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Structure of Lecture 2 

 
 

 Google problem (Page Rank) 

 Inverse problems: traffic demand matrix estimation from link loads 

 Empirical Risk Minimization (ERM) 

 Maximum Likelihood Estimation (MLE) 

 Bayesian inference 

 L1-optimization (sparse solution) 

 Typical Data Science problem formulation (as optimization problem)  

 Dual problem 

 Traffic assignment problem 

 Truss topology design 
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Google problem (Page Rank) 

Let there are 1N   users that independently walk at random on the web-

graph (n vertexes). Assume that transitional probability matrix of random 

walks P  is irreducible and aperiodic. Let’s denote  in t  – the number of us-

ers at the i -th web-page at the moment of time t . Using Gordon–Newell’s 

theorem one can obtain:  ! 1 : T T

np S p p P    ( p  – Page Rank) and 
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Hence, using Hoeffding’s inequality in a Hilbert space one can obtain 
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How to find Page Rank via Convex Optimization? 

According to Frobenius’ theory for nonnegative matrix we have the fol-

lowing equivalent optimization’s type reformulations of Google problem: 

 

2

2 1

1
min

2 nx S
Ax


 ; (smooth representation) 

 1
min

nx S
Ax

 
 ; (not smooth representation) 

   21 1
min max ,

n nx S S
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 ; (saddle point representation) 

2
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1
min

2 Ax b
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 , (required dual representation) 

where 
T

nA P I  , TA J A ,  ;n nJ I I  , ;1
T
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,  0,...,0,1

T
b  . 
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Inverse problems: traffic demand matrix estimation from link loads 

In the problem of traffic demand matrix estimation the goal is to recov-

er traffic demand matrix represented as a vector 0x   from known route 

matrix A (the element ,i jA  is equal 1 iff the demand with number j  goes 

through link with number i  and equals 0 otherwise) and link loads  b  

(amount of traffic which goes through every link). This leads to the prob-

lem of finding the solution of linear system Ax b .  Also we assume that 

we have some 0gx   which reflects our prior assumption about x .  Thus 

we consider x  to be a projection of gx  on a simplex-type set 

 0 :x Ax b   
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2 0
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min : min .g
Ax b Ax b
x x

g x x x g x
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Slater’s relaxation of this problem leads to the problem (denote *x  the solu-

tion of this problem) 

2 2

2

2

2

0

ming
Ax b

x

x x
 



  . 

This problem can be reduced to the problem (unfortunately without explicit 

dependence    ) 

 
2 2

22 0
ming

x
f x x x Ax b


     ,  

where   – dual multiplier to the convex inequality 
2 2

2
Ax b   . 
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2 2

22 0
ming

x
f x x x Ax b


     . 

One might expect that 
2

2

* 2gx x  , but in reality   can be chosen 

much smaller ( 1 2    ) if we restrict ourselves only by approximate 

solution. Let’s reformulate the problem 

 
22

2 2 0
ming

x
f x Ax b x x


     ,  

where 1   . But sometimes it is worth to consider more general cases: 

   
2

2

1
min

2 x Q
f x Ax b g x


    . 

Hastie T., Tibshirani R., Friedman R. The Elements of statistical learning: 

Data mining, Inference and Prediction. Springer, 2009. 
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2

2

1
min

2 x Q
f x Ax b g x


     

Possible variants for choosing  g x  are: 

1. (Ridge Regression / Tomogravity model) 

 
2

2

gg x x x  , nQ   ; 

2. (Mimimal mutual information model) 
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3.  (LASSO) 

 
1

g x x , 
nQ   ; 
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Empirical Risk Minimization (ERM) 

Suppose we have observation  
1

,
n

i i i
x y


. We obtain new X  and we’d like 

to predict Y . We have some loss (penalty) function  ˆ , ,l f X Y . For example, 

    ˆ ˆ, ,l f X Y I f X Y   – binary classification (    ˆ , 1,1f X Y   ); 

    
2

ˆ ˆ, ,l f X Y f X Y   – regression; 

    ˆ ˆ, , max 0,1l f X Y Yf X   – hinge loss (    ˆ , 1,1f X Y   ). 

Let’s introduce V  –  VC -dimension of class F  (binary classification), 

      
1

, 1,

ˆ ˆ , , ,n

i i i

n

X Y i i ix y
L f E l f X Y x y




 
  

, for 
 

1
,

ˆ ˆ
n

i i i
x y

f f F


  , 
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1

ˆ argmin , ,
n

ERM i i
f F

i

f l f x y




  ,    * inf
f F

L f L f


 . 

Then (Vapnik–Chervonenkis, Zauer, Hausler for binary classification) 

   
 1

*

2ln
ˆ 1ERM

V
P L f L f C

n n




 
     
 
 

, 

where C  is universal constant. 

Now Statistical Learning Theory (SLT) is a big branch of research 

where ERM approach (and its penalized versions) is the main tools. 

Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From 

theory to algorithms. Cambridge University Press, 2014.  

Sridharan K. Learning from an optimization viewpoint. PhD Thesis, 2011.  
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Maximum Likelihood Estimation (Fisher, Le Kam, Spokoiny) 

Let x , 1,...,k k n  – i.i.d. with density function  x xp   (supp. doesn’t 

depend on  ), depends on unknown vector of parameters  . Then for all 

statistics  x  (with  
2

x xE    
 
 ): 

     
1

x ,x x
T

p nE I   
        

   ,  (Rao–Cramer inequality) 

    , x x x ,1ln x ln x
def T

p n pI E p p nI      
  

, 

     x xx argmax x argmax ln xMLE p p
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     * x x x * xargmax ln x argmax ln .
i i i ii i i iE p p x p x dx

 
         

Le Kam theory (Fisher’s theorem): When n then  xMLE  is asymp-

totically normal and optimal in sense of Rao–Cramer inequality (“=”). 

Recently V. Spokoiny’ve proposed non asymptotic variant of this 

theory. In particular his theory allows to answer for the question: how fast 

could m ( dimm   ) with n for asymptotic optimality of  xB
 . 

He also considered closely connected result – Wilks’ phenomenon.  

Example (Least Squares). i i iy kx b      20,i N  ,  ,
T

k b  , 

x A   ,  
1

x
n

i i
y


 , 

1 ...

1 ... 1

T

nx x
A

 
  
 

,  
2

2
x argmin xMLE A


   . 
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Van Trees inequality (generalization of Rao–Cramer inequality) 

Let x , 1,...,k k n  – i.i.d. with density function  x xp   (supp. doesn’t 

depend on  ), depends on unknown vector of parameters   with prior dis-

tribution    . Then for all statistics  x  (with  
2

x xE    
 
 ): 

     
1

x, ,x x
T

p nE I I    
        

   ,                        (*) 

    , x, x x ,1ln x ln x
def T

p n pI E p p nI       
  

, 

    ln ln
def T

I E         
 

. 

Ibragimov I.A., Khas'minskii R.Z. Statistical estimation: Asymptotic theory. 

Springer, 2013. 
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Bayesian inference 

Bayesian estimation:   

 

       xx argmin , x ,B I p d


       

  

 
2

2

1
, .

2
I     
 

 

Le Kam theory: When n then  xB
  is asymptotically normal and 

optimal in sense of (*) (“=”). 

Recently V. Spokoiny’ve proposed non asymptotic variant of this 

theory. In particular his theory allows to answer for the question: how fast 

could m ( dimm   ) with n for asymptotic optimality of  xB
 . 
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Van Trees inequality  Rao–Cramer inequality and  xB
     xMLE  

when    20,N I    with  . 

Berstein–von Mises theorem say that  xB
  is 1 2n -normaly concen-

trated around   xMLE  when n. Recently V. Spokoiny’ve proposed 

non asymptotic variant of this theorem. 

Example. Assume that 

x A   ,  20,N I  , prior on  2,gN I     

Then (compare to the traffic demand matrix estimation problem) 

   22

2 2
x argmin xB gA


        , 2 2    .
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Compressed Sensing and L1-optimization (Donoho, Candes, Tao) 

There are many areas where linear systems arise in which a sparse solu-

tion is unique. One is in plant breading. Consider a breeder who has a 

number of apple trees and for each tree observes the strength of some de-

sirable feature. He wishes to determine which genes are responsible for the 

feature so he can cross bread to obtain a tree that better expresses the desir-

able feature. This gives rise to a set of equations Ax b   where each row of 

the matrix A corresponds to a tree and each column to a position on the ge-

nome. The vector b  corresponds to the strength of the desired feature in 

each tree. The solution x  tells us the position on the genome corresponding 

to the genes that account for the feature. So one can hope that NP-hard 

problem 
0

min
Ax b

x


  can be replaced by convex problem 
1

min
Ax b

x


 . Due 

to Lagrange multipliers principle we can relax this problem as   
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2

2 1

1
min

2 x
Ax b x   . // ~ 

1
min
Ax b

x


  under special 0   

What are the sufficient conditions for: 
0

min
Ax b

x


     
1

min
Ax b

x


 ? 

Restricted Isometry Property (RIP) 

   
2 2 2

2 2 2
1 1s sx Ax x       for any s-sparse x . 

Sufficient condition. Suppose that 0x  (solution of 
0

min
Ax b

x


 ) has at 

most s  nonzero coordinates, matrix A satisfy RIP with  
1

5s s


 , then 

0x  is the unique solution of the convex optimization problem 
1

min
Ax b

x


 . 

Example RIP matrix: for all nx         
2 2 2 2

2 2 2
1 1 1 2exp 6P x Ax x n         , 

where i.i.d.  10,ijA N n  (0 1  ). If A is  ,2s -RIP and 
0

x s  satisfy Ax b  then 0x x . 
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Examples of Data Science problems 

Typically Data Science problems lead to the optimization problems: 

   
1

min
m

T

k k
x Q

k

f A x g x




  . 

At least one of the dimensions is huge m   (sample size), n  (parameters). 

Ridge Regression  

   
2

k k k kf y C y b   ,  
2

2

1

2
g x x . (smooth, strongly convex) 

Support Vector Machine (SVM has Bayesian nature, V.V. Mottl’) 

    max 0,1k k k kf y C b y  ,  
2

2

1

2
g x x . (non smooth, strongly convex)  
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Dual problem (convex case) 

Sometimes it is proper to solve dual problem instead of primal one: 

   
1

, min
m

k k
x Q

k

f A x g x




  , 
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min min
m m

T

k k k k
x Q x Q

k kz Ax

f A x g x f z g x
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, (dual for 1)) 
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A y
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Good and Bad News 

Good news: In convex case even with huge m  and n  these type of the 

problems 

   
1

, min
m

k k
x Q

k

f A x g x




   

are fast solvable numerically (often by accelerated primal or dual coordinate 

descent methods – see Lecture 6).   

Bad news: Real Data Science problems often lead to non convex optimi-

zation problems. Typical example is probabilistic topic modeling (see K.V. 

Vorontsov). With MLE-approach one can obtain only non convex problem 

    
     1 1
1 ; 1

, ln min .
t dW T

T D

t d wd wt tdt d
S Sd D w W t T

f n
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To find traffic assignment one has to solve convex optimization problem 
 

  
,

min , : ,
f x

x f f x x X       
*

*

dom
min ,e e

t
e E

t t


  




 
  

 
  

       1 1
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Braess paradox (BMW-model, , 01m   ) 
 

 

    

 

 

 

 

 

 
 

 

Demand: 4000 ,d car hour  
.up downx x d   

Equilibrium: 2000 ,upx car hour 2000 ,downx car hour  

    65 min.up downT x T x    

Equilibrium (if exists edge Up->Down): , 4000 ,up downx car hour
 

 , 80 min.up downT x 
 

https://arxiv.org/ftp/arxiv/papers/1701/1701.02473.pdf 

Start Finish 

Up 

Down 

f/100 

f/100 

45 

45 

0 

https://arxiv.org/ftp/arxiv/papers/1701/1701.02473.pdf
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Braess paradox (BMW-model, , 01m   ) 
 

 

    

 

 

 

 

 

 
 

 

   
,

minln
w

p p w

p P

e e
f x x X

e E

x x df 
 

 

    ,    
0

ef

e e ef z dz   . (*) 

Road pricing:      .
payment

f f f f    


  (VCG –mechanism); 

1750 ,up downx x car hour   , 500 .up downx car hour  

Start Finish 

Up 

Down 

f/100 

f/100 

45 

45 

0 
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Braess paradox (Stable Dynamic model, 1, 0m   ) 
 

 
 

Demand: 13 23 121500 , 0;d d car hour d  
 

 
 0

, 0
,

, ,

e e e

e e

e e e

t f f
f

t f f






 

  


   

   
1

BPR : 1 ,e e e e e
f t f f  

 
    

   

12 13 23( ) 2000 ,f f f car hour  
 13 1 ,t hour

 23 30 min,t 
 12 15 min.t 

 
Equilibrium (1 2 ): 13 23 1500 ,x x car hour 

 13 1 ,T hour
 23 30 min.T 

 
Equilibrium (1 2 ): 13 1000 ,x car hour

 123 500 ,x car hour
 

23 1500 ,x car hour
 13 1 ,T hour

 23 45 min.T 
 

If in (*) we  go to the limit 0   , then: 
, ,
mine ee E f x f f x X

f t
   

 .
 

2

2

2 

3

2

2 

1

2
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Entropy model for demand matrix calculation ( 1m  ) 
 

 
 

 
, 1

,

1, 1 1 1 1 1 , 1 , 0

ln min ,
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i j

n n n n n n n
L W

ij ij i ij j ij ij ij
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T d d d d d  



        

   
      

   
     

 

 ,L W

i j 
  

– “attractive potentials” of districts (Kantorovich–Gavurin).  

Unfortunately, we don’t know potential. But we know such  ,i jL W , that 

1

n

ij i

j

d L


 , 
1

n

ij j

i

d W


  (
1 1

n n

i j

i j

N L W
 

   ).                     (A) 

   

,

A , 0
1, 1 , 1

ln min .
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n n n

ij ij ij ij
d d
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Problem (arising when we build multistage traffic model):  d T  arise 

in demand matrix calculation model and     e eT f d , where  ef d  

calculated according to BMW (or Stable Dynamic) models. We have vi-

cious circle! 

In practice the problem is solved by simple iteration method (equili-

brium = fixed point). Though there is no theory (theoretical guarantees) 

about the convergence of this procedure. One can propose another way of 

rewriting this problem! 

Key observation (Demyanov–Danskin’s formula for dual problem):  

    
 

 
,

mine e
f x

d
x X d

T f d f
 

    
 

 (     x f x T x    , min
ij

ij p
p P

T T


  ). 

 
     A , 0; ,

, 1

ln min .
ij

n

ij ij
d d f x x X d

i j

f d d
   



  
  



29 
 

Truss Topology Design 

The problem consists in finding the best mechanical structure resisting 

to an external force with an upper bound for the total weight of construc-

tion. Its mathematical formulation can be reduced to LP problem with huge 

number of affine-type restrictions (dual multipliers here are also important) 

 

, min
Ax b

c x


 . 
 

General property of all mentioned above (and almost all current) huge-

scale problem formulations is sparseness of main matrix A (or , P ). This 

property sometimes allows to solve huge-scale problems with more than 

billion variables or restrictions in personal PC. 

Note: Term “huge-scale optimization” was introduced by Nesterov Yu. Sub-

gradient methods for huge-scale optimization problems // Math. Program., Ser. A. 

– 2013. – V. 146. № 1-2. P. 275–297. 
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To be continued… 

  
  


