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Complexity theory of convex optimization
was built in 1976-1979 mainly in works of
Arkadi NemirovskKi
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Structure of Lecture 3

e Pessimistic lower bound for non convex problems
e Resisting oracle
e Optimal estimation for convex optimization problems
e Lower complexity bounds
e Optimal and not optimal methods
e Mirror Descent
e Gradient Descent
e Similar Triangles Method (Fast Gradient Method)
e Open gap problem of A. Nemirovski
e Structural optimization (looking into the Black Box)
e Conditional problems
e Interior Point Method



Two practice examples (A. Nemirovski)
Stability number of graph

Zn:xi —  max , n=256.

, xZ—x: =0
=1 Xin:O,(i,j)Er
La Tour Eiffel problem
X, = min , k=6, m=160.
X{ seeereereens x{
Ainl T [ 120, 1=1,...k
.......... Xy » X
Xt e x:n,xO
D apx=bl, 1=k ) xg=l

Which of these two problems harder to solve? Intuition says — the second.
But the first problem is not convex and it’s NP-hard. The best known me-

thod finds 0.5-solution required 2" =10"" flop. The second problem is con-
vex and one can find 10~°-solution by CVX for few seconds (Lecture 1).



Pessimistic lower bound for non convex problems
Assume that we have to solve (B} (1) — unit cube in R")

F(x)~ Ty

IN sense
F(xN )— min F(x)<e,

XeBO'l(l)
where |d“F (x+te)/dt"| <1 (k is fixed, 1<k <n) for all e € B (1).

For arbitrary method imposed with local oracle (this oracle In request

for fixed point can return as high derivatives of F (x) as we asked) we have
—n/k

and for one

that required number of (randomized) oracle calls is: [N > &

extremum problem for deterministic oracle is: [N > g "k
Resisting oracle: Uniform Grid method Is worst-case optimal.




Resisting oracle (build online “bad” function for the method)
For simplicity consider 0-order oracle (return the value of the function).

Divide B} (1) on m" sub-cubes B[ (1/(2m)). Assume that
F(y)-F(x)[<M[y-x],.
At each point reply F(x*)=0. When N <m" there is ball B (1/(2m))

with no question. Hence we can take

. M
F =——,
JQ%% (X) 2m

Thus ¢ > M/(Zm). Therefore, choosing N =m" —1 one can obtain:

N Z(Mj 1
28




Optimal estimation for Convex Optimization problems (N >n)

F(X)— min,
(x) —> mir
Q — compact (it’s significant!) convex set, n=dimx. We assume that

F(x")-F. <&, where N — number of required iterations (calculations

oF (x) or separation hyperplane to Q or its cutting part).
N ~nin(AF/¢),

where AF = sup {F (y)—F(x)}. Additional iteration complexity is é(nz).

X,yeQ

Lee Y.-T., Sidford A., Wong S.C-W. A faster cutting plane methods and its
Implications for combinatorial and convex optimization // e-print, 2015.

https://arxiv.org/pdf/1508.04874v?2.pdf

Ellipsoid method: N ~n?In(&™). Additional iteration complexity is O(n?).
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LP in P by ellipsoid algorithm (L. Khachyan, 1978)
Assume we have to answer Is Ax<b solvable (n=dimx, m=dimb)? We
assume that all elements of A and b are integers. And we’d like to find one
of the exact solutions x.. This problem up to a logarithmic factor in com-

plexity is equivalent to find the exact solution of LP problem (c,x) —> r/plrt')l

with integer A, b and c. To find the exact solution of Ax=Db one can use po-
lynomial Gauss algorithm O(n?). What is about Ax<b? Let’s introduce

L= mzri log, ‘aij‘+zmllog2 b.|+log, (mn)+1.

i) j=11 i=1
Useful properties: |x.| <2%; if Ax—b<0 is incompaitable then for all x

H(Ax—b)+Hoo > 2% Works in O(nL)-bit arithmetic with O(mn + n2) cost

of PC memory one can find x. (if it’s exist) for ()(n?’ (n2 + m) L) a.0.



LP in P? —is still an open question
Simplex Method (Kantorovich—Dantzig) solve (exactly since it’s finite me-
thod) LP in polynomial time O(m®) only “in average” (Borgward, Smale,
Vershik—Sporyshev; 1982-1986). Klee—Minty example (1972) shows that
In worth case simplex methods required to get round all the vertexes of po-

lyhedral (exponential number). At the very beginning of this century
Spielman-Tseng (smooth analysis) show that if A:=A+|A|G, where

G= Hgij .
1,J=11
version of Simplex Method to find exact solution, then
Es[T,(A)]=Poly(n,m,é).// log(&*)? — an open question

In ideal arithmetic with real numbers it is still an open gquestion (Blum-
Shub—Smale): is it possible to find the exact solution of LP problem (with
real numbers) in polynomial time in ideal arithmetic (7 -e — costs O(l)).

m.n

,iid. g; eN(0,6%) and T,(A) — time required by special

10



Optimal estimations for Convex Optimization problems (N <n)

We assume that

F(x)—>rp€iQn.
F(XN)—F*gg.

N — number of required iterations (calculations of F(x) and oF (x)).

R — “distance” between starting point and nearest solution.

N Fy)=F)<Mly=x| | [VF(y)-VF(x)]. <L]y-x|
F(x) convex M *R? L R?
82 E
F(x) u-strongly convex M? L{In(“RZ j“ (V)
UE L g

If norm is non euclidian then the last row is true up to O(Inn)-factor.

11



Lower complexity bound. Non smooth case (N <n)
Let’s introduce

Q=B](2R), Fy (x) =M maxx, + - |x|;, 1=

M
1<i<N m’
XM =x%+ Lin{@f (xo)i)f (x" )} /I method
Solving the problem

Mr+%r2 —> min

we get 7. =—R/J/N,

x° =0 then after N iteration we can keep x' =0 for i > N. So we have

2
FN+1(XN+1)_F§+12_FJ+1 :{ VR v }

\/N7+1’2,u-(N +l)

X

=N#Z=R?% F; = min F, (x)=-MR/VN. If

12



Lower complexity bound. Smooth case
Let’s introduce (2N +1<n): x' =0, x* e Lin{Vf (Xl),...,Vf (Xk )}

L , 2N+1 ) , L
FN (X)=§ X "';(Xi_xm) + Xonn _le’

Then min F (x)-Fy 2

1<k<N

Let’s introduce y =L/ u
p(x—1 C
F(x)= (8 ) X:+ (% —xi+1)2—2x1}+§HxH2

2(N-1)
Then F(xN )— F > ﬂ£\/;_1 -Hxl—x*HZ (with arbitrary N >1).

13



Optimal method for non-smooth convex case (B. Polyak, N. Shor)
Let’s consider unconstrained convex case

f (x) > min. (1)
We search such X" that
f(7N )— f,<e,

where f, = f(x.) — optimal value of function in (1), x. — solution of (1).

Let’s introduce
éQ(X*,R):{XEIR{” L x=x], < R}.

The main iterative process is (for simplicity we’ll denote of (x) = Vf (x))

X“"'= x* —hvf (x| (2)

14




Assume that under x B} (x*\/iR)
[V (), <M.
where R =X’ - x*H2
Hence from (2), (5) we have
k-+1

Hx—x z:HX—Xk + hvf (xk)

2

:Hx—kaz +2h<Vf (xk),x—xk>+h2‘Vf (xk)H2 <

SHX—ka2+2h<Vf(x"),x—xk>+h2I\/I2. (3)

Here we choose x = X, (if . isn’t unique, we choose the nearest X, to x°)

15



If

then

(4)

16



This means that

Note that

1 hM °
0% — ([ =7 .~} )+ 5

therefore

F = <) k=0..n ©




For general (constrained) case

f(x)—>r11€|Qn (6)
we introduce norm | ||, prox-function d(x)>=0 (d(x°)=0) which is 1-

strongly convex due to || || and Bregman’s divergence
V(x,z)=d(x)-d (z)—<Vd (z),x—z>.
We put R? =V (x,x°), where x, — is solution of (6) (if x. isn’t unique then
we assume that x. i1s minimized V (x*, X )). So instead of (3) we’ll have
2V (x, xk”) <N (x, xk)+ 2h<Vf (xk ) x—xk>+ h?M 2 (HVf (X)H* <M).
Mirror Descent (A. Nemirovski, 1977), for k =0,...,N -1

X'= Mirr , (h@f (¢ )) Mirr , (v)=arg min {<v X=X )+V (%, X" )}

18



And analogues of formulas (4), (5) are also valid.

f(x")- f_@ |x* —x*H<2\/v (%, x°)

Typically, %Hx*—x H < R? gCInn-Hx*—x H .
Examples

Example 1. Q=R" :{XER”: xZO}, HVf(x)H2 <M, xeQ,

1 2 oo -
| 1=11 d(X)=—HX—XH§ XeintQ, h=s/M*, x* =X,

where max{ } is taken component-wise. o

19



Example2. Q=S (1):{XEIR{Z : Zn:xk :1}, [VE (x)| <M, xeQ,
k=1

L 1=1 1. d(x):lnn+Zn:xi Inx., h:M‘l\/ZInn/N, x’ =1/n,i=1,..,n,
=1

Fork=0,...N-11=1...,n

eXp(_th:Vif(Xr) ) xikexp(—hv.f(xk))

Xik+1: n r=1 =— | |
Sexp( 02w, 1(x) | Tt o(-%f ()
=1 r=1 =1

21 _ 1 &
f(xN)—f <M %(XNZNKZ(;XK)D

20



Optimal method for non-smooth strongly convex case
Assume that f (x) is additionally x-strongly convex in || |, norm:

f(y)+(Vf (y),x—y>+§”x—y”§ < f(x) (forall x,y €Q).

Introduce WK = MirrXk (thf (xk)),
2 1 2
h, = (kD) d(x) =§HX—X0H2, [VE (x)| <M, xeQ.
Then (Lacoste-Julien—Schmidt—Bach, 2012)

N, 2k 2M?
f K - f*g .
(kzllk(k+1)x j u-(k+1)

2M?
ue |

Hence N =

21



Gradient descent is not optimal method for smooth convex case
[t (v)-f ()], < Lly-x

22



X" = arg rpeiQn{f (xk)+<Vf (xk),x—xk>+%HX—ka2},

~

2
2LR CRP= max  [x—x]|.
N xeQ, f(X)<f(xo)

In Euclidian case (2-norm) one can simplify

f(xN)—f*s

If Q=" one has
1
X =x* —Z VI (x*).
Vi (X')

Unfortunately, convergence of simple gradient descent 1sn’t optimal!

23



Polyak’s heavy ball method

Gradient descent (Cauchy, 1847):

dx DR 1
E:_Vf (x); Xt =x" —EVf (x").

Lyapunov’s functions: V (x) = f (x)— f., V (x) =||x—x. 2 (convex case).

Heavy ball method (Polyak, 1964):

Y, %z—ay—be (x); X =X — aVf (Xk)+,8-(xk _Xk_l)_

dx _
dt
Lyapunov’s function: V (x) = f (x)+ 2—1b||y||§ — full energy (convex case).

Wilson A., Recht B., Jordan M. arXiv:1611.02635; see also arXiv:1702.06751
Local convergence is optimal. Now we describe global optimal method.

24
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Optimal method for smooth convex case
Estimation functions technique (Yu. Nesterov)

d(yo)zO, d(x)ZO,V(x,z):d(x)—d(z)—<Vd(z),x—z>,
goo(x):V(x, y°)+ao[f (y°)+<Vf (yo),x—yoﬂ,
P (X) = 0 (X)+ @ | £ () +(VE (), x=y* ) |

X" =u’ rgmlnqp0 ), A = Za a,=L" A =a’L

1 1 ) (k+1)
a,.=—=+. —+a., A > ' k=0,12,...
oL Nar2 K A 4L

25



Similar Triangles Method (Yu. Nesterov; 1983, 2016)

\V4i ( yk+1)

k k
y _ )
Ak+1
k+1

Ut =argming,, (x),

k+1 K
Xk+1 _ o U+ Akx

+ )
= Mirr, (kia,Vf(y') the same

= Mirr , (akHVf (yk”)) mirror version (Alexander Turin, HSE)

26



Assume that

|VE (y)—-VE (x)], <L|y—x| (forall x,y Q).
Then

. 4LR?
f(xN)—ngnf(x)S(NJrl)z.

That is [N = 2,/LR?*/¢|. And for all k =0,1,2, ...
Hu" _X*H2 SZV(X*,yO),

[ Lyt ) <av ()£ 2

Primal-duality: A, f (xN ) < rpeiQn {V (x, y0)+kﬁ;ak [f (yk)+<Vf (yk),x— ykﬂ}.

27



Optimal method for smooth strongly convex case
()= (1) 1)+ 31 () o) b
¢k+1<x>=¢k<x>+am[f (y*)+(v1 (yk+1),x—yk+1>+§ux—ykuj,

A = Za ay=L" AL (L+Au)=o; L x°:u0:argrp€iQngoo(X),

LA [rAp A-(+Al)
Oy = L \/ 4L2 L Ak+1 o Ak T Ay i1

2k
1 1 |u K |1

> — 1+—‘/— > ex —‘/— , k=0,12,...
A L( 2 L) p[Z L)

28



Then using Similar Triangles Method with new estimating functions se-
guence and new step size policy one can obtain (continuous on x> 0)

N

( 2
f(x")—min f(x)<min: LR ~, LR?exp N e
< (N+1) 2\L )

2
N :ZJEIn[LR ]
Y7 E

Unfortunately here and before, in strongly convex case we were signifi-
cantly restricted by Euclidian norm/prox-structure. Generalization requires
another approach: restarts technigue (Lecture 5).

'

In other “words”

29



For Q =R" one can simplify method (Yu. Nesterov; 1983, 2001)

X0 = y°,
K _ k_%vf(yk)’
yk+1_xk+1_|_\/\/E; z(xkﬂ_xk)

Unfortunately, this method isn’t continuous on x> 0.

Note: In smooth case from f (xN )— f (x.) <& one has that

vt (x")[ <2Le ([vf ()] =0).
and in strongly convex case (geometric convergence in argument)
HXN —X*Hi <2¢&/u.

30



Open gap problem (A. Nemirovski, 2015)
Assume that Q = B'(R) (ball in R" of radius R in 1-norm),

[VE (y)-VE (x)|, < LJly—x],-
Then for N <n and arbitrary method with local first order oracle
C,LR?
N°
When |Vf (y)-VF (x)| <L|ly—x|, Similar Triangles Methods takes us

f(xN)—f*z

C,LR?
N2
where L,/n <L <L,. Unfortunately, we can’t say that there is no gap be-

tween lower and upper bounds.

f(x“)—f*g

31



Optimality

Meanwhile, for the most interesting convex sets Q there exists such a norm
| || and appropriate prox-structure d(x) that Mirror Descent and Similar
Triangles Method (and theirs restart-strongly convex variants, Lecture 5)

lead (up to a logarithmic factor) to unimprovable estimations, collected In
the table below (we assume that all parameters M, L, R, u« we choose cor-

respond to the norm | || — this isn’t true for A. Nemirovski example):
N Fy)-FO)[=Mly=x] |[VF(y)-VF(x)].<Ly-x|
F(x) convex M*R? LR?
g <
F(x) u-strongly convex M2 L{In[“RZ ﬂ
He Y7 g

If norm is non euclidian then the last row is true up to O(In n)-factor.
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Arkadi Nemirovski, 1979

How to choose norm and prox function?

g 2logn 14 1
~2logn-1 " 2logn
Q:Bg(l) 1<p<a as<p<2 2< p<Loo
| |1, or I, I, |1,
d(X) 1 2 1 2 1, 2
d — d = —
(X) z(a_l)HXHa (X) Z(p_l)HXHp ZHXHZ
R2 O(logn) O((p—l)_l) O(1)

33




Structural optimization (looking into the Black Box)

Composite optimization (Yu. Nesterov, 2007) |f (x)+h(x)— min,

Mirr, (a&f (xk)) = arg rQiQn{<a6f (x), x—xk>+ah(x)+v ( x")},

Dot (X) =, (x)+ak+1[ f (yk+1)+<Vf (y"“),x— y"+1>+ h(x)}.
Rates of convergences of MD and STM don’t change and determine only
by properties of function f (x) as it was previously (without h(x)).

Example (L1 optimization). h(x) = A||x|,, d (x):qui/Z Q=R",

et -t

:argmin{<w (xk),x—xk>+/1||x||l+(L/2)Hx—x"H2}.

xeR"
34



Structural optimization (looking into the Black Box)

MinMax problem (idea A. Nemirovski, 1979; Yu. Nesterov, 2004)
F(x):ll;r;% f, (x)+h(x)—>rI1€iQn,

k+l - k+1 k+1 k+1 k
u*** =argmin {akﬂ{[rl]%[ fi(y )+<Vf, (y“!).u-y >}+ h(u)}+v (u,u )}
Unfortunately in general this sub-problem isn’t simple enough. But the num-
ber of such iteration of Turins’ variant of STM will be the same (up to a con-

stant) as in the case of previous slide
8LR*

(N+1)"
One can also generalize this result further:

Lan G. Bundle-level methods uniformly optimal for smooth and non-smooth
convex optimization // Math. program. Ser. A. 2015. V. 149. no. 1. P. 1-45.

35
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Note that F(x) isn’t necessarily smooth even with h(x)=0. So if we can
calculate at each iteration only aF(xk) then one can think that such a me-
thods (that used only this information) can’t converges faster then
O(MR/\/W) according to lower bound from the table above. But there is no
contradiction with the previous slide since there we have more information

m
{VfI (xk)}I and we allow ourselves to solve at each iteration non trivial
=1

problem (in general). Nevertheless, estimation O(I\/IR/\/W) IS not the right

lower bound, for example, when f,(x)={(c,,x), because the problem has a

special structure (functional has a simple Fenchel’s type representation). This
structure allows to replace the problem by (Nesterov’s smoothing, 2005)

F (x)= ylﬂ(lzn;exp«cl , x>/7)j —min, y=¢/(2Inm).

xeQ
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If one can find such x" that
F (xV)-F <ég/2

Y

then for the same x" one will have (Lecture 5)
F(x")-F <e.

The above is obvious from the dual regularized representation

F(x)= maxlzmllyI (¢, x); F (x)= max {Izml:yl <c|,x>—ylznlly, In yl}.

yeSm(l) yeSm(l)

Since Zyl Iny, is 1-strongly convex in 1-norm then
=1

1
y=x[,, Le ==max|ec, >

=1,....m

HVFy (y)-VF, (X)H2 <L

So we have N =O(max lc|, R,vIn m/g) instead of N =O(Ir:r11ax Ic, Hz RZZ/EZ).

I=1,....m
37



Conditional problems

In smooth case the main trick iIs to reduce

fO (X) — f,(x)somj,q,m; xeQ

to the searching of

F(t)= min max { f, (x)—t, f,(X),.... f,, (x)}.

The last problem (with fixed t is considered above). Our task is to find the
minimal t. such that F(t.)=0. Since F(t) convex and decrease one can do it

with precision & using ~ Iog(g‘l) recalculations of F (t).

Nesterov Yu. Introduction Lectures on Convex Optimization. A Basic
Course. Applied Optimization. — Springer, 2004.
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In non smooth case

f (X) — g(xI;Q(!;r](eQ’

where [[of (x)[, <M, [og(x)|, <M. Let’s hy =g, /MZ, h, =&, /(M M),
x“1= Mirr, (h,of (")), ifg(x*)<e

g ]

k=1..N,

X““1= Mirr , (hgag (xk)), ifg(x)>e,,

and the set | of such indexes k, that g(x*)<¢,. Then for [N = 2M/R* /&;

f(YN)—f*ng =M;¢, /M, g(YN)Sgg,

where X" :Nink, N, =[1], N, >1.
| kel

39



High-order methods

In 1989 Nemirovski—Nesterov propose a general (Newton’s type) me-
thod to solve large class of convex optimization problems of these type

(c,x>—>miQn,// Note: F(x)— min ~ y—>Frpi)n,
Xe X X)<y

Idea (inner penalty): t(c,x)+ F (x)— min, t —oo. // central path

Convex (but rather complex for projections) set Q imposed by v-self-
concordant barrier function F, (x) As we have already known (see Lecture

1) many interesting convex problems have such representation with
Q=R", Q=S (up to affine transformation). For this sets

FQ(X):—Zn:Xi Inx; and Fy (X )=-Indet(X)

are corresponding n-self-concordant barrier (and in general v = O(n)).

40



Interior Point Method (inserted in CVX)

The proposed method looks as follows

R T—

With proper choice of starting point (these procedure costs O(\/— logv))

described IPM has the following rate of convergence [N = O(x/_ log v/g )
-1

This estimation is better (since v =0(n)) than lower bound ~ nlog( )

(we consider here the case N >n). There is no contradiction here, because
of additional assumption about the structure of the problem. This estima-
tion is accurate, but in real live IPM is much faster (30 iteration is typically
enough). IPM works much better for n >10° then ellipsoid’s type methods.
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Can one obtain something better?
The question is natural since local convergence of Newton method is
~loglog(&™). As it was shown by A. Nemirovski (1979) this rate of con-

vergence could be in principal be realized globally. But the price should be
to high — rather complex iterations. Even in IPM realization we have In

principle the following complexity of one iteration O(n°®) (this can be re-
duced for the special cases). Moreover, it was also shown that even in R*
for the function f(x), with 1< f"(x)<2, ‘f ‘<1 k=13,..m m>1

the lower bound will be ~c_ log Iog( ) (here we can asked oracle as

much derivatives k <m as we want). Local convergence can be faster
(Chebyshev’s type methods http://www.ccas.ru/personal/evtush/p/198.pdf)!

IPM is a powerful tool that finds applications to real large scale convex
problems (n <10%). Especially for Semi Definite Programming (see CVX).

42
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Semi Definite Relaxation (MAX CUT)
f(X):lzpﬁ(Xi—Xj)Z—) MaxX ,
2 i,j=1,1 Xe{—il.,l}n

n

" (A=A

i) j=11

where A=|A||

Let’s introduce

n

L:diag{zn:Aj} - A,

=1
¢ — random vector, uniformly distributed on a Hamming cube {-1,1}".

Note, that

f(x)=(x,Lx).

43



Simple observation:
E <g, Lg> > 0.5 max <X, LX>.

xef{-11}"
Could we do better?

max (X, Lx)= max <L,xxT>s max (L, X) // SDP problem!

xef{-11}" xe{-11}" XeS]

The book of Goemans-Williamson, 1995
Let X be the solution of SDP problem. Let
£eN(0,X), ¢ =sign(&).
Then (the constant is unimprovable if P = NP — Unique Games Conjecture)
E <g, Lg> > 0.878 max <X, LX>.

xe{-11}"
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“Optimal” methods aren’t always optimal indeed
Due to Lecture 2 we can reduce Google problem to
1 2 :
f(x)=Z]Ax], > min,

We will use not optimal (in terms the number of oracle calls) conditional
gradient method (Frank—Wolfe, 1956). But we assume that the number of

nonzero elements at each row and each column smaller then s < v/n .
We choose starting point at one of the simplex vertex x'. Induction step

<Vf (xk),y>—> min

yes,(1)

Let’s denote the solution of this problem by
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where 1 Is posed at the position

i, =arg mlnaf X, )/OX".

The main algorithm looks as follows

2
:(1_7/k)xk +7/kyk, 7/k :m1 k :1121-"1

One can obtain that (here we also used that f, =0)

2L R’

f(xN): f(xN)— f, <—2 P J/ for optimal method O[ N

N+1"

LR?

g
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R? = max Hy—xHi, L :max<h,ATAh>:maxHAhH§, 1< p<oo.

P xyes, ) N I, <

Since we work on a simplex we choose p =1. As a result

R: =4, L, =max|| A" <2

i=1,....n

Hence for f(x")<&?/2 (|AX"| <&) we have to do N =32s7 iterations
(N<n = &£>n"? but since H(n‘l,...,n‘l)H2 =n""?, here we are interested
in N < & < n™?). One can show that after O(n) preprocessing each itera-

tion will costs 0(32 In(n/sz)). So the total complexity will be

O(n+s2 In(n/sz)/gz),
Instead of total complexity of “optimal” method STM O(sn/ g).
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Co be continue?...
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