic sum-type SAA-problem can be considered as simple sto-
chastic problem (bootstrap trick)

En[f (X,n) —)Q(liQn,

with stochastic subgradient: 0, f (x,77) =9, f (x,£”), 7 € R[L,...,m]. One can

generate n for O(Iog2 m) arithmetic operations. Since

0, f (x,n), <M one
can easily obtain that N ~ M?R*In(o™)/s* QED. But sometimes SAA-

approach isn’t substantial at all instead of SA (K. Sridharan’s example).
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Acceleration of Stochastic Approximation by proper Averaging

Let x,,k=1..,N — iid. with density function p,(x|&) (supp. doesn’t

depend on @), depends on unknown vector of parameters &. Then for all
1

statistics (x) (E, [é(x)ﬂ <w): E, [(é(x)—@)(é(x)—é’)ﬂ -l |
T
| . =E, [VG In p, (x\e)(ve In p, (X\H)) }: NI, (see Lecture 2).
In 1990 B. Polyak (see also Polyak—Juditsky, 1992) showed that for
0 =60+, V,In px(xk\ek), o :%iek, v=7-k7’, Be(0]1),
k=1
N (8" -0)— 5N (0[1,,] ") E[N-(3"-0.)(@" -a) |5 [1,.]"

SAA approach leads to analogues result (Fisher’s theorem, Lecture 2).
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Randomized MD for huge QP (Juditsky—Nemirovski randomization)

Let’s consider QP problem (nxn matrix A> 0 is fully completed, ‘Aﬁ,‘ <M)

1(x, AX) — min .
2 XeSn(l)

Using STM (see Lecture 3), one can find g-solution for

O(nz\/M In n/g) arithmetic operations. // not good since n>>11s huge

But if one use randomized MD with stochastic gradient A _ i[ x]-
column of matrix A and P(i[x]=j)=Xx;, j=1..,n (one can generate i[X]

for O(n) arithmetic operations), than one can find (&, )-solutions for

O(n MZInn-In (a‘l)/gz) arithmetic operations.
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Randomized MD for Antagonistic matrix game (Grigoriadis—Khachiyan)

As we’ve already known (see Lecture 2) Google problem can be reduced to
the saddle-point problem (A is s-row and s-column sparse, Lecture 3)

el wrgaﬁ)<w AX>'

Assume that there are two players A and B. All the players know ma-
trix A=|4;|, where |&;|<1, & - prize of A (loss of B) in case when A
plays i and B plays j. We play for the player B. Assume that the game Is
repeated N > 1 times. Let’s introduce loss-function at the step k

f (x)=(0, Ax), xe$, (1),

where @ €S,,(1) — such a vector with all zero components except one
component, that component corresponds to the A’s choice at the step k —
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this components equals 1. This vector in principle could depends on all the
history for that moment (but it can’t depends on the realization of the ran-
domized strategy of player B at the step k). Analogously, vector x* has on-
ly one non zero component, corresponds to the choice of player B at the
step k. One can introduce the price of the game (C =0)

~

C = max min <a) Ax> = min max <a) Ao<> (von Neumann theorem)
weS,,(1) xeS, (1) xS, (1) weS,,(1)

The solution of the saddle-point problem (w,x) is Nash equilibrium.
Since that (Hannan)
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So if we (player B) will choose {xk} at random according to the following
randomized MD-strategy (randomization under KL-projection!):

1. pr=(n"..n?);

2. Choose at random j(k) such, that P(j(k)= j)= p;
3. Put xj,
4. Recalculate

k+1 k /2|nn~ .

where i(k) — the choice of A at the step k;

=1, X =0, j= j(k);
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then with probability >1— o (see Lecture 3 for MD in a simplex)
1 N k - 1 N 2 -1
N; f, (x )—XQ:H)NE f (%)< \/%(\/In n +2\/2In(a ))
I.e. with probability >1— o our (B’s player) loss can be bounded
1 N K 2 -1
L3 ()sc 2 (Vi 2on(o)).

The worst case — when A is also know this strategy and use it when choos-
Ing {a)"} (it should be mentioned that A solve max-type problem). If A and

B will use this strategy then they converges to Nash’s equilibrium accord-
Ing to the following estimation.
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With probability >1-o
0<||Ax™| = max <a) AxN> max_min <a)Ax>s

o  weS,,(1) weS,, (1) xeS,(1)

< max <a),AYN>— min <c7)'\',,5o<>s

€Spn(1) xeSy (1)

Ax 1
< max)< N>_W

i@)k AX" > ;;<wk,ﬂxk>—xr222)<a7N,Ax>s
S\/%(\/m+2\/2“ﬂ(2/6))+\g(Jﬁw\/zm(z/a))g

< 2\/%(JIn(2n) +2\/2In(2/c7)),

where



So when

In(2n)+8In(2/0)

2 )
E

N =16

then with probability >1-o one can guarantee |AX"| <. The total num-

ber of arithmetic operations can be estimated as follows

o£n+3'””"”(”/0)j.

2
&
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Co be continue?...
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