Convex Optimization for Data Science

Gasnikov Alexander
gasnikov.av@mipt.ru

Lecture 4. Stochastic optimization. Randomized methods

November, 2016

Main books:

Polyak B.T., Juditsky A.B. Acceleration of stochastic approximation by averaging // SIAM J. Control Optim. - 1992. - V. 30. - P. 838-855.
Sridharan K. Learning from an optimization viewpoint. PhD Thesis, 2011. Juditsky A., Nemirovski A. First order methods for nonsmooth convex largescale optimization, I, II. // Optimization for Machine Learning. // Eds. S. Sra, S. Nowozin, S. Wright. - MIT Press, 2012.

Shapiro A., Dentcheva D., Ruszczynski A. Lecture on stochastic programming. Modeling and theory. - MPS-SIAM series on Optimization, 2014.
Guiges V., Juditsky A., Nemirovski A. Non-asymptotic confidence bounds for the optimal value of a stochastic program // e-print, 2016 arXiv:1601.07592 Duchi J.C. http://stanford.edu/~jduchi/PCMIConvex/Duchi16.pdf Gasnikov A.V. Searching equilibriums in large transport networks. Doctoral Thesis. MIPT, 2016. https://arxiv.org/ftp/arxiv/papers/1607/1607.03142.pdf https://www.youtube.com/user/PreMoLab (see course of A.V. Gasnikov)

Structure of Lecture 4

- Auxiliary facts (Azuma-Hoeffding's inequality; Heavy-tails, large deviations; Le Cam lower bound)
- Stochastic Mirror Descent
- Rate of convergence
- Lower bounds
- Nesterov's problem about Mage and Experts (Parallelization)
- Conditional Stochastic optimization
- SAA vs SA
- Acceleration of Stochastic Approximation by proper Averaging
- Randomized MD for huge QP
- Randomized MD for Antagonistic matrix game

Auxiliary facts

Azuma-Hoeffding's inequality: Let $\left\{\chi_{t}\right\}_{t}$ - a scalar random sequence is martingale-difference

$$
\chi_{t}=Y_{t}-Y_{t-1}, E\left[Y_{t} \mid F_{\sigma \text {-algebra }}\left(Y_{1}, \ldots, Y_{t-1}\right)\right]=Y_{t-1},
$$

such that

$$
E\left[\exp \left(\chi_{t}^{2} / M^{2}\right) \mid \chi_{1}, \ldots, \chi_{t-1}\right] \leq \exp (1) \text { for all } t=1,2, \ldots, N .
$$

Then $(s>0)$

$$
\begin{gathered}
P\left(\sum_{t=1}^{N} \gamma_{t} \chi_{t} \geq s M \sqrt{\sum_{t=1}^{N} \gamma_{t}^{2}}\right) \leq \exp \left(-s^{2} / 3\right), \\
P\left(\sum_{t=1}^{N} \gamma_{t} \chi_{t}^{2} \geq M^{2} \sum_{t=1}^{N} \gamma_{t}+M^{2} \max \left\{\sqrt{6.6 s \sum_{t=1}^{N} \gamma_{t}^{2}}, 6.6 s \frac{1}{N} \sum_{t=1}^{N} \gamma_{t}\right\}\right) \leq \exp (-s) .
\end{gathered}
$$

Heavy-tails, large deviations: Let scalar random sequence $\left\{\chi_{t}\right\}_{t}$ - i.i.d., $E\left[\chi_{t}\right]=0, \operatorname{Var}\left[\chi_{t}\right]=D, P\left(\chi_{t}>s\right)=V(s)=\mathrm{O}\left(s^{-\alpha}\right), \alpha>2$.
Then $P\left(\sum_{t=1}^{N} \chi_{t} \geq s\right) \simeq 1-\Phi\left(\frac{s}{\sqrt{D N}}\right)+N \cdot V(s), \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y$,

$$
\begin{aligned}
& P\left(\sum_{t=1}^{N} \chi_{t} \geq s\right) \underset{N \gg 1}{\simeq} 1-\Phi\left(\frac{s}{\sqrt{D N}}\right), s \leq \sqrt{(\alpha-2) D N \ln N},(\text { CLT regime }) \\
& P\left(\sum_{t=1}^{N} \chi_{t} \geq s\right) \underset{N \gg 1}{\simeq} N \cdot V(s), s>\sqrt{(\alpha-2) D N \ln N} . \text { (heavy-tails regime) }
\end{aligned}
$$

Note:

$$
0.2 e^{-2 x^{2} / \pi} \leq 1-\Phi(x) \leq e^{-x^{2} / 2}, x \gg 1 .
$$

These estimations can be generalized for the weighted sums of scalar mar-tingale-differences and weighted sums of squares of martingale-differences.

Two coins comparison: Consider two coins: $p=0.5$ and $p=0.5+\varepsilon$. How many observations $y=\left(y^{1}, y^{2}, \ldots, y^{N}\right)$ we have to do to decide with probability $\geq 1-\sigma$ what is a best coin? Let's introduce some decision rule $\varphi(y)$ that takes values $[0,1]$ (we interpret $\varphi(y)$ as a probability to decide in favor of the second coin if we observe y). Then the probability of right decision is

$$
|E[\varphi(y) \mid p=0.5+\varepsilon]-E[\varphi(y) \mid p=0.5]| \geq 2-2 \sigma .
$$

Since for all measurable $0 \leq \varphi(y) \leq 1$ (Pinsker's inequality + chain rule)

$$
\begin{gathered}
\left|E_{P^{N}}[\varphi(y)]-E_{Q^{N}}[\varphi(y)]\right| \leq\left\|P^{N}-Q^{N}\right\|_{1}^{2} \leq 2 K L\left(P^{N}, Q^{N}\right)=2 N \cdot K L(P, Q), \\
K L(P, Q)=(0.5+\varepsilon) \ln ((0.5+\varepsilon) / 0.5)+(0.5-\varepsilon) \ln ((0.5-\varepsilon) / 0.5) \simeq 4 \varepsilon^{2}
\end{gathered}
$$

we have that $N \geq C \varepsilon^{-2}$. One can show that indeed: $N \geq C \ln \left(\sigma^{-1}\right) \varepsilon^{-2}$.
Another way to use Rao-Cramer's inequality for Bernoulli scheme (Lect. 2).

Stochastic Mirror Descent

Consider convex optimization problem (see Lecture 3)

$$
f(x) \rightarrow \min _{x \in Q},
$$

with stochastic oracle, returns such stochastic subgradient $\partial_{x} f(x, \xi)$ that:

$$
E_{\xi}\left[\partial_{x} f(x, \xi)\right]=\partial f(x), E_{\xi}\left[\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2}\right] \leq M^{2} .
$$

Method (the main tools for numerical stochastic programming!)

$$
x^{k+1}=\operatorname{Mirr}_{x^{k}}\left(h \partial_{x} f\left(x^{k}, \xi^{k}\right)\right), \operatorname{Mirr}_{x^{k}}(\mathrm{v})=\arg \min _{x \in Q}\left\{\left\langle\mathrm{v}, x-x^{k}\right\rangle+V\left(x, x^{k}\right)\right\} .
$$

The main property of MD-step ($\left\{\xi^{k}\right\}$ - i.i.d.)

$$
2 V\left(x, x^{k+1}\right) \leq 2 V\left(x, x^{k}\right)+2 h\left\langle\partial_{x} f\left(x^{k}, \xi^{k}\right), x-x^{k}\right\rangle+h^{2}\left\|\partial_{x} f\left(x^{k}, \xi^{k}\right)\right\|_{*}^{2} .
$$

$$
\begin{gathered}
f\left(x^{k}\right)-f(x) \leq\left\langle\partial f\left(x^{k}\right), x^{k}-x\right\rangle \leq\left\langle\partial f\left(x^{k}\right)-\partial_{x} f\left(x^{k}, \xi^{k}\right), x^{k}-x\right\rangle+ \\
\left.+\frac{1}{h}\left(V\left(x, x^{k}\right)-V\left(x, x^{k+1}\right)\right)+\frac{h}{2}\left\|\partial_{x} f\left(x^{k}, \xi^{k}\right)\right\|_{*}^{2} \right\rvert\, E\left[\cdot \mid \xi^{1}, \ldots, \xi^{k-1}\right] \\
f\left(x^{k}\right)-f(x) \leq\left\langle\partial f\left(x^{k}\right), x^{k}-x\right\rangle \leq \\
\leq \frac{1}{h}\left(V\left(x, x^{k}\right)-E\left[V\left(x, x^{k+1}\right) \mid \xi^{1}, \ldots, \xi^{k-1}\right]\right)+\frac{h}{2} \underbrace{E\left[\left\|\partial_{x} f\left(x^{k}, \xi^{k}\right)\right\|_{*}^{2} \mid \xi^{1}, \ldots, \xi^{k-1}\right]}_{\leq M^{2}}
\end{gathered}
$$

If we sum all these inequalities from $k=0, \ldots, N-1$ and take the total mathematical expectation from the both sides of the result with $x=x_{*}$, then due to the convexity of $f(x)$ we obtain (as in deterministic case)

$$
E\left[f\left(\bar{x}^{N}\right)\right]-f_{*} \leq(h N)^{-1} V\left(x_{*}, x^{0}\right)+M^{2} h / 2 \leq \sqrt{2 M^{2} R^{2} / N}
$$

where

$$
R^{2}=V\left(x_{*}, x^{0}\right), \bar{x}^{N}=\frac{1}{N} \sum_{k=0}^{N-1} x^{k}, h=\frac{R}{M} \sqrt{\frac{2}{N}}=\frac{\varepsilon}{M^{2}} .
$$

In other words, after $N=2 M^{2} R^{2} / \varepsilon^{2}$ oracle calls $E\left[f\left(\bar{x}^{N}\right)\right]-f_{*} \leq \varepsilon$. Absolutely the same result (even constants) as it was in deterministic case!

If one will use adaptive stepsize policy

$$
x^{k+1}=\operatorname{Mirr}_{x^{k}}\left(h_{k} \partial_{x} f\left(x^{k}, \xi^{k}\right)\right), h_{k}=\frac{R}{\sqrt{\sum_{i=0}^{k}\left\|\partial_{x} f\left(x^{i}, \xi^{i}\right)\right\|_{*}^{2}}}, R=\max _{x \in Q} V\left(x_{*}, x\right),
$$

Then after $N=9 M^{2} R^{2} / \varepsilon^{2}$ oracle calls $E\left[f\left(\bar{x}^{N}\right)\right]-f_{*} \leq \varepsilon$.
In deterministic case one can take $h_{k}=\varepsilon /\left\|\partial_{x} f\left(x^{k}\right)\right\|_{*}^{2}$.

From the convergence in average due to the Markov's inequality

$$
P\left(f\left(\bar{x}^{N}\right)-f_{*} \geq 2 \varepsilon\right) \leq \frac{E\left[f\left(\bar{x}^{N}\right)\right]-f_{*}}{2 \varepsilon} \leq \frac{1}{2}
$$

So we can run in parallel $\sim \log _{2}\left(\sigma^{-1}\right)$ MD-trajectories. Let's denote by $\bar{x}_{\text {min }}^{N}$ such \bar{x}^{N} from these trajectories that minimize $f\left(\bar{x}^{N}\right)$. Here we assume that we have an oracle for the value of function $f(x)$.

So after (see formulas in frame on the previous slide)

$$
N=\frac{8 M^{2} R^{2}}{\varepsilon^{2}} \log _{2}\left(\sigma^{-1}\right)
$$

oracle calls one can obtain

$$
P\left(f\left(\bar{x}_{\min }^{N}\right)-f_{*} \geq 2 \varepsilon\right) \leq \sigma .
$$

But what we should do if there is no oracle for the value of the function?
Assume that $\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M$ a.s. for ξ, then

$$
P\left(f\left(\bar{x}^{N}\right)-f_{*} \leq M \sqrt{\frac{2}{N}}(R+2 \tilde{R} \sqrt{\ln (2 / \sigma)})\right) \geq 1-\sigma
$$

where $\tilde{R}=\sup _{x \in \bar{Q}}\left\|x-x_{*}\right\|, \tilde{Q}=\left\{x \in Q:\left\|x-x_{*}\right\|^{2} \leq 65 R^{2} \ln (4 N / \sigma)\right\}$.
More generally, one can show (using Azuma-Hoeffding's inequality) that

- if $\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M$, then

$$
N \sim \frac{M^{2} R^{2} \ln \left(\sigma^{-1}\right)}{\varepsilon^{2}} ;
$$

- if $E\left(\exp \left(\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2} / M^{2}\right)\right) \leq \exp (1)$ and $\varepsilon \leq M R$ then

$$
N \sim \frac{M^{2} R^{2} \ln \left(\sigma^{-1}\right)}{\varepsilon^{2}} .
$$

Using heavy-tails large deviations estimations one can obtain

- if $P\left(\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2} / M^{2} \geq s\right)=\mathrm{O}\left(s^{-\alpha}\right), \alpha>2$ then

$$
N \sim M^{2} R^{2} \max \left\{\frac{\ln \left(\sigma^{-1}\right)}{\varepsilon^{2}},\left(\frac{1}{\sigma \varepsilon^{\alpha}}\right)^{\frac{2}{3 \alpha-2}}\right\} .
$$

All these bounds are optimal up to a multiplicative constants.

Using the restarts technique (see Lecture 5) one can generalize all the results mentioned above to μ-strongly convex functions in norm $\|\|$. In all the estimations we leave non-euclidian prox-factor $\omega_{n}=\mathrm{O}\left(\ln ^{\beta} n\right)\left(Q \subseteq \mathbb{R}^{n}\right)$.

- if $\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M$, then

$$
N \sim \frac{M^{2} \ln ((\ln N) / \sigma)}{\mu \varepsilon} ;
$$

- if $E\left(\frac{\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2}}{M^{2}}\right) \leq \exp (1)$ and $\varepsilon \leq M R$ then

$$
N \sim \frac{M^{2} \ln ((\ln N) / \sigma)}{\mu \varepsilon} ;
$$

- if $P\left(\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2} / M^{2} \geq s\right)=\mathrm{O}\left(s^{-\alpha}\right), \alpha>2$ then

$$
N \sim \max \left\{\frac{M^{2} \ln ((\ln N) / \sigma)}{\mu \varepsilon},\left(\frac{M^{2}}{\mu \varepsilon}\right)^{\frac{\alpha}{3 \alpha-2}}\left(\frac{\ln N}{\sigma}\right)^{\frac{2}{3 \alpha-2}}\right\}
$$

All these bounds are optimal up to a $\ln N$-factor of σ. We don't know at the moment is it possible to eliminate this factor and the ω_{n}-factor.

Juditsky A., Nesterov Yu. Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization // Stoch. System. 2014. - V. 4. - no. 1. - P. 44-80.

Is Markov's inequality always rough?

Consider sum-type convex optimization problem

$$
f(x)=\frac{1}{m} \sum_{k=1}^{m} f_{k}(x)+h(x) \rightarrow \min _{x \in Q},
$$

where $\left\|\nabla f_{k}(y)-\nabla f_{k}(x)\right\|_{2} \leq L\|y-x\|_{2}$ and $h(x)$ is μ-strongly convex in $\left\|\|_{2}\right.$. As we've seen later (Lecture 6) one can obtain $E\left[f\left(x^{N(\varepsilon)}\right)\right]-f_{*} \leq \varepsilon$ after $N(\varepsilon) \sim(m+\min \{L / \mu, \sqrt{m L / \mu}\}) \ln (\Delta f / \varepsilon)$ iterations (calculations of $\nabla f_{k}(x)$ solely). Using rough Markov's inequality

$$
P\left(f\left(x^{N(\varepsilon \sigma)}\right)-f_{*} \geq \varepsilon \sigma / \sigma\right) \leq \frac{E\left[f\left(x^{N(\varepsilon \sigma)}\right)\right]-f_{*}}{\varepsilon \sigma / \sigma} \leq \sigma
$$

one can obtain unimprovable large deviations bound $\sim \ln \left(\sigma^{-1}\right)$.

Simple lower bounds

Consider non strongly convex case

$$
\varepsilon x \rightarrow \min _{x \in[-1,1]}
$$

Assume that the oracle return $\nabla f(x, \xi)=\varepsilon+\xi, \xi \in N(0,1)$. At each call ξ chooses independently. Assume we know in advance all the details except of ε sign - but we can observe $y^{k}=\varepsilon+\xi^{k}$. So we know in advanced that we should choose $x= \pm 1$. How many oracle's calls we need to determine with probability $\geq 1-\sigma$ the right sign? Due to Neyman-Pirson's lemma the best strategy is $\hat{x}_{N}=-\operatorname{sign} \sum_{k=1}^{N} y^{k} . P\left(\hat{x}_{N}=1 \mid \varepsilon>0\right)=P\left(\sum_{k=1}^{N} y^{k}<0\right) \simeq C e^{-\varepsilon^{2} N}$, when $\varepsilon>0$, we have the following lower bound $N \geq C \ln \left(\sigma^{-1}\right) / \varepsilon^{2}$.

Consider strongly convex case. Probabilistic model:

$$
\begin{gather*}
y^{k}=x+\xi^{k}, \xi^{k} \in N(0,1) / / \log \text { likelihood: }-(y-x)^{2} / 2 \\
x_{*}=\arg \min _{x}\left(x-x_{*}\right)^{2} / 2=\arg \min _{x} E\left[(y-x)^{2} / 2\right], y \in N\left(x_{*}, 1\right) . \tag{*}
\end{gather*}
$$

One can consider $\left({ }^{*}\right)$ to be the stochastic programming problem with the oracle returns stochastic gradients $y^{k}-x, y^{k} \in N\left(x_{*}, 1\right)$. Due to RaoCramer's inequality (Lecture 2) we have $E\left[\left(\hat{x}_{N}\left(y^{1}, \ldots, y^{N}\right)-x_{*}\right)^{2}\right] \geq N^{-1}$. Since normal distribution (with mathematical expectation as parameter) belongs to Exponential family, for MLE $\hat{x}_{N}=\arg \min _{x} \frac{1}{2} \sum_{k=1}^{N}\left(y^{k}-x\right)^{2}=\frac{1}{N} \sum_{k=1}^{N} y^{k}$ we have equality in Rao-Cramer's inequality. Since that we have a precise lower bound for that case $N \simeq C \ln \left(\sigma^{-1}\right) / \varepsilon$. The other example - Bernoulli scheme (here one can also use lower bound for two coins comparison).

General lower bounds (A. Nemirovski)

Consider convex optimization problem

$$
f(x) \rightarrow \min _{x \in B_{p}^{n}(R)}
$$

with stochastic oracle, return such $\partial f(x, \xi)$ that:

$$
E_{\xi}[\partial f(x, \xi)]=\partial f(x), E_{\xi}\left[\|\partial f(x, \xi)\|_{q}^{2}\right] \leq M_{p}^{2}(1 / p+1 / q=1) .
$$

We'd like to obtain lower bound for the oracle calls N, that guarantee x^{N}

$$
E\left[f\left(x^{N}\right)\right]-f_{*} \leq \varepsilon .
$$

Nemirovski A. Efficient methods in convex programming. Technion, 1995. http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf

Lower bounds for the Stochastic Oracle are (MD achieves these bounds)

- $N \geq c_{p} M_{p}^{2} R^{2} / \varepsilon^{\max (2, p)}$, under $N \ll n$, where $c_{p}=\mathrm{O}(\ln n)$ (this estimation of c_{p} become precise when $p \rightarrow 1+0$);
- $N \geq c_{p} M_{p}^{2} R^{2} n^{1-2 / \max (2, p)} / \varepsilon^{2}$, under $N \gg n$.

For the Deterministic Oracle (when oracle returns subgradient $\partial f(x)$ with the property $\|\partial f(x)\|_{p} \leq M_{p}$) we have lower bound

- $N \geq c n \ln \left(M_{p} R / \varepsilon\right)$, under $N \gg n$. // differs only in this regime

Agarwal A., Bartlett P.L., Ravikumar P., Wainwright M.J. Informationtheoretic lower bounds on the oracle complexity of stochastic convex optimization // IEEE Trans. of Inform. - 2012. - V. 58. - № 5. - P. 3235-3249.

Nesterov's problem about Mage and Experts (Parallelization)

Assume that the optimal configuration determines by convex problem

$$
f(x) \rightarrow \min _{x \in Q} .
$$

But each day one can only observe independent stochastic subgradients

$$
\partial_{x} f(x, \xi): E_{\xi}\left[\partial_{x} f(x, \xi)\right]=\partial f(x),\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M .
$$

Mage can live $N \sim M^{2} R^{2} \ln \left(\sigma^{-1}\right) / \varepsilon^{2}$ iterations and Expert $N \sim M^{2} R^{2} / \varepsilon^{2}$.
What is better to ask a solution from Mage or from $K \sim \ln \left(\sigma^{-1}\right)$ Experts?
Answer (arXiv:1701.01830): In both of the cases we obtain (up to constant factors) the same (ε, σ)-quality.

Indeed, as we've already known clever Mage (this Mage know MD algorithm) can give us (ε, σ)-solutions. That is return such a point that

$$
P\left(f\left(\bar{x}^{N}\right)-f_{*} \leq \varepsilon\right) \geq 1-\sigma .
$$

On the other hand clever Expert returns such $\bar{x}^{N, i}$ that $E\left[f\left(\bar{x}^{N, i}\right)\right]-f_{*} \leq \varepsilon$.
Therefore without loss of generality one can assume that (see above)

$$
f\left(\bar{x}^{N, i}\right)-f_{*} \in N\left(\varepsilon, \varepsilon^{2}\right)
$$

Since we assume Experts to be independent and $f(x)$ is convex

$$
f\left(\bar{x}^{K}\right)-f_{*} \leq \frac{1}{K} \sum_{i=1}^{K}\left(f\left(\bar{x}^{N, i}\right)-f_{*}\right) \in N\left(\varepsilon, \frac{\varepsilon^{2}}{K}\right), \quad \bar{x}^{K}=\frac{1}{K} \sum_{i=1}^{K} \bar{x}^{N, i}
$$

Hence, $P\left(f\left(\bar{x}^{K}\right)-f_{*} \leq \varepsilon\right) \geq 1-\exp (-K) \simeq 1-\sigma$.
It'd be interesting to generalize this result for the other cases (see above).

Conditional Stochastic optimization

$$
f(x) \rightarrow \min _{g(x) \leq 0 ; x \in Q},
$$

where

$$
\begin{aligned}
& E_{\xi}\left[\partial_{x} f(x, \xi)\right]=\partial f(x), E_{\xi}\left[\partial_{x} g(x, \xi)\right]=\partial g(x), \\
& E_{\xi}\left[\left\|\partial_{x} f(x, \xi)\right\|_{*}^{2}\right] \leq M_{f}^{2}, E_{\xi}\left[\left\|\partial_{x} g(x, \xi)\right\|_{*}^{2}\right] \leq M_{g}^{2} .
\end{aligned}
$$

Let's

$$
\begin{gathered}
h_{g}=\varepsilon_{g} / M_{g}^{2}, h_{f}=\varepsilon_{g} /\left(M_{f} M_{g}\right), \\
x^{x^{k+1}=\operatorname{Mirr}_{x^{k}}\left(h_{f} \partial_{x} f\left(x^{k}, \xi^{k}\right)\right), \text { if } g\left(x^{k}\right) \leq \varepsilon_{g}} \\
x^{k+1}=\operatorname{Mirr}_{x^{k}}\left(h_{g} \partial_{x} g\left(x^{k}, \xi^{k}\right)\right), \text { if } g\left(x^{k}\right)>\varepsilon_{g},
\end{gathered} k=1, \ldots, N,
$$

and the set $I\left(N_{I}=|I|\right)$ of such indexes k, that $g\left(x^{k}\right) \leq \varepsilon_{g}$.

Then if $N \geq 2 M_{g}^{2} R^{2} / \varepsilon_{g}^{2}$ then $N_{I} \geq 1$ with probability $\geq 1 / 2$ and

$$
E\left[f\left(\bar{x}^{N}\right)\right]-f_{*} \leq \varepsilon_{f}=\frac{M_{f}}{M_{g}} \varepsilon_{g}, g\left(\bar{x}^{N}\right) \leq \varepsilon_{g}, \bar{x}^{N}=\frac{1}{N_{I}} \sum_{k \in I} x^{k} .
$$

If additionally $\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M_{f},\left\|\partial_{x} g(x, \xi)\right\|_{*} \leq M_{g}$, then for all

$$
N \geq \frac{81 M_{g}^{2} \tilde{R}^{2}}{\varepsilon_{g}^{2}} \ln \left(\sigma^{-1}\right)
$$

up to a constant factor and $R \rightarrow \tilde{R}$ the same as it was in unconditional case (see above)
with probability $\geq 1-\sigma$ it's true $N_{I} \geq 1$ and

$$
f\left(\bar{x}^{N}\right)-f_{*} \leq \varepsilon_{f}, g\left(\bar{x}^{N}\right) \leq \varepsilon_{g},
$$

where $\tilde{R}^{2}=\sup _{x, y \in Q} V(x, y)$.
A. Bayandina generalizes it to strongly convex case, using restarts technique. Here we have still an open problem: to generalize on composite optimization.

SAA vs SA (Nemirovski-Juditsky-Lan-Shapiro, 2007)

Stochastic Average Approximation (Empirical Risk Minimization, Monte Carlo) approach proposes to change Stochastic convex optimization problem

$$
E_{\xi}[f(x, \xi)] \rightarrow \min _{x \in Q}
$$

by non stochastic sum-type SAA-problem $\left(\left\{\xi^{k}\right\}_{k=1}^{m}\right.$ - i.i.d. realizations from $\left.\xi\right)$

$$
\frac{1}{m} \sum_{k=1}^{m} f\left(x, \xi^{k}\right) \rightarrow \min _{x \in Q}
$$

Unfortunately, for the absolutely accurate solution of SAA-problem to be (ε, σ)-solution of initial one, one should take at least $\left(\left\|\partial_{x} f(x, \xi)\right\|_{*} \leq M\right)$

$$
m \geq C \cdot M^{2} R^{2}\left(n \ln (M R / \varepsilon)+\ln \left(\sigma^{-1}\right)\right) / \varepsilon^{2} \text { terms }
$$

Stochastic Approximation approach (Robbins-Monro, 1951) in our sense is nothing more than Mirror Descent. So we can find (ε, σ)-solution of initial stochastic programming problem for

$$
N \sim M^{2} R^{2} \ln \left(\sigma^{-1}\right) / \varepsilon^{2} \ll m / / \mathrm{SA} \text { is better SAA }
$$

oracle calls (i.e. calculations of stochastic subgradients $\partial_{x} f(x, \xi)$). It seems too strange (n-factor in m can be eliminated via regularization, N. Srebro)! But it should be mentioned that one can find (ε, σ)-solution of SAA-problem for

$$
N \sim M^{2} R^{2} \ln \left(\sigma^{-1}\right) / \varepsilon^{2}
$$

calculations of stochastic subgradients of the terms of the sum chose at random. Indeed, let's introduce

Non stochastic sum-type SAA-problem can be considered as simple stochastic problem (bootstrap trick)

$$
E_{\eta}[f(x, \eta)] \rightarrow \min _{x \in Q},
$$

with stochastic subgradient: $\partial_{x} f(x, \eta)=\partial_{x} f\left(x, \xi^{\eta}\right), \eta \in R[1, \ldots, m]$. One can generate η for $\mathrm{O}\left(\log _{2} m\right)$ arithmetic operations. Since $\left\|\partial_{x} f(x, \eta)\right\|_{*} \leq M$ one can easily obtain that $N \sim M^{2} R^{2} \ln \left(\sigma^{-1}\right) / \varepsilon^{2}$ QED. But sometimes SAAapproach isn't substantial at all instead of SA (K. Sridharan's example).

Acceleration of Stochastic Approximation by proper Averaging

Let $\mathrm{x}_{k}, k=1, \ldots, N-$ i.i.d. with density function $p_{\mathrm{x}}(\mathrm{x} \mid \theta)$ (supp. doesn't depend on θ), depends on unknown vector of parameters θ. Then for all statistics $\tilde{\theta}(\mathrm{x})\left(E_{\mathrm{x}}\left[\tilde{\theta}(\mathrm{x})^{2}\right]<\infty\right): E_{\mathrm{x}}\left[(\tilde{\theta}(\mathrm{x})-\theta)(\tilde{\theta}(\mathrm{x})-\theta)^{T}\right] \succ\left[I_{p, N}\right]^{-1}$,

$$
I_{p, N}=E_{\mathrm{x}}\left[\nabla_{\theta} \ln p_{\mathrm{x}}(\mathrm{x} \mid \theta)\left(\nabla_{\theta} \ln p_{\mathrm{x}}(\mathrm{x} \mid \theta)\right)^{T}\right]=N I_{p, 1}(\text { see Lecture } 2) .
$$

In 1990 B. Polyak (see also Polyak-Juditsky, 1992) showed that for

$$
\begin{gathered}
\theta^{k+1}=\theta^{k}+\gamma_{k} \nabla_{\theta} \ln p_{\mathrm{x}}\left(\mathrm{x}_{k} \mid \theta^{k}\right), \bar{\theta}^{N}=\frac{1}{N} \sum_{k=1}^{N} \theta^{k}, \gamma_{k}=\gamma \cdot k^{-\beta}, \beta \in(0,1), \\
\sqrt{N} \cdot\left(\bar{\theta}^{N}-\theta_{*}\right) \xrightarrow{d} N\left(0,\left[I_{p, 1}\right]^{-1}\right), E_{\mathrm{x}}\left[N \cdot\left(\bar{\theta}^{N}-\theta_{*}\right)\left(\bar{\theta}^{N}-\theta_{*}\right)^{T}\right] \rightarrow\left[I_{p, 1}\right]^{-1} .
\end{gathered}
$$

SAA approach leads to analogues result (Fisher's theorem, Lecture 2).

Randomized MD for huge QP (Juditsky-Nemirovski randomization)

Let's consider QP problem ($n \times n$ matrix $A \succ 0$ is fully completed, $\left|A_{i j}\right| \leq M$)

$$
\frac{1}{2}\langle x, A x\rangle \rightarrow \min _{x \in S_{n}(1)} .
$$

Using STM (see Lecture 3), one can find ε-solution for
$\mathrm{O}\left(n^{2} \sqrt{M \ln n / \varepsilon}\right)$ arithmetic operations. // not good since $n \gg 1$ is huge But if one use randomized MD with stochastic gradient $A^{\langle i[x]\rangle}-i[x]$ column of matrix A and $P(i[x]=j)=x_{j}, j=1, \ldots, n$ (one can generate $i[x]$ for $\mathrm{O}(n)$ arithmetic operations), than one can find (ε, σ)-solutions for

$$
\mathrm{O}\left(n M^{2} \ln n \cdot \ln \left(\sigma^{-1}\right) / \varepsilon^{2}\right) \text { arithmetic operations. }
$$

Randomized MD for Antagonistic matrix game (Grigoriadis-Khachiyan)

As we've already known (see Lecture 2) Google problem can be reduced to the saddle-point problem (\tilde{A} is s-row and s-column sparse, Lecture 3)

$$
\min _{x \in S_{n}(1)} \max _{\omega \in S_{2 n}(1)}\langle\omega, \tilde{A} x\rangle .
$$

Assume that there are two players A and B . All the players know ma$\operatorname{trix} \tilde{A}=\left\|\tilde{a}_{i j}\right\|$, where $\left|\tilde{a}_{i j}\right| \leq 1, \tilde{a}_{i j}-$ prize of A (loss of B) in case when A plays i and B plays j. We play for the player B. Assume that the game is repeated $N \gg 1$ times. Let's introduce loss-function at the step k

$$
f_{k}(x)=\left\langle\omega^{k}, \tilde{A} x\right\rangle, x \in S_{n}(1),
$$

where $\omega^{k} \in S_{2 n}(1)$ - such a vector with all zero components except one component, that component corresponds to the A's choice at the step $k-$
this components equals 1 . This vector in principle could depends on all the history for that moment (but it can't depends on the realization of the randomized strategy of player B at the step k). Analogously, vector x^{k} has only one non zero component, corresponds to the choice of player B at the step k. One can introduce the price of the game $(C=0)$

$$
C=\max _{\omega \in S_{2_{n}}(1) x \in S_{n}(1)}\langle\omega, \tilde{A} x\rangle=\min _{x \in S_{n}(1)} \max _{\omega \in S_{2_{n}}(1)}\langle\omega, \tilde{A} x\rangle . \quad \text { (von Neumann theorem) }
$$

The solution of the saddle-point problem (ω, x) is Nash equilibrium. Since that (Hannan)

$$
\min _{x \in S_{n}(1)} \frac{1}{N} \sum_{k=1}^{N} f_{k}(x) \leq C .
$$

So if we (player B) will choose $\left\{x^{k}\right\}$ at random according to the following randomized MD-strategy (randomization under KL-projection!):

1. $p^{1}=\left(n^{-1}, \ldots, n^{-1}\right)$;
2. \quad Choose at random $j(k)$ such, that $P(j(k)=j)=p_{j}^{k}$;
3. Put $x_{j(k)}^{k}=1, x_{j}^{k}=0, j \neq j(k)$;
4. Recalculate

$$
p_{j}^{k+1} \sim p_{j}^{k} \exp \left(-\sqrt{\frac{2 \ln n}{N}} \tilde{a}_{i(k) j}\right), j=1, \ldots, n,
$$

where $i(k)$ - the choice of A at the step k;
then with probability $\geq 1-\sigma$ (see Lecture 3 for MD in a simplex)

$$
\frac{1}{N} \sum_{k=1}^{N} f_{k}\left(x^{k}\right)-\min _{x \in S_{n}(1)} \frac{1}{N} \sum_{k=1}^{N} f_{k}(x) \leq \sqrt{\frac{2}{N}}\left(\sqrt{\ln n}+2 \sqrt{2 \ln \left(\sigma^{-1}\right)}\right),
$$

i.e. with probability $\geq 1-\sigma$ our (B's player) loss can be bounded

$$
\frac{1}{N} \sum_{k=1}^{N} f_{k}\left(x^{k}\right) \leq C+\sqrt{\frac{2}{N}}\left(\sqrt{\ln n}+2 \sqrt{2 \ln \left(\sigma^{-1}\right)}\right) .
$$

The worst case - when A is also know this strategy and use it when choosing $\left\{\omega^{k}\right\}$ (it should be mentioned that A solve max-type problem). If A and B will use this strategy then they converges to Nash's equilibrium according to the following estimation.

With probability $\geq 1-\sigma$

$$
\begin{gathered}
0 \leq\left\|A \bar{x}^{N}\right\|_{\infty}=\max _{\omega \in S_{2 n}(1)}\left\langle\omega, \tilde{A} \bar{x}^{N}\right\rangle-\max _{\omega \in S_{2 n}(1)} \min _{x \in S_{n}(1)}\langle\omega, \tilde{A} x\rangle \leq \\
\leq \max _{\omega \in S_{2 n}(1)}\left\langle\omega, \tilde{A} \bar{x}^{N}\right\rangle-\min _{x \in S_{n}(1)}\left\langle\bar{\omega}^{N}, \tilde{A} x\right\rangle \leq \\
\leq \max _{\omega \in S_{2 n}(1)}\left\langle\omega, \tilde{A} \bar{x}^{N}\right\rangle-\frac{1}{N} \sum_{k=1}^{N}\left\langle\omega^{k}, \tilde{A} x^{k}\right\rangle+\frac{1}{N} \sum_{k=1}^{N}\left\langle\omega^{k}, \tilde{A} x^{k}\right\rangle-\min _{x \in S_{n}(1)}\left\langle\bar{\omega}^{N}, \tilde{A} x\right\rangle \leq \\
\leq \sqrt{\frac{2}{N}}(\sqrt{\ln (2 n)}+2 \sqrt{2 \ln (2 / \sigma)})+\sqrt{\frac{2}{N}}(\sqrt{\ln n}+2 \sqrt{2 \ln (2 / \sigma)}) \leq \\
\leq 2 \sqrt{\frac{2}{N}}(\sqrt{\ln (2 n)}+2 \sqrt{2 \ln (2 / \sigma)}),
\end{gathered}
$$

where

$$
\bar{x}^{N}=\frac{1}{N} \sum_{k=1}^{N} x^{k}, \bar{\omega}^{N}=\frac{1}{N} \sum_{k=1}^{N} \omega^{k} .
$$

So when

$$
N=16 \frac{\ln (2 n)+8 \ln (2 / \sigma)}{\varepsilon^{2}}
$$

then with probability $\geq 1-\sigma$ one can guarantee $\left\|A \bar{x}^{N}\right\|_{\infty} \leq \varepsilon$. The total num-
ber of arithmetic operations can be estimated as follows

$$
\mathrm{O}\left(n+\frac{s \ln n \cdot \ln (n / \sigma)}{\varepsilon^{2}}\right)
$$

To be continued...

