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Complexity theory of convex optimization 

 was built in 1976–1979 mainly in works of  

Arkadi Nemirovski 
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Main books: 
 

Nemirovski A. Efficient methods in convex programming. Technion, 1995. 

http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf  

Nesterov Yu. Introduction Lectures on Convex Optimization. A Basic Course. 

Applied Optimization. – Springer, 2004. 

Nemirovski A. Lectures on modern convex optimization analysis, algorithms, 

and engineering applications. – Philadelphia: SIAM, 2013.  

Bubeck S. Convex optimization: algorithms and complexity // In Foundations 

and Trends in Machine Learning. – 2015. – V. 8. – no. 3-4. – P. 231–357. 

Guzman C., Nemirovski A. On lower complexity bounds for large-scale 

smooth convex optimization // Journal of Complexity.  2015.  V. 31.  P. 1–14.  

Gasnikov A., Nesterov Yu. Universal fast gradient method for stochastic com-

posit optimization problems // Comp. Math. & Math. Phys. 2016. (in print) 

https://arxiv.org/ftp/arxiv/papers/1604/1604.05275.pdf  
 

http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf
https://arxiv.org/ftp/arxiv/papers/1604/1604.05275.pdf
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Structure of Lecture 3 
 

 

 Pessimistic lower bound for non convex problems 

 Resisting oracle 

 Optimal estimation for convex optimization problems 

 Lower complexity bounds 

 Optimal and not optimal methods  

 Mirror Descent 

 Gradient Descent 

 Similar Triangles Method (Fast Gradient Method) 

 Open gap problem of A. Nemirovski  

 Structural optimization (looking into the Black Box) 

 Conditional problems 

 Interior Point Method 
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Two practice examples (A. Nemirovski) 

Stability number of graph 
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 6k  , 160m  . 

Which of these two problems harder to solve? Intuition says – the second. 

But the first problem is not convex and it’s NP-hard. The best known me-

thod finds 0.5-solution required 772 10n   flop. The second problem is con-

vex and one can find 610 -solution by CVX for few seconds (Lecture 1). 
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Pessimistic lower bound for non convex problems 

Assume that we have to solve (  1nB  – unit cube in 
n ) 

 
 1

min ,
nx B

F x


  

in sense 

 
 

 
1

min ,
n

N

x B
F x F x 


   

where   1k kd F x te dt   (k  is fixed, 1 k n  ) for all  1ne B . 

For arbitrary method imposed with local oracle (this oracle in request 

for fixed point can return as high derivatives of  F x  as we asked) we have 

that required number of (randomized) oracle calls is: 
n kN    and for one 

extremum problem for deterministic oracle is:
 

 1
.

n k
N 

   

Resisting oracle: Uniform Grid method is worst-case optimal. 
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Resisting oracle (build online “bad” function for the method) 

For simplicity consider 0-order oracle (return the value of the function). 

Divide  1nB  on nm  sub-cubes   1 2nB m . Assume that 

   F y F x M y x


   . 

At each point reply   0kF x  . When nN m  there is ball   1 2nB m  

with no question. Hence we can take  

 
 

1
min

2nx B

M
F x

m
  . 

Thus  2M m  . Therefore, choosing 1nN m   one can obtain: 

1
2

n
M

N
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Optimal estimation for Convex Optimization problems (N n ) 

  min,
x Q

F x



 

 
Q – compact (it’s significant!) convex set, dimn x . We assume that 

  * ,NF x F    where N  – number of required iterations (calculations 

 F x  or separation hyperplane to Q or its cutting part).
 

 ln ,N n F 
 

where     
,

sup
x y Q

F F y F x


   . Additional iteration complexity is  2n .
 

 Lee Y.-T., Sidford A., Wong S.C-W. A faster cutting plane methods and its 

implications for combinatorial and convex optimization // e-print, 2015. 

https://arxiv.org/pdf/1508.04874v2.pdf  

 Ellipsoid method:  2 1ln .N n  
 
Additional iteration complexity is  2n .

https://arxiv.org/pdf/1508.04874v2.pdf
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LP in P by ellipsoid algorithm (L. Khachyan, 1978) 

Assume we have to answer is Ax b  solvable ( dimn x , dimm b )? We 

assume that all elements of A and b  are integers. And we’d like to find one 

of the exact solutions *x . This problem up to a logarithmic factor in com-

plexity is equivalent to find the exact solution of LP problem , min
Ax b

c x


  

with integer A, b  and c . To find the exact solution of Ax b  one can use po-

lynomial Gauss algorithm  3n . What is about Ax b ? Let’s introduce 

 
,

2 2 2

, 1,1 1

log log log 1.
m n m

ij i

i j i

L a b mn
 

      

Useful properties: 
* 2Lx


 ; if 0Ax b   is incompaitable then for all x  

   1
2 .

L
Ax b

 

 
   Works in  nL -bit arithmetic with  2mn n   cost 

of PC memory one can find *x  (if it’s exist) for   3 2n n m L   a.o. 
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LP in P? – is still an open question 

Simplex Method (Kantorovich–Dantzig) solve (exactly since it’s finite me-

thod) LP in polynomial time  3m  only “in average” (Borgward, Smale, 

Vershik–Sporyshev; 1982–1986). Klee–Minty example (1972) shows that 

in worth case simplex methods required to get round all the vertexes of po-

lyhedral (exponential number). At the very beginning of this century 

Spielman–Tseng (smooth analysis) show that if :A A A G  , where 
.

, 1,1

m n

ij i j
G g


  , i.i.d.  20,ijg N    and  T A  – time required by special 

version of Simplex Method to find exact solution, then 

   1Poly , ,GE T A n m       . //  1log   ? – an open question 

In ideal arithmetic with real numbers it is still an open question (Blum–

Shub–Smale): is it possible to find the exact solution of LP problem (with 

real numbers) in polynomial time in ideal arithmetic ( e   – costs  1 ). 
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Optimal estimations for Convex Optimization problems (N n ) 
 

  min.
x Q

F x



 

We assume that 

  * .NF x F  
 

N  –  number of required iterations (calculations of  F x  and  F x ). 

R  – “distance” between starting point and nearest solution. 

N     F y F x M y x       
*

F y F x L y x     

 F x  convex 2 2

2

M R


 

2LR


 

 F x   -strongly convex 2M


 

2

ln
L R

 

  
  

  
  N  

If norm is non euclidian then the last row is true up to  ln n -factor.
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Lower complexity bound. Non smooth case (N n ) 

Let’s introduce 

 2 2nQ B R ,  
2

21
max

2
N i

i N
F x M x x



 
  , 

M

R N
  , 

    1 0 0Lin ,...,k kx x f x f x     . // method 

Solving the problem 

2 min
2

N
M




    

we get * R N   , 
2 2 2

* *2
x N R  ,  * minN N

x Q
F F x MR N


   . If 

0 0x   then after N  iteration we can keep 0N

ix   for i N . So we have 
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Lower complexity bound. Smooth case  

Let’s introduce (2 1N n  ): 1 0x  ,     1Lin ,...,k kx f x f x   , 
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Let’s introduce L    
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* * 2
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2 1

N

NF x F x x






 
      

 (with arbitrary
 

1N  ). 
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Optimal method for non-smooth convex case (B. Polyak, N. Shor) 

Let’s consider unconstrained convex case 

  min
x

f x  .                                          (1) 

We search such Nx  that 

  *

Nf x f   , 

where  * *f f x  – optimal value of function in (1), *x  – solution of (1). 

Let’s introduce 

   2 * * 2
, :n nB x R x x x R     . 

The main iterative process is (for simplicity we’ll denote    f x f x  ) 

 1=k k kx x h f x   .                                        (2) 
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Assume that under  2 *, 2nx B x R   

 
2

f x M  , 

where 0

* 2
R x x  . 

Hence from (2), (5) we have  

 
22

1

2 2
=k k kx x x x h f x     

   
22

2

2 2
2 ,k k k kx x h f x x x h f x        

 
2

2 2

2
2 ,k k kx x h f x x x h M      .                       (3) 

Here we choose *x x  (if *x  isn’t unique, we choose the nearest *x  to 0x ) 
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  , 

then 

  *

N MR
f x f

N
  .                                           (4) 
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This means that 

2 2

2

M R
N


 , 

2
h

M


 . 

Note that  

 
2

2 2
0

* *2 2

1
0

2 2

k hM
x x x x

hk
     , 

Hence for all 0,...,k N  

2 2 2
0 2 2 0

* * *2 2 2
2kx x x x h M k x x      , 

therefore 

0

* *2 2
2kx x x x   , 0,...,k N .                      (5)                          
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For general (constrained) case 

  min
x Q

f x


                                              (6) 

we introduce norm , prox-function   0d x   (  0 0d x  ) which is 1-

strongly convex due to   and Bregman’s divergence 

       , ,V x z d x d z d z x z     . 

We put  2 0

*,R V x x , where *x  – is solution of (6) (if *x  isn’t unique then 

we assume that *x  is minimized  0

*,V x x ). So instead of (3) we’ll have 

     1 2 22 , 2 , 2 ,k k k kV x x V x x h f x x x h M       (  
*

f x M  ). 

Mirror Descent (A. Nemirovski, 1977), for 0,..., 1k N   

  1= Mirr ,k

k k

x
x h f x       Mirr v arg min v, , .k

k k

x x Q
x x V x x
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And analogues of formulas (4), (5) are also valid. 

  *

2N MR
f x f

N
  ,  0

* *2 ,kx x V x x  , 
2

h
M


 . 

Typically, 
2 2

0 2 0

* *

1
ln

2
x x R C n x x     . 

Examples 

Example 1.  : 0n nQ x x     ,  
2

f x M  , x Q , 

2
 ,  

2

2

1

2
d x x x  , intx Q , 2h M , 0x x , 

    1= max ,0k k k k kx x h f x x h f x



     
 

, 1,..., 1k N  , 

where  max  is taken component-wise. □ 
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Example 2.   
1

1 : 1
n

n

n k

k

Q S x x



 
    

 
 ,  f x M


  , x Q , 

1
 ,  

1

ln ln
n

i i

i

d x n x x


  , 1 2lnh M n N , 0 1ix n , 1,...,i n , 

For 0,..., 1k N  , 1,...,i n   

 

 

  

  
11

11 1
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expexp

k
r

k ki
i irk

i nn k
k kr
l ll

ll r

h f x
x h f x

x

x h f xh f x



 

 
    
  
 

   
 



 
, 

  *

2lnN n
f x f M

N
   (

1

0

1 N
N k

k

x x
N





  ).□ 
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Optimal method for non-smooth strongly convex case 

Assume that  f x  is additionally  -strongly convex in 
2
 norm: 

     
2

2
,

2
f y f y x y x y f x


       (for all ,x y Q ). 

Introduce                           1= Mirr ,k

k k

kx
x h f x   

 
2

1
kh

k


 
,  

2
0

2

1

2
d x x x  ,  

2
f x M  , x Q . 

Then (Lacoste-Julien–Schmidt–Bach, 2012) 

   

2

*

1

2 2

1 1

N
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k

k M
f x f

k k k

 
  

   
 . 

Hence                                            

22M
N


 . 
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Gradient descent is not optimal method for smooth convex case 

   
*

f y f x L y x     
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2

1 arg min , ,
2

k k k k k

x Q

L
x f x f x x x x x



 
      

 
 

 
2

*

2
,N LR

f x f
N

 


    0

2

*
,
max .

x Q f x f x
R x x

 
 

 

In Euclidian case (2-norm) one can simplify 

 1 1
,k k k

Qx x f x
L

  
   

 
 

 
2

*

2
,N LR

f x f
N

   
0

* 2
.R x x    

If nQ    one has 

 1 1
.k k kx x f x

L

     

Unfortunately, convergence of simple gradient descent isn’t optimal! 
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 Polyak’s heavy ball method 
 

Gradient descent (Cauchy, 1847):  

 ;
dx

f x
dt

    1 1
.k k kx x f x

L

     

Lyapunov’s functions:     *,V x f x f    
2

* 2
V x x x   (convex case).   

 

Heavy ball method (Polyak, 1964):  

,
dx

y
dt

   ;
dy

ay b f x
dt

        1 1 .k k k k kx x f x x x         

Lyapunov’s function:    
2

2

1

2
V x f x y

b
   – full energy (convex case).  

Wilson A., Recht B., Jordan M. arXiv:1611.02635; see also arXiv:1702.06751 

Local convergence is optimal. Now we describe global optimal method. 

https://arxiv.org/abs/1611.02635
https://arxiv.org/abs/1702.06751
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Optimal method for smooth convex case 
Estimation functions technique (Yu. Nesterov)  

 0 0,d y 
   0,d x 

 
       , , ,V x z d x d z d z x z      

       0 0 0 0

0 0, ,x V x y f y f y x y       
 

, 

       1 1 1

1 1 ,k k k

k k kx x f y f y x y     

 
     
 

 

 0 0

0arg min
x Q

x u x


  , 
0
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k i
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A 


 ,  1

0 L  , 2

k kA L ,  

2

1 2

1 1

2 4
k k

L L
     , 

 
2

1

4
k

k
A

L


 , 0,1,2,...k   
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Similar Triangles Method (Yu. Nesterov; 1983, 2016) 
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0

Mirr  the same
k
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  1 1

1Mirr  mirror version (Alexander Turin, HSE)k

k k

ku
u f y 

   

kx
 

1ku 
 ku  

1ky 
 

1kx 
 

 1kf y   
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Assume that 

   
*

f y f x L y x     (for all ,x y Q ). 

Then 

   
 

2

2

4
min

1

N

x Q

LR
f x f x

N
 


. 

That is 
22N LR  . And for all 0,1,2,...k   

 
2

0

* *2 ,ku x V x y  , 

   
2 2 2

0 0 0

* * *max , 4 , 2k kx x y x V x y x y     . 

Primal-duality:        0

0

min , , .
N

N k k k

N k
x Q

k

A f x V x y f y f y x y
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Optimal method for smooth strongly convex case 

       0 0 0 0 0

0 0

2

2
, ,

2
x V x y f y f y x x yy 

 
     


 


, 

       1 1 1

1

2

21
2

, kk k k

k k kx x f y x yf y x y  
  

 

 
      

 
 , 

0

k

k i

i

A 


 ,  1

0 L  ,   2

1 11 kk k LAA     ,  0 0

0arg min
x Q

x u x


  , 

 
1 2

11 1

2 4

kk kk
k

AA A A

L L L







  
   , 1 1k k kA A    , 

2

1 1
1 exp

2 2

k

k

k
A

L L L

    
     

   
, 0,1,2,...k   
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Then using Similar Triangles Method with new estimating functions se-

quence and new step size policy one can obtain (continuous on 0  ) 

   
 

2
2

2

4
min min , exp

21

N

x Q

LR N
f x f x LR

LN





   
    

    

. 

In other “words” 

2

2 ln
L LR

N
 

 
 
 

 . 

Unfortunately here and before, in strongly convex case we were signifi-

cantly restricted by Euclidian norm/prox-structure. Generalization requires 

another approach: restarts technique (Lecture 5). 



30 
 

For nQ    one can simplify method (Yu. Nesterov; 1983, 2001) 
0 0x y , 

 1 1k k kx y f y
L

    , 

 1 1 1k k k kL
y x x x

L





  
  


. 

Unfortunately, this method isn’t continuous on 0  .  

Note: In smooth case from    *

Nf x f x    one has that 

 
2

2Nf x L   (  
2

* 0f x  ).  

and in strongly convex case (geometric convergence in argument) 
2

* 2
2Nx x    . 
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Open gap problem (A. Nemirovski, 2015) 

Assume that  1

nQ B R  (ball in 
n  of radius R  in 1-norm), 

    2 22
f y f x L y x    . 

Then for N n  and arbitrary method with local first order oracle 

 
2

1 2
* 3

N C L R
f x f

N
  . 

When     1 1
f y f x L y x


     Similar Triangles Methods takes us 

 
2

2 1
* 2

N C L R
f x f

N
  , 

where 2 1 2L n L L  . Unfortunately, we can’t say that there is no gap be-

tween lower and upper bounds.  
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Optimality 

Meanwhile, for the most interesting convex sets Q  there exists such a norm 

 and appropriate prox-structure  d x  that Mirror Descent and Similar 

Triangles Method (and theirs restart-strongly convex variants, Lecture 5) 

lead (up to a logarithmic factor) to unimprovable estimations, collected in 

the table below (we assume that all parameters M , L , R ,   we choose cor-

respond to the norm  – this isn’t true for A. Nemirovski example):    

N     F y F x M y x       
*

F y F x L y x     

 F x  convex 2 2

2

M R


 

2LR


 

 F x   -strongly convex 2M


 

2

ln
L R

 

  
  

  
 

If norm is non euclidian then the last row is true up to  ln n -factor. 
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How to choose norm and prox function? 
 

Arkadi Nemirovski, 1979 
 

2log 1
1

2log 1 2log

n
a

n n
 


  

 1n

pQ B  1 p a   2a p   2 p   

 
a
 or 

1
 

p
 

2
 

 d x  
 

 
21

2 1 a
d x x

a



  

 
21

2 1 p
d x x

p



 

2

2

1

2
x  

2R   logn    1
1p


    1  
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Structural optimization (looking into the Black Box) 

Composite optimization (Yu. Nesterov, 2007)      min,
x Q

f x h x


   

         Mirr : arg min , , ,k

k k k k

x x Q
f x f x x x h Vx x x  


      

         1 1 1

1 1: , .k k k

k k k hx x f y f y x xy     

 
    



  

Rates of convergences of  MD and STM don’t change and determine only 

by properties of function  f x  as it was previously (without  h x ). 

Example (L1 optimization).  
1

h x x ,  
2

2
2d x x , nQ   ,  

   
1

1 1
sign

n

k k k k

i i i i

i

x f x x f x
L L L



 

    
        

   

    21

2

arg min , 2 .
n

k k k

x
f x x L xxx x
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Structural optimization (looking into the Black Box) 

MinMax problem (idea A. Nemirovski, 1979; Yu. Nesterov, 2004)  

     
1,...,

max min,l
x Ql m

F x f x h x


    

         1,...

1

,

1 1 1

1 marg min , ,a .xk k k k k

k
u

l l
l mQ

u f y f y u y V u uh u   


 

     





Unfortunately in general this sub-problem isn’t simple enough. But the num-

ber of such iteration of Turins’ variant of STM will be the same (up to a con-

stant) as in the case of previous slide  

 
 

2

* 2

8
,

1

N LR
F x F

N
 


    

*
, , , 1,.., .l lf y f x L y x x y Q l m       

One can also generalize this result further: 

Lan G. Bundle-level methods uniformly optimal for smooth and non-smooth 

convex optimization // Math. program. Ser. A. 2015. V. 149. no. 1. P. 1–45. 
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Note that  F x  isn’t necessarily smooth even with   0h x  . So if we can 

calculate at each iteration only  kF x  then one can think that such a me-

thods (that used only this information) can’t converges faster then 

 MR N  according to lower bound from the table above. But there is no 

contradiction with the previous slide since there we have more information 

  
1

m
k

l
l

f x


  and we allow ourselves to solve at each iteration non trivial 

problem (in general). Nevertheless, estimation  MR N  is not the right 

lower bound, for example, when   ,l lf x c x , because the problem has a 

special structure (functional has a simple Fenchel’s type representation). This 

structure allows to replace the problem by (Nesterov’s smoothing, 2005) 

   
1

ln exp , min,
m

l
x Q

l

F x c x  




 
  

 
   2ln m  . 
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If one can find such Nx  that  

  * 2NF x F     

then for the same Nx  one will have (Lecture 5) 

  *

NF x F   . 

The above is obvious from the dual regularized representation 

 
 1

1

max ,
m

m

l l
y S

l

F x y c x




  ;  
 1

1 1

max , ln
m

m n

l l l l
y S

l l

F x y c x y y 


 

 
  

 
  . 

Since 
1

ln
n

l l

l

y y


  is 1-strongly convex in 1-norm then 

   
22 FF y F x L y x

     ,  
2

21,...,

1
max .F l
l m

L c
  
  

So we have  221,...,
max lnl
l m

N c R m 


   instead of  
22 2

221,...,
max l
l m

N c R 


  . 



38 
 

Conditional problems 

 

In smooth case the main trick is to reduce 

 
 

0
0, 1,..., ;
min

lf x l m x Q
f x

  
  

 to the searching of  

        0 1min max , ,..., .m
x Q

F t f x t f x f x


   

The last problem (with fixed t  is considered above). Our task is to find the 

minimal *t  such that  * 0F t  . Since  F t  convex and decrease one can do it 

with precision   using  1log    recalculations of  F t .  

 

Nesterov Yu. Introduction Lectures on Convex Optimization. A Basic 

Course. Applied Optimization. – Springer, 2004. 
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In non smooth case 

 
  0;
min ,

g x x Q
f x

 
  

where  
* ff x M  ,  

* gg x M  . Let’s 2

g g gh M ,  f g f gh M M ,  

    

    

1

1

= Mirr ,   if ,

= Mirr ,   if ,

k

k

k k k

f gx

k k k

g gx

x h f x g x

x h g x g x









 

 
 1,...,k N , 

and the set I  of such indexes k , that  k

gg x  . Then for 
2 2 22 g gN M R   

  *

N

f f g gf x f M M    ,  N

gg x  , 

where  
1N k

k II

x x
N 

  , 
IN I , 1IN  .  
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High-order methods 

In 1989 Nemirovski–Nesterov propose a general (Newton’s type) me-

thod to solve large class of convex optimization problems of these type 

, min
x Q

c x


 , //  Note:  
 

min min
x F x y

F x y


  , 

Idea (inner penalty):  , min
x

t c x F x  , t . // central path 

Convex (but rather complex for projections) set Q  imposed by  -self-

concordant barrier function  QF x . As we have already known (see Lecture 

1) many interesting convex problems have such representation with 
nQ   , nQ S  (up to affine transformation). For this sets 

 
1

ln
n

Q i i

i

F x x x


   and    ln detQF X X   

are corresponding n-self-concordant barrier (and in general  n   ). 
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Interior Point Method (inserted in CVX) 

The proposed method looks as follows 

1 1
1

13

k kt t


  
  
 

,     
1

1 2 1k k k k k

Q Qx x F x t c F x


      
 

. 

With proper choice of starting point (these procedure costs  log  ) 

described IPM has the following rate of convergence   logN     . 

This estimation is better (since  n   ) than lower bound  1logn    

(we consider here the case N n ). There is no contradiction here, because 

of additional assumption about the structure of the problem. This estima-

tion is accurate, but in real live IPM is much faster (30 iteration is typically 

enough). IPM works much better for 210n   then ellipsoid’s type methods.  
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Can one obtain something better? 

The question is natural since local convergence of Newton method is 

 1log log   . As it was shown by A. Nemirovski (1979) this rate of con-

vergence could be in principal be realized globally. But the price should be 

to high – rather complex iterations. Even in IPM realization we have in 

principle the following complexity of one iteration  3n  (this can be re-

duced for the special cases). Moreover, it was also shown that even in 
1  

for the function  f x , with  1 2f x  , 
    1
k

f x  , 1,3,...,k m , 1m  

the lower bound will be  1log logmc    (here we can asked oracle as 

much derivatives k m  as we want). Local convergence can be faster 

(Chebyshev’s type methods http://www.ccas.ru/personal/evtush/p/198.pdf)! 

IPM is a powerful tool that finds applications to real large scale convex 

problems ( 410n  ). Especially for Semi Definite Programming (see CVX). 

http://www.ccas.ru/personal/evtush/p/198.pdf
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Semi Definite Relaxation (MAX CUT) 

   
 

,
2

1,1, 1,1

1
max

2 n

n n

ij i j
xi j

f x A x x
 

   , 

where 
,

, 1,1

n n

ij i j
A A


  (

TA A ). 

Let’s introduce 

1 1

diag

n
n

ij

j i

L A A
 

 
  

 
 , 

  – random vector, uniformly distributed on a Hamming cube  1,1
n

 . 

Note, that 

  ,f x x Lx . 
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Simple observation: 

 1,1

, 0.5 max ,
n

x

E L x Lx 
 

 . 

Could we do better? 

   1,1 1,1
1, 1,...,

max , max , max ,
n n n

ii

T

X Sx x
X i n

x Lx L xx L X
   

 

   // SDP problem! 

The book of Goemans–Williamson, 1995 

Let  be the solution of SDP problem. Let 

 0,N   ,  sign  . 

Then (the constant is unimprovable if P NP  – Unique Games Conjecture) 

 1,1

, 0.878 max ,
n

x

E L x Lx 
 

 . 
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“Optimal” methods aren’t always optimal indeed 

Due to Lecture 2 we can reduce Google problem to 

 
 

2

2 1

1
min ,

2 nx S
f x Ax


   

We will use not optimal (in terms the number of oracle calls) conditional 

gradient method (Frank–Wolfe, 1956). But we assume that the number of 

nonzero elements at each row and each column smaller then s n . 

We choose starting point at one of the simplex vertex 1x . Induction step 

 
 1

, min
n

k

y S
f x y


  . 

Let’s denote the solution of this problem by 
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 0,...,0,1,0,...,0ky  , 

where 1 is posed at the position 

 
1,...,

arg min i

k k
i n

i f x x


   . 

The main algorithm looks as follows 

 1 1k k k

k kx x y     , 
2

1
k

k
 


, 1,2,...k  , 

One can obtain that (here we also used that * 0f  ) 

   
2

*

2

1

p pN N
L R

f x f x f
N

  


, // for optimal method 
2

2

LR

N
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22

, 1
max

n

p px y S
R y x


  , 

2

21 1
max , max

p p

T

p
h h

L h A Ah Ah
 

  , 1 p   . 

Since we work on a simplex we choose 1p  . As a result 

2

1 4R  , 
2

1
1,..., 2

max 2
i

i n
L A


  . 

Hence for   2 2Nf x   (
2

NAx  ) we have to do 232N    iterations 

(N n   1 2n  , but since  1 1 1 2

2
,...,n n n   , here we are interested 

in 1 1 2n n   ). One can show that after  n  preprocessing each itera-

tion will costs   2 2lns n s . So the total complexity will be 

  2 2 2lnn s n s   , 

instead of total complexity of “optimal” method STM  sn  .  
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To be continued… 

  
  


