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Auxiliary facts 
 

Azuma–Hoeffding’s inequality: Let  t t
  – a scalar random sequence 

is martingale-difference  

1t t tY Y   ,  algebra 1 1 1,...,t t tE Y F Y Y Y  
    , 

such that  

   2 2

1 1exp ,..., exp 1t tE M   
  
 

 for all 1,2,...,t N . 

Then ( 0s  ) 

 2 2

1 1

exp 3
N N

t t t

t t

P sM s  
 

 
    

 
  , 

 2 2 2 2

1 1 1 1

1
max 6.6 ,6.6 exp

N N N N

t t t t t

t t t t

P M M s s s
N

    
   

   
     

    
    . 
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Heavy-tails, large deviations: Let scalar random sequence  t t
  – i.i.d., 

  0tE   ,  Var t D  ,       tP s V s s      , 2  . 

Then   
1

1

1
N

t
N

t

s
P s N V s

DN




   
     

  



 ,  

2 21

2

x

yx e dy






   , 

 
1

1

1 , 2 ln
N

t
N

t

s
P s s DN N

DN
 



   
     

  



 , (CLT regime) 

   
1

1

, 2 ln
N

t
N

t

P s N V s s DN N 


 
    

 



 . (heavy-tails regime) 

Note:                    
2 22 20.2 1x xe x e    , 1x . 

These estimations can be generalized for the weighted sums of scalar mar-

tingale-differences and weighted sums of squares of martingale-differences. 



6 
 

Two coins comparison: Consider two coins: 0.5p   and 0.5p   . How 

many observations  1 2, ,..., Ny y y y  we have to do to decide with probabili-

ty 1    what is a best coin? Let’s introduce some decision rule  y  that 

takes values  0,1  (we interpret  y  as a probability to decide in favor of 

the second coin if we observe y ). Then the probability of right decision is 

   0.5 0.5 2 2E y p E y p               . 

Since for all measurable  0 1y   (Pinsker’s inequality + chain rule) 

       
2

1
2 , 2 ,N N

N N N N

P Q
E y E y P Q KL P Q N KL P Q             , 

            2, 0.5 ln 0.5 0.5 0.5 ln 0.5 0.5 4KL P Q            , 

we have that 2N C  . One can show that indeed:  1 2lnN C    . 

Another way to use Rao–Cramer’s inequality for Bernoulli scheme (Lect. 2).  
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 Stochastic Mirror Descent 

Consider convex optimization problem (see Lecture 3) 

  min
x Q

f x


 , 

with stochastic oracle, returns such stochastic subgradient  ,x f x   that: 

   ,xE f x f x      ,  
2 2

*
,xE f x M   

 
. 

Method (the main tools for numerical stochastic programming!) 

  1= Mirr , ,k

k k k

xx
x h f x        Mirr v arg min v, , .k

k k

x x Q
x x V x x


     

The main property of MD-step ( k  – i.i.d.) 

       
2

1 2

*
2 , 2 , 2 , , ,k k k k k k k

x xV x x V x x h f x x x h f x        . 
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         , , ,k k k k k k k

xf x f x f x x x f x f x x x          

      
2

1 1 1

*

1
, , , ,...,

2

k k k k k

x

h
V x x V x x f x E

h
          , 

     ,k k kf x f x f x x x     

      
2

2
1 1 1 1 1

*

1
, , ,..., , ,...,

2

k k k k k k

x

M

h
V x x E V x x E f x

h
      



     
    

. 

If we sum all these inequalities from 0,..., 1k N   and take the total ma-

thematical expectation from the both sides of the result with *x x , then 

due to the convexity of  f x  we obtain (as in deterministic case) 

     
1 0 2 2 2

* *, 2 2NE f x f hN V x x M h M R N


     
 

, 
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where  

 2 0

*,R V x x , 
1

0

1 N
N k

k

x x
N





  , 
2

2R
h

M N M


  . 

In other words, after 
2 2 22N M R   oracle calls   *

NE f x f    
  . 

Absolutely the same result (even constants) as it was in deterministic case! 

If one will use adaptive stepsize policy 

  1= Mirr , ,k

k k k

k xx
x h f x    

 
2

*
0

,

k
k

i i

x

i

R
h

f x 






,  *max ,
x Q

R V x x


 , 

Then after 2 2 29N M R   oracle calls   *

NE f x f    
 

. 

In deterministic case one can take  
2

*

k

k xh f x  . 
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From the convergence in average due to the Markov’s inequality 

  
  *

*

1
2

2 2

N

N
E f x f

P f x f 


  
     . 

So we can run in parallel  1

2log    MD-trajectories. Let’s denote by min

Nx  

such Nx  from these trajectories that minimize  Nf x . Here we assume that 

we have an oracle for the value of function  f x .  

So after (see formulas in frame on the previous slide) 

 
2 2

1

22

8
log

M R
N 



  

oracle calls one can obtain 

  min * 2NP f x f     . 
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But what we should do if there is no oracle for the value of the function? 

Assume that  
*

,x f x M   a.s. for  , then 

    *

2
2 ln 2 1 ,NP f x f M R R

N
 

 
     

 

    

 where *sup
x Q

R x x


 


 ,   2 2

*: 65 ln 4Q x Q x x R N     . 

More generally, one can show (using Azuma–Hoeffding’s inequality) that 

 if   
*

, ,x f x M   then 

 2 2 1

2

lnM R
N







 ; 
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 if       
2 2

*
exp , exp 1xE f x M   and MR   then 

 2 2 1

2

lnM R
N







 . 

Using heavy-tails large deviations estimations one can obtain  

 if     
2 2

*
,xP f x M s s      , 2   then  

 
2

1
3 2

2 2

2

ln 1
max ,N M R







 




 
  
  

   

 . 

All these bounds are optimal up to a multiplicative constants. 
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Using the restarts technique (see Lecture 5) one can generalize all the re-

sults mentioned above to  -strongly convex functions in norm . In all 

the estimations we leave non-euclidian prox-factor  lnn n    ( nQ   ). 

 

 if   
*

, ,x f x M   then 

  2 ln lnM N
N




 ; 

 if  
 

 

2

*

2

,
exp 1

x f x
E

M

 
  
 
 

 and MR   then 

  2 ln lnM N
N




 ; 
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 if     
2 2

*
,xP f x M s s      , 2   then  

 

  
2

2 2 3 2 3 2ln ln ln
max ,

M N M N
N



 

  

 
 

   
   

   
 

 . 

 

 

All these bounds are optimal up to a ln N -factor of  . We don’t know at 

the moment is it possible to eliminate this factor and the n -factor. 

 

Juditsky A., Nesterov Yu. Deterministic and stochastic primal-dual subgra-

dient algorithms for uniformly convex minimization // Stoch. System. – 

2014. – V. 4. – no. 1. – P. 44–80. 
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Is Markov’s inequality always rough?  

Consider sum-type convex optimization problem 

     
1

1
min,

m

k
x Q

k

f x f x h x
m 



    

where     
22k kf y f x L y x     and  h x  is  -strongly convex in 

2
. As we’ve seen later (Lecture 6) one can obtain 

   *

N
E f x f


   

 
 

after       min , lnN m L mL f      iterations (calculations of 

 kf x  solely). Using rough Markov’s inequality  

   
   *

*

N

N
E f x f

P f x f




  

 

  
     , 

one can obtain unimprovable large deviations bound  1ln .   
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Simple lower bounds 

Consider non strongly convex case 

 1,1
min
x

x
 

 . 

Assume that the oracle return  ,f x      ,  0,1N  . At each call   

chooses independently. Assume we know in advance all the details except 

of   sign – but we can observe k ky    . So we know in advanced that 

we should choose 1x   . How many oracle’s calls we need to determine 

with probability 1    the right sign? Due to Neyman–Pirson’s lemma the 

best strategy is 
1

ˆ sign
N

k

N

k

x y


   .  
2

1

ˆ 1 0 0
N

k N

N

k

P x P y Ce  



 
    

 
  , 

when 0  , we have the following lower bound  1 2lnN C   . 
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Consider strongly convex case. Probabilistic model: 
k ky x   ,  0,1k N   // loglikelihood:   

2
2y x  ; 

     
2 2

* * *arg min 2 arg min 2 , ,1
x x

x x x E y x y N x     
 

.        (*) 

One can consider (*) to be the stochastic programming problem with the 

oracle returns stochastic gradients ky x ,  *,1ky N x . Due to Rao–

Cramer’s inequality (Lecture 2) we have   
2

1 1

*
ˆ ,..., N

NE x y y x N   
  

. 

Since normal distribution (with mathematical expectation as parameter) be-

longs to Exponential family, for MLE  
2

1 1

1 1
ˆ arg min

2

N N
k k

N
x

k k

x y x y
N 

     

we have equality in Rao–Cramer’s inequality. Since that we have a precise 

lower bound for that case  1lnN C   . The other example – Bernoulli 

scheme (here one can also use lower bound for two coins comparison). 
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General lower bounds (A. Nemirovski) 

Consider convex optimization problem 

 
 

min
n
px B R

f x


  

with stochastic oracle, return such  ,f x   that: 

   ,E f x f x      ,  
2 2, pq

E f x M   
 

 (1 1 1p q  ). 

We’d like to obtain lower bound for the oracle calls N , that guarantee  Nx  

  *

NE f x f    
 

. 

Nemirovski A. Efficient methods in convex programming. Technion, 1995. 

http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf 

http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf
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Lower bounds for the Stochastic Oracle are (MD achieves these bounds) 

  max 2,2 2 p

p pN c M R  , under N n , where  lnpc n   (this estima-

tion of pc  become precise when 1 0p   );  

   1 2 max 2,2 2 2p

p pN c M R n 


 , under N n .  

For the Deterministic Oracle (when oracle returns subgradient  f x  with 

the property   pp
f x M  ) we have lower bound 

  ln pN cn M R  , under N n . // differs only in this regime 

Agarwal A., Bartlett P.L., Ravikumar P., Wainwright M.J. Information-

theoretic lower bounds on the oracle complexity of stochastic convex opti-

mization // IEEE Trans. of Inform. – 2012. – V. 58. – № 5. – P. 3235–3249. 
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 Nesterov’s problem about Mage and Experts (Parallelization) 

Assume that the optimal configuration determines by convex problem 

  min
x Q

f x


 . 

But each day one can only observe independent stochastic subgradients 

 ,x f x  :    ,xE f x f x      ,  
*

,x f x M  . 

Mage can live  2 2 1 2lnN M R    iterations and Expert 2 2 2N M R  . 

What is better to ask a solution from Mage or from  1lnK    Experts? 

Answer (arXiv:1701.01830): In both of the cases we obtain (up to con-

stant factors) the same  ,  -quality. 

https://arxiv.org/abs/1701.01830
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Indeed, as we’ve already known clever Mage (this Mage know MD al-

gorithm) can give us  ,  -solutions. That is return such a point that 

  * 1NP f x f      . 

On the other hand clever Expert returns such ,N ix  that  ,

*

N iE f x f    
 

. 

Therefore without loss of generality one can assume that (see above) 

   , 2

* ,N if x f N    . 

Since we assume Experts to be independent and  f x  is convex 

    
2

, ,

* *

1 1

1 1
, ,

K K
K N i K N i

i i

f x f f x f N x x
K K K




 

 
     

 
   

Hence,     * 1 exp 1KP f x f K       . 

It’d be interesting to generalize this result for the other cases (see above). 
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Conditional Stochastic optimization 

 
  0;
min ,

g x x Q
f x

 
  

where 

   ,xE f x f x      ,    ,xE g x g x      , 

 
2 2

*
,x fE f x M   

 
,  

2 2

*
,x gE g x M   

 
. 

Let’s 
2

g g gh M ,  f g f gh M M , 

    

    

1

1

= Mirr , ,   if ,

= Mirr , ,   if ,

k

k

k k k k

f x gx

k k k k

g x gx

x h f x g x

x h g x g x

 

 





 

 
 1,...,k N , 

and the set I  (
IN I ) of such indexes k , that  k

gg x  . 
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Then if 
2 2 22 g gN M R   then 1IN   with probability 1 2  and 

  *

fN

f g

g

M
E f x f

M
     

 
,  N

gg x   , 
1N k

k II

x x
N 

  .  

If additionally  
*

,x ff x M  ,  
*

,x gg x M  , then for all 

 
2 2

1

2

81
ln

g

g

M R
N 






 
up to a constant factor and R R   the same 

as it was in unconditional case (see above) 

 with probability 1    it’s true 1IN   and 

  *

N

ff x f   ,  N

gg x  , 

where  2

,

sup ,
x y Q

R V x y


 .  

A. Bayandina generalizes it to strongly convex case, using restarts technique. 

Here we have still an open problem: to generalize on composite optimization. 
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SAA vs SA (Nemirovski–Juditsky–Lan–Shapiro, 2007) 

Stochastic Average Approximation (Empirical Risk Minimization, Monte 

Carlo) approach proposes to change Stochastic convex optimization problem 

 , min
x Q

E f x 


     

by non stochastic sum-type SAA-problem ( 
1

m
k

k



 – i.i.d. realizations from  ) 

 
1

1
, min.

m
k

x Q
k

f x
m






  

  Unfortunately, for the absolutely accurate solution of SAA-problem to 

be  ,  -solution of initial one, one should take at least (  
*

,x f x M  ) 

    2 2 1 2ln lnm C M R n MR       terms.  
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Stochastic Approximation approach (Robbins–Monro, 1951) in our sense 

is nothing more than Mirror Descent. So we can find  ,  -solution of ini-

tial stochastic programming problem for 

 2 2 1 2lnN M R m    // SA is better SAA 

oracle calls (i.e. calculations of stochastic subgradients  ,x f x  ). It seems too 

strange (n-factor in m  can be eliminated via regularization, N. Srebro)! But it 

should be mentioned that one can find  ,  -solution of SAA-problem for 

 2 2 1 2lnN M R    

calculations of stochastic subgradients of the terms of the sum chose at ran-

dom. Indeed, let’s introduce 
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1, , with probability 1

, .............................................

, , with probability 1m

f x m

f x

f x m










 



 

Non stochastic sum-type SAA-problem can be considered as simple sto-

chastic problem (bootstrap trick) 

 , min
x Q

E f x 


    , 

with stochastic subgradient:    , ,x xf x f x     ,  1,...,R m . One can 

generate   for  2log m  arithmetic operations. Since  
*

,x f x M   one 

can easily obtain that  2 2 1 2lnN M R   QED. But sometimes SAA-

approach isn’t substantial at all instead of SA (K. Sridharan’s example).  
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Acceleration of Stochastic Approximation by proper Averaging  

Let x , 1,...,k k N  – i.i.d. with density function  x xp   (supp. doesn’t 

depend on  ), depends on unknown vector of parameters  . Then for all 

statistics  x  (  
2

x xE    
 
 ):      

1

x ,x x
T

p NE I   
        

   ,   

    , x x x ,1ln x ln x
T

p N pI E p p NI      
  

 (see Lecture 2). 

In 1990 B. Polyak (see also Polyak–Juditsky, 1992) showed that for 

 1

xln xk k k

k kp       , 
1

1 N
N k

kN
 



  , k k     ,  0,1  , 

   1

* ,10,dN

pN N I 


      ,   
1

x * * ,1

T
N N

pE N I   
          

. 

SAA approach leads to analogues result (Fisher’s theorem, Lecture 2). 
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Randomized MD for huge QP (Juditsky–Nemirovski randomization) 

Let’s consider QP problem (n n  matrix 0A  is fully completed, ijA M ) 

 1

1
, min .

2 nx S
x Ax


  

Using STM (see Lecture 3), one can find  -solution for 

 2 lnn M n   arithmetic operations. // not good since 1n  is huge 

But if one use randomized MD with stochastic gradient 
 i x

A  –  i x -

column of matrix A and    jP i x j x  , 1,...,j n  (one can generate  i x  

for  n  arithmetic operations), than one can find  ,  -solutions for 

  2 1 2ln lnnM n     arithmetic operations. 
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Randomized MD for Antagonistic matrix game (Grigoriadis–Khachiyan) 

As we’ve already known (see Lecture 2) Google problem can be reduced to 

the saddle-point problem ( A  is s-row and s-column sparse, Lecture 3) 

   21 1
min max , .

n nx S S
Ax




 

  

Assume that there are two players A and B. All the players know ma-

trix ijA a  , where 1ija  , ija  – prize of А (loss of B) in case when A 

plays i  and B plays j . We play for the player B. Assume that the game is 

repeated 1N   times. Let’s introduce loss-function at the step k   

  ,k

kf x Ax  ,  1nx S , 

where  2 1k

nS   – such a vector with all zero components except one 

component, that component corresponds to the A’s choice at the step k  – 
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this components equals 1. This vector in principle could depends on all the 

history for that moment (but it can’t depends on the realization of the ran-

domized strategy of player B at the step k ). Analogously, vector kx  has on-

ly one non zero component, corresponds to the choice of player B at the 

step k . One can introduce the price of the game ( 0C  ) 

       2 21 11 1
max min , min max ,

n nn nx S x SS S
C Ax Ax

 
 

  
   .  (von Neumann theorem) 

The solution of the saddle-point problem  , x  is Nash equilibrium.  

Since that (Hannan) 

 
 

1
1

1
min

n

N

k
x S

k

f x C
N



 . 
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So if we (player B) will choose  kx  at random according to the following 

randomized MD-strategy (randomization under KL-projection!): 

1.  1 1 1,...,p n n  ; 

2. Choose at random  j k  such, that    k

jP j k j p  ; 

3. Put 
 

1k

j k
x  , 0k

jx  ,  j j k ; 

4. Recalculate 

 
1 2ln

expk k

j j i k j

n
p p a

N


 
 
 

 , 1,...,j n ,  

where  i k  – the choice of А at the step k ; 
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then with probability  1    (see Lecture 3 for MD in a simplex) 

 
 

    1

1
1 1

1 1 2
min ln 2 2ln

n

N N
k

k k
x S

k k

f x f x n
N N N

 


 

    , 

i.e. with probability 1    our (B’s player) loss can be bounded 

    1

1

1 2
ln 2 2ln

N
k

k

k

f x C n
N N

 



   . 

The worst case – when А is also know this strategy and use it when choos-

ing  k  (it should be mentioned that A solve max-type problem). If A and 

B will use this strategy then they converges to Nash’s equilibrium accord-

ing to the following estimation. 
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With probability 1    

     2 2 11 1
0 max , max min ,

nn n

N N

x SS S
Ax Ax Ax

 
 

  
      

   2 11
max , min ,

nn

N N

x SS
Ax Ax


 


     

   2 11
1 1

1 1
max , , , min ,

nn

N N
N k k k k N

x SS
k k

Ax Ax Ax Ax
N N

   


 

          

       2 2
ln 2 2 2ln 2 ln 2 2ln 2n n

N N
      

    2
2 ln 2 2 2ln 2n

N
  , 

where 
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1

1 N
N k

k

x x
N 

  , 
1

1 N
N k

kN
 



  . 

So when 

   
2

ln 2 8ln 2
16

n
N






 , 

then with probability 1    one can guarantee NAx 

 . The total num-

ber of arithmetic operations can be estimated as follows 

 
2

ln lns n n
n





 
  
 

 . 
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To be continued… 

  


