Convex Optimization for Data Science
 Gasnikov Alexander
 gasnikov.av@mipt.ru

Lecture 1. Foundation of Convex analysis

October, 2016

Structure of a course

- Lecture 1. Foundation of Convex analysis
- Lecture 2. Convex optimization and Big Data applications
- Lectures 3. Complexity of optimization problems \& Optimal methods for convex optimization problems
- Lecture 4. Stochastic optimization. Randomized methods
- Lectures 5. Primal-duality, regularization, restarts technique, mini-batch \& Inexact oracle. Universal methods
- Lecture 6. Gradient-free methods. Coordinate descent Projects/Examples:
https://arxiv.org/find/all/1/all:+gasnikov/0/1/0/all/0/1

Main books:

Polyak B.T. Introduction to optimization. M. Nauka, 1983.
Bertsekas D.P. Nonlinear Programming. Belmont. MA: Athena Scientific, 1999.

Boyd S., Vandenberghe L. Convex optimization. - Cambridge University Press, 2004.
Nesterov Yu. Introduction Lectures on Convex Optimization. A Basic Course. Applied Optimization. - Springer, 2004.
Nocedal J., Wright S. Numerical optimization. - Springer, 2006. Nemirovski A. Lectures on modern convex optimization analysis, algorithms, and engineering applications. - Philadelphia: SIAM, 2013.
Bubeck S. Convex optimization: algorithms and complexity // In Foundations and Trends in Machine Learning. - 2015. - V. 8. - no. 3-4. - P. 231-357.
Evtushenko Yu.G. http://www.ccas.ru/personal/evtush/p/198.pdf https://www.youtube.com/user/PreMoLab (see courses of Yu.E. Nesterov and A.V. Gasnikov)

Structure of Lecture 1

- Convex functions. Main properties. CVX
- Lagrange multipliers principle and vicinities
- Demyanov-Danskin's formula, sensitivity in optimization
- Dual problem. Sion-Kakutani theorem (min max $=\max \min)$
- KKT-theorem. The role of convexity (sufficient condition)

Examples:

- Conic duality - dual representation (Robust optimization)
- Constrained primal problem leads to unconstrained dual one
- Implicit primal problem leads to explicit dual one
- Non separable large-dimensional primal problem leads to small dimensional dual problem on a bounded convex set (Slater's arguments)
- Convex set

$$
\forall \alpha \in[0,1], x, y \in Q \rightarrow \alpha x+(1-\alpha) y \in Q
$$

Convex function

$$
\forall \alpha \in[0,1], x, y \rightarrow f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

Examples of convex functions

i) $f(x)=\ln \left(\sum_{k=1}^{n} \exp \left(\left\langle a_{k}, x\right\rangle\right)\right) / /$ by direct investigation of the Hessian
ii) $f(x)=x_{[1]}+\ldots+x_{[k]}$ (sum of largest k entries)
iii) $f(X)=\lambda_{\text {max }}(X), X=X^{T}$
iv) $f(X)=\ln \operatorname{det} X^{-1}, X \succ 0$
v) $f(x, Y)=\left\langle x, Y^{-1} x\right\rangle, Y \succ 0$

Main Toolbox:

http://cvxr.com/cvx/

- CVX can solve the following convex optimization problems

$$
\langle c, x\rangle+\langle d, y\rangle \rightarrow \min _{(x, y): A}\left[\begin{array}{l}
x \\
y
\end{array}\right]=b,\left[\begin{array}{l}
x \\
y
\end{array}\right] \in K=
$$

where K - is a product of convex cones. Typically these cones: $\mathbb{R}_{+}^{n}, S_{+}^{n}, L_{2}^{n}$ (positive cone, positive semidefinite cone, Lorentz cone).

- Many convex functions have cone representation (Nesterov-Nemirovski)

$$
f(x)=\min _{y: A\left[\begin{array}{l}
x \\
y
\end{array}\right]=b,\left[\begin{array}{l}
x \\
y
\end{array}\right] K K}\langle c, x\rangle+\langle d, y\rangle \text { ! (e.g. i) - v) }
$$

Other Toolboxes:

- https://www-01.ibm.com/software/commerce/optimization/cplexoptimizer/ CPLEX (IBM product): Large-scale LP, QP
- https://www.mosek.com/ Large-scale convex optimization problems

How to obtain convex functions?

Lemma 1. Let $f(x), g(x)$ convex, $h(z)$ convex increasing. Then $\alpha f(x)+\beta g(x)(\alpha, \beta \geq 0), f(A y+b), h(f(x))$ are also convex functions.

Lemma 2. Let $G(x, y)$ - is convex function as a function of x for all $y \in Y$. Assume that problem $\max _{y \in Y} G(x, y)$ is solvable for all x. Then $f(x)=\max _{y \in Y} G(x, y)$ is convex. Example. $f(x)=\|A x-b\|_{\infty}$ is convex.

Lemma 3. Let $G(x, y)$ - is convex function as a function of x and y on the convex set Q. Assume that problem $\min _{y:(x, y) Q} G(x, y)$ is solvable for all x. Then $f(x)=\min _{y:(x, y) \in Q} G(x, y)$ is convex. Example. $f(x)=\inf _{y \in Q}\|x-y\|$ (where Q is a convex set) is convex. How can be calculated $\partial f(x)$?

Demyanov-Danskin's formula

Let $G(x, y)$ and

$$
f(x)=\max _{y} G(x, y)\left(f(x)=\min _{y} G(x, y)\right)
$$

are smooth enough functions. Assume that there exists $y(x)$ such that

$$
G(x, y(x))=\max _{y} G(x, y)\left(G(x, y(x))=\min _{y} G(x, y)\right)
$$

Then $\nabla f(x)=\nabla_{x} G(x, y(x))=\left.\left\{\frac{\partial G(x, y)}{\partial x_{i}}\right\}_{i}\right|_{y=y(x)} . / / f_{x}=G_{x}+\underbrace{G_{y}}_{0} y_{x}=G_{x}$

$$
\partial f(x)=\text { convex hull } \bigcup_{\tilde{x} \cdot y(\tilde{x})=y(x)} \partial_{x} G(\tilde{x}, y(\tilde{x})) \text { (convex case). }
$$

Schur's complement

Using Lemma 3 and Demyanov-Danskin's formula

$$
G(x, y)=\langle x, C x\rangle+\langle y, A y\rangle+2\langle B x, y\rangle,
$$

one can show that if $A \succ 0$ (strictly, i.e. $\forall x \neq 0 \rightarrow\langle x, A x\rangle>0$) and

$$
\left[\begin{array}{ll}
A & B \\
B^{T} & C
\end{array}\right] \succ 0 . / / \text { this means that } G(x, y) \text { is convex }
$$

Then

$$
C-B^{T} A^{-1} B \succ 0 .
$$

Indeed here we can find explicitly $y(x)=\arg \min _{y} G(x, y)=-A^{-1} B x$. Hence

$$
f(x)=\min _{y} G(x, y)=G(x, y(x))=\left\langle x,\left(C-B^{T} A^{-1} B\right) x\right\rangle
$$

is a convex function due to Lemma 3 .

Lagrange multipliers principle and Implicit function theorem

We have a sufficiently smooth optimization problem

$$
f(x, y) \rightarrow \min _{g(x, y)=0},
$$

where $g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$. Assume that implicit function theorem can be applied for $g(x, y)=0$. That is, there exists smooth $y(x)$ such that $g(x, y(x)) \equiv 0$. If $\left(x_{*}, y_{*}\right)$ is a solution of initial optimization problem then

$$
\begin{equation*}
\exists \lambda: \nabla_{x} L\left(x_{*}, y_{*}, \lambda\right)=0, \nabla_{y} L\left(x_{*}, y_{*}, \lambda\right)=0, \tag{*}
\end{equation*}
$$

where

$$
L(x, y, \lambda)=f(x, y)+\langle\lambda, g(x, y)\rangle
$$

λ can be found from $g\left(x_{*}(\lambda), y_{*}(\lambda)\right)=0$ where $x_{*}(\lambda), y_{*}(\lambda)$ satisfy $\left(^{*}\right)$.

Implicit function theorem

$$
g(x, y(x)) \equiv 0 \Rightarrow g_{x}+g_{y} y_{x} \equiv 0 \Rightarrow y_{x}=-g_{y}^{-1} g_{x}
$$

Fermat principle

$$
\frac{d}{d x} f(x, y(x))=0 \Rightarrow f_{x}+f_{y} y_{x}=0 \Rightarrow f_{x}-f_{y} g_{y}^{-1} g_{x}=0
$$

Lagrange multipliers principle

$$
\left.\left.\begin{array}{rl}
0=L_{x}= & f_{x}+\lambda^{T} g_{x} \\
0=L_{y}= & f_{y}+\lambda^{T} g_{y} \tag{**}\\
& f_{x}-f_{y} g_{y}^{-1} g_{x}=0 .
\end{array}\right\}+\left(-g_{y}^{-1} g_{x}\right)\right\}+\Rightarrow
$$

Equality $\left({ }^{* *}\right)$ with $g(x, y)=0$ allows us to find extremum (optimal point).

Sensitivity in optimization

We have a sufficiently smooth optimization problem

$$
f(x) \rightarrow \min _{g(x)=b}
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(m<n)$. Let

$$
L(x, \lambda)=f(x)+\langle\lambda, b-g(x)\rangle
$$

For optimal solution $x(b)$ there exists such $\lambda(b)$ that

$$
\begin{align*}
& L_{x}(x(b), \lambda(b))=0 . / / g(x(b))=b \tag{*}\\
& \nabla F(b)=\lambda(b), F(b)=\min _{g(x)=b} f(x) .
\end{align*}
$$

Indeed, $F(b)=L(x(b), \lambda(b), b) ; F_{b}=L_{x} x_{b}+L_{\lambda} \lambda_{b}+L_{b}=L_{b}=\lambda(b)$ due to $\left(^{*}\right)$.

Lagrange multipliers principle and Separation theorem (Convex case)

We have a convex optimization problem $\left(g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$

$$
f(x) \rightarrow \min _{g(x) \leq 0, x \in Q} .
$$

The (Pareto) set $G=\{(g(x), f(x)), x \in Q\} \oplus \mathbb{R}_{+}^{m+1}$ is close convex set in the space of pairs (g, f) (http://stanford.edu/~boyd/cvxbook/bv cvxslides.pdf).
i) $f+g \lambda=\varphi(\lambda)$, where $\lambda \geq 0$ - be a tangent hyperplane to G iff

$$
\varphi(\lambda)=\min _{x \in Q}\{f(x)+\langle\lambda, g(x)\rangle\} \text { (dual function). }
$$

ii) Lagrange multipliers principle can be obtained from the Separation theorem for the set G and hyperplane from i).

iii) For arbitrary $x \in Q, g(x) \leq 0, \lambda \geq 0$

$$
f(x) \geq \varphi(\lambda)
$$

$$
\underbrace{\min _{g(x) \leq 0, x \in Q} f(x)}_{\begin{array}{c}
\text { primal } \\
\text { problem }
\end{array}} \geq \underbrace{\max _{\lambda \geq 0} \varphi(\lambda)}_{\begin{array}{c}
\text { dual } \\
\text { problem }
\end{array}} . \text { (weak duality) }
$$

Typically for convex problem we have

$$
\min _{g(x) \leq 0, x \in Q} f(x)=\max _{\lambda \geq 0} \varphi(\lambda) \text {. (strong duality) }
$$

Example (LP). $\langle c, x\rangle \rightarrow \min _{A x=b, x \geq 0}$. Dual problem: $\langle b, \lambda\rangle \rightarrow \max _{c-A^{T} \lambda \geq 0}$.
Hint: $\min _{x \geq 0}\left\{\langle c, x\rangle+\max _{\lambda}\langle b-A x, \lambda\rangle\right\}=\max _{\lambda}\left\{\langle b, \lambda\rangle+\min _{x \geq 0}\left\langle c-A^{T} \lambda, x\right\rangle\right\}$.
If primal problem is compatible then we have strong duality (otherwise dual problem reach infinity).
What are the sufficient conditions for there is no duality gap (strong duality)?
Strong duality (for convex problem): there exists non-vertical supporting hyperplane at $(g, f)=\left(0, f_{*}\right)$.

Slater's condition

We introduce

$$
Q_{\bar{\lambda}}=\left\{\lambda \in \mathbb{R}_{+}^{m}: \varphi(\lambda) \geq \varphi(\bar{\lambda})\right\} .
$$

Assume that Slater's condition is true (sufficient condition in KKT):

$$
\text { there exists such } \bar{x} \in Q \text { that } g(\bar{x})<0\left(\gamma=\min _{i=1, \ldots, m}\left\{-g_{i}(\bar{x})\right\}\right) .
$$

Then

$$
\left\|\lambda_{\#}\right\|_{1} \leq \max _{\lambda \in Q_{\bar{\lambda}}}\|\lambda\|_{1}=\max _{\lambda \in Q_{\bar{\lambda}}} \sum_{i=1}^{m}\left|\lambda_{i}\right| \leq \frac{1}{\gamma}(f(\bar{x})-\varphi(\bar{\lambda})) .
$$

Hint: $\varphi(\bar{\lambda}) \leq \varphi(\lambda)=\min _{x \in Q}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)\right\} \leq f(\bar{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\bar{x})$.

Quadratic Programming

Let's consider quadratic convex ($C \succ 0$) optimization problem ($A x \leq b$ is solvable)

$$
\langle x, C x\rangle+\langle d, x\rangle \rightarrow \min _{A x \leq b} .
$$

Dual problem (we have strong duality because of affine restrictions)

$$
\begin{gathered}
\langle\lambda, \tilde{C} \lambda\rangle+\langle\tilde{d}, \lambda\rangle+\tilde{c} \rightarrow \min _{\lambda \geq 0}, \\
\tilde{C}=A C^{-1} A^{T}, \tilde{d}=A C^{-1} d+b, \tilde{c}=\frac{1}{2}\left\langle d, C^{-1} d\right\rangle .
\end{gathered}
$$

The solutions of primal and dual problems (x_{*} and λ_{*}) satisfy

$$
C x_{*}+A^{T} \lambda_{*}+d=0 .
$$

Typically, one can explicitly build dual problem iff one can explicitly connect primal and dual variables.

Dual relaxation (strong duality)

For the problem $\left(A \nsucc 0, A^{T}=A\right)$

$$
f(x)=\langle x, A x\rangle \rightarrow \min _{\|x\|_{2} \leq 1}
$$

we have the following dual problem ($C \succ 0$ means $\forall x \rightarrow\langle x, C x\rangle \geq 0$)

$$
\varphi(\lambda)=\left\{\begin{array}{l}
-\lambda, A+\lambda I \succ 0 \\
-\infty, \text { otherwise }
\end{array} \rightarrow \max _{\lambda} .\right.
$$

There is no duality gap in this situation. That is we have strong duality

$$
\min _{x \in Q} f(x)=\max _{\lambda} \varphi(\lambda)
$$

Note: $f_{*}=\lambda_{\min }, x_{*}-$ eigen vector that corresponds $\lambda_{\min }$.

Dual relaxation (weak duality)

Consider NP-hard two-way partitioning problem

$$
f(x)=\langle x, W x\rangle \rightarrow \min _{x_{i}^{2}=1, i=1, \ldots, n} .
$$

The dual problem is

$$
\varphi(\lambda)=\left\{\begin{array}{l}
-\sum_{i=1}^{n} \lambda_{i}, W+\operatorname{Diag}\left\{\lambda_{i}\right\}_{i=1}^{n} \succ 0 \\
-\infty, \text { otherwise }
\end{array} \rightarrow \max _{\lambda} .\right.
$$

Using weak duality one can show that

$$
\min _{x_{i}^{2}=1, i=1, \ldots, n}\langle x, W x\rangle \geq n \lambda_{\min }(W) .
$$

Necessary and sufficient conditions for convex programming

We have a convex optimization problem

$$
f(x) \rightarrow \min _{g(x) \leq 0, A x=b, x \in Q^{.}}
$$

Introduce: $\quad L\left(x, \lambda_{0}, \lambda, \mu\right)=\lambda_{0} f(x)+\langle\lambda, g(x)\rangle+\langle\mu, A x-b\rangle$.
Initial problem can be equivalently reformulated as

$$
\sup _{\lambda \geq 0, \mu} L(x, 1, \lambda, \mu) \rightarrow \min _{x \in Q}
$$

Assume that: $\min _{x \in Q} \sup _{\lambda \geq 0, \mu} L(x, 1, \lambda, \mu)=\sup _{\lambda \geq 0, \mu} \min _{x \in Q} L(x, 1, \lambda, \mu)$.
Then

$$
\min _{x \in Q} L(x, 1, \lambda, \mu) \rightarrow \sup _{\lambda \geq 0, \mu} .(\text { dual problem })
$$

Complementary slackness

$$
\begin{gathered}
L\left(x, \lambda_{0}, \lambda, \mu\right)=\lambda_{0} f(x)+\langle\lambda, g(x)\rangle+\langle\mu, A x-b\rangle \\
\varphi(\lambda, \mu)=\min _{x \in Q} L(x, 1, \lambda, \mu)=L(x(\lambda, \mu), 1, \lambda, \mu) \rightarrow \sup _{\lambda \geq 0, \mu}
\end{gathered}
$$

From the optimality conditions: $\varphi_{\lambda}=0$ or $\lambda_{*}=0, \varphi_{\lambda} \leq 0 ; \varphi_{\mu}=0$. Since

$$
\varphi_{\lambda}=L_{x} x_{\lambda}+L_{\lambda}=L_{\lambda}=g ; \varphi_{\mu}=L_{x} x_{\mu}+L_{\mu}=L_{\mu}=A x(\lambda, \mu)-b
$$

one can obtain that

$$
A \cdot x(\lambda, \mu)=b, g(x(\lambda, \mu)) \leq 0
$$

Solution of the dual problem $\lambda_{*}>0$ only if $g\left(x\left(\lambda_{*}, \mu_{*}\right)\right)=0$.
Let's remove $A x=b, \lambda_{0}=0$ means that supporting hyperplane to G at $(g, f)=\left(0, f_{*}\right)$ is vertical.

Karush-Kuhn-Tucker theorem (KKT)

$$
f(x) \rightarrow \min _{g(x) \leq 0, A x=b, x \in Q}\left(g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)
$$

Necessary condition. Let $x_{*} \in Q$ - is a solution of the problem.
Then there exist $\lambda_{0} \geq 0, \lambda_{i} \geq 0, i=1, \ldots, m, \mu$ such that:
i) $A x_{*}=b, \lambda_{i} g_{i}\left(x_{*}\right)=0, i=1, \ldots, m$; (complementary slackness)
ii) $\min _{x \in Q} L\left(x, \lambda_{0}, \lambda, \mu\right)=L\left(x_{*}, \lambda_{0}, \lambda, \mu\right)$.

Sufficient condition. Let x_{*} satisfy $g\left(x_{*}\right) \leq 0, A x_{*}=b, x_{*} \in Q$ and i), ii) with $\lambda_{0}>0$ (equivalent $\lambda_{0}=1$) then $x_{*}-$ is a solution of the problem.

Saddle point ($\min \max =\max \min)$

We say that $\left(x_{*}, \lambda_{*}\right)$ is a saddle point of $L(x, \lambda)$ iff for all admissible (x, λ)

$$
\begin{gather*}
L\left(x, \lambda_{*}\right) \geq L\left(x_{*}, \lambda_{*}\right) \geq L\left(x_{*}, \lambda\right) . \\
\bar{L}(x)=\sup _{\lambda \in \Lambda} L(x, \lambda) \rightarrow \min _{x \in X} \text { (i) } \underline{L}(\lambda)=\inf _{x \in X} L(x, \lambda) \rightarrow \max _{\lambda \in \Lambda} \tag{ii}
\end{gather*}
$$

1) $\max _{\lambda \in \Lambda} \underline{L}(\lambda) \leq \min _{x \in X} \bar{L}(x)$ (if there exists saddle point then we have " $=$ ");
2) Saddle point set of $L(x, \lambda)$ coincide with pairs of solutions (i), (ii).

Sion-Kakutani minimax theorem

Let continuous function $L(x, \lambda)$ is convex in x and concave in λ. The sets X and Λ are convex and X is compact. Then $\max _{\lambda \in \Lambda} \underline{L}(\lambda)=\min _{x \in X} \bar{L}(x)$.

Neyman-Pearson's Lemma

Assume we have random samples $x=\left(x_{1}, \ldots, x_{n}\right)$ and two hypotheses about the probability nature of these samples $(L(\cdot)$ is likelihood function)

$$
H_{0}: L\left(x \mid H_{0}\right) ; H_{1}: L\left(x \mid H_{1}\right)
$$

Let's introduce decision rule: $0 \leq \varphi(x) \leq 1$ - probability to decide in favor of hypothesis H_{1} if one observe vector of samples x. We'd like to find the best $\varphi(x)$ in terms of the following infinite dimensional LP-problem:

$$
\begin{aligned}
& \beta=P\left(H_{0} \mid H_{1}\right)=1-\int \varphi(x) L\left(x \mid H_{1}\right) d x \rightarrow \min _{P\left(H_{1} \mid H_{0}\right) \leq \alpha} ; \\
& P\left(H_{1} \mid H_{0}\right)=\int \varphi(x) L\left(x \mid H_{0}\right) d x \mid \lambda>0,0 \leq \varphi(x) \leq 1 .
\end{aligned}
$$

We can solve this problem by means of Lagrange multipliers principle

$$
\begin{aligned}
& \qquad L(\varphi(\cdot), \lambda)=1-\int \varphi(x) L\left(x \mid H_{1}\right) d x+\lambda \cdot\left(\int \varphi(x) L\left(x \mid H_{0}\right) d x-\alpha\right) \rightarrow \min _{0 \leq \varphi(x) \leq 1}, \\
& \\
& \int \varphi(x)\left(\lambda L\left(x \mid H_{0}\right)-L\left(x \mid H_{1}\right)\right) d x \rightarrow \min _{0 \leq \varphi(x) \leq 1}, \\
& \\
& \text { where } \quad(x)= \begin{cases}1, & \Lambda(x)>\lambda \\
p(x), & \Lambda(x)=\lambda, \Lambda(x)=\frac{L\left(x \mid H_{1}\right)}{L\left(x \mid H_{0}\right)} \\
0, & \Lambda(x)<\lambda\end{cases} \\
& \quad \int_{\Lambda(x)>\lambda} L\left(x \mid H_{0}\right) d x+\int_{\Lambda(x)=\lambda} p(x) L\left(x \mid H_{0}\right) d x=\alpha .
\end{aligned}
$$

Multiplier λ is determines from here in unique manner, and β doesn't depend on the choice of $p(x)$. For more general facts about hypothesis testing via optimization see http://www2.isye.gatech.edu/~nemirovs/StatOpt_LN.pdf

Robust Optimization (A. Nemirovski)

$$
\langle c, x\rangle \rightarrow \min _{\langle\alpha, x\rangle \leqslant \beta, \alpha \in \mathrm{A}} .
$$

The set of vectors A can be infinitely big (e.g. in robust optimization A is a box). So in general we have a LP problem with infinitely many constraints. Can we solve this problem efficiently? The answer is YES if the set A has a Fourier-Motzkin representation. This mean the following

$$
\mathrm{A}=\{\alpha: \exists u: A \alpha+B u+b=0 ; C \alpha+D u+e \in K\},
$$

where K is a convex cone (with simple enough dual cone K^{*}).
Note that all reasonable convex set have such representation, e.g. boxes,

$$
X=\left\{x \in \mathbb{R}_{+}^{3}: x_{1} x_{2} x_{3} x_{4} \geq 1\right\}, X=\left\{X \in \mathbb{R}^{m \times n}:\|X\|_{\text {nuclear }} \leq 1\right\} .
$$

Farkas' Lemma (\& Conic duality)

Assume $\exists(\bar{\alpha}, \bar{u}): A \bar{\alpha}+B \bar{u}+b=0 ; C \bar{\alpha}+D \bar{u}+e \in \operatorname{icr} K$ or $K=\mathbb{R}_{+}^{m}$. Then

$$
\begin{gathered}
\langle\alpha, x\rangle \leq \beta \text { for all } \alpha \in \mathrm{A} \text { iff } \\
A^{T} \mu+C^{T} \lambda+x=0, B^{T} \mu+D^{T} \lambda=0,\langle b, \mu\rangle+\langle e, \lambda\rangle \leq \beta
\end{gathered}
$$

is compatible in (μ, λ), where $\lambda \in K^{*}=\{\lambda:\langle\lambda, y\rangle \geq 0$ for all $y \in K\}$.
Show the transition " \Leftarrow ". For all $\alpha \in \mathrm{A}, \lambda \in K^{*}$ we have

$$
0=\langle A \alpha+B u+b, \mu\rangle, 0 \leq\langle C \alpha+D u+e, \lambda\rangle .
$$

Hence

$$
\langle\underbrace{-A^{T} \mu-C^{T} \lambda}_{x}, \alpha\rangle+\langle\underbrace{-B^{T} \mu-D^{T} \lambda}_{0}, u\rangle \leq \underbrace{\langle b, \mu\rangle+\langle e, \lambda\rangle}_{\leq \beta} .
$$

Using Farkas' lemma we can reformulate initial LP optimization problem:

$$
\langle c, x\rangle \rightarrow \min _{(x, \mu, \lambda) \in X},
$$

where the convex set X has the following Fourier-Motzkin representation (reduced to cone representation, since that the problem can be efficiently solved for example by S. Boyd's CVX)

$$
\begin{gathered}
X=\left\{(x, \mu, \lambda): A^{T} \mu+C^{T} \lambda+x=0,\right. \\
\left.B^{T} \mu+D^{T} \lambda=0,\langle b, \mu\rangle+\langle e, \lambda\rangle \leq \beta, \lambda \in K^{*}\right\} .
\end{gathered}
$$

Details can be found in the book:
Ben-Tal A., Ghaoui L.El., Nemirovski A. Robust optimization. - Princeton University Press, 2009.

Arbitrage free theorem

Auxiliary fact: One and only one is true

$$
\exists x: A x \geq 0, A x \neq 0 \text { (i) vs } \exists y>0: y^{T} A=0 \text {. (ii) }
$$

Hint: (i) $\Rightarrow \forall y>0 \rightarrow 0<\langle y, A x\rangle=\left\langle A^{T} y, x\right\rangle \neq 0 \Rightarrow$ (ii) is false; (ii) \Rightarrow
Convex hull of rows of A is hyperplane or whole space \Rightarrow (i) is false.
$\neg \exists x: A x \geq 0(A x \neq 0), \quad A=\left(\begin{array}{lr}S \cdot u & C_{u} \\ S \cdot d & C_{d} \\ S & C \\ -S & -C\end{array}\right) \quad \Leftrightarrow \quad C=\frac{1-d}{u-d} C_{u}+\frac{u-1}{u-d} C_{d}$,
where we know $d<1<u, C_{u}, C_{d}$.
Ross S. An elementary introduction to mathematical finance. Cambridge University Press, 2011.

Computation of Wasserstein barycenter (M. Cuturi at al.)

$$
\begin{align*}
& =\max _{\lambda, \mu}\left\{\langle\lambda, L\rangle+\langle\mu, W\rangle-\gamma \sum_{i, j=1}^{n} \exp \left(\frac{-c_{i j}+\lambda_{i}+\mu_{j}}{\gamma}-1\right)\right\}= \\
& =\max _{\lambda}\left\{\langle\lambda, L\rangle-\gamma \sum_{j=1}^{n} W_{j} \ln \left(\frac{1}{W_{j}} \sum_{j=1}^{n} \exp \left(\frac{-c_{i j}+\lambda_{i}}{\gamma}\right)\right)\right\}, \tag{*}\\
& H_{w_{w}^{2}(\lambda)}^{(2)} \\
& L \in S_{n}(1)=\left\{L \geq 0: \sum_{k=1}^{n} L_{k}=1\right\}\left(W \in S_{n}(1), \gamma>0\right) \text {. }
\end{align*}
$$

Due to Demyanov-Danskin theorem for $L \in S_{n}(1)$ function $H_{W}(L)$ is smooth with

$$
\nabla H_{W}(L)=\lambda^{*},
$$

where λ^{*} is unique solution of $\left({ }^{*}\right)$, that satisfy $\left\langle\lambda^{*}, e\right\rangle=0$. Moreover

$$
H_{W}^{*}(\lambda)=\max _{L \in S_{n}(1)}\left\{\langle\lambda, L\rangle-H_{W}(L)\right\}=\gamma \sum_{j=1}^{n} W_{j} \ln \left(\frac{1}{W_{j}} \sum_{i=1}^{n} \exp \left(\frac{-c_{i j}+\lambda_{i}}{\gamma}\right)\right) .
$$

Wasserstein barycenter calculation problem has the following form:

$$
\begin{equation*}
\sum_{k=1}^{m} H_{W_{k}}(L) \rightarrow \min _{L \in S_{n}(1)} . \tag{**}
\end{equation*}
$$

Unfortunately, $H_{W_{k}}(L)$ and theirs gradients can't be calculate explicitly.

Let's reformulate (${ }^{* *}$) in a dual (explicit) manner

$$
\begin{gather*}
-\sum_{k=1}^{m} H_{W_{k}}\left(L_{k}\right) \rightarrow \max _{\substack{L_{1}=L_{m}\left|\lambda^{1} \\
L_{m}\right| \\
L_{m-1} L_{m} \mid \lambda^{m-1} \\
L_{1}, \ldots L_{m} S_{n}(1)}}, \\
\sum_{k=1}^{m-1} \max _{L_{k} \in S_{n}(1)}\left\{\left\langle\lambda^{k}, L_{k}\right\rangle-H_{W_{k}}\left(L_{k}\right)\right\}+\max _{L_{m} \in S_{n}(1)}\left\{\left\langle-\sum_{k=1}^{m-1} \lambda^{k}, L_{m}\right\rangle-H_{W_{m}}\left(L_{m}\right)\right\} \rightarrow \rightarrow_{\lambda^{\prime}, \ldots, \lambda^{m-1} \in \mathbb{R}^{n}}, \\
\sum_{k=1}^{m-1} H_{W_{k}}^{*}\left(\lambda^{k}\right)+H_{W_{m}}^{*}\left(-\sum_{k=1}^{m-1} \lambda^{k}\right) \rightarrow \min _{\lambda^{\prime}, \ldots, \lambda^{m-1} \in \mathbb{R}^{n}}, \\
L_{*}=\nabla H_{W_{k}}^{*}\left(\lambda_{*}^{k}\right) \text { for all } k=1, \ldots, m-1, \tag{***}
\end{gather*}
$$

where L_{*} and $\left\{\lambda_{*}^{k}\right\}_{k=1}^{m-1}$ - unique solutions of problems (${ }^{* *}$), (***).

When it is worth to solve dual problem instead of primal one?

Assume that $A x=b$ is compatible. Let (conditional optimization problem)

$$
\frac{1}{2}\|x\|_{2}^{2} \rightarrow \min _{A x=b} .
$$

We can build dual problem (strong duality)

$$
\begin{gathered}
\min _{A x=b} \frac{1}{2}\|x\|_{2}^{2}=\min _{x} \max _{\lambda}\left\{\frac{1}{2}\|x\|_{2}^{2}+\langle b-A x, \lambda\rangle\right\}= \\
=\max _{\lambda} \min _{x}\left\{\frac{1}{2}\|x\|_{2}^{2}+\langle b-A x, \lambda\rangle\right\}=\max _{\lambda}\left\{\langle b, \lambda\rangle-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2}\right\} .
\end{gathered}
$$

Since $A x=b$ is compatible, then due to Fredgolm's theorem there is no such λ, that $A^{T} \lambda=0$ and $\langle b, \lambda\rangle>0$, hence dual problem has finite solution.

Indeed, if there exists such x that $A x=b$ then for all $\lambda:\langle A x, \lambda\rangle=\langle b, \lambda\rangle$. Hence, $\left\langle x, A^{T} \lambda\right\rangle=\langle b, \lambda\rangle$. Assume that there exists such a λ, that $A^{T} \lambda=0$ and $\langle b, \lambda\rangle>0$. If it is so we observe a contradiction:

$$
0=\left\langle x, A^{T} \lambda\right\rangle=\langle b, \lambda\rangle>0 .
$$

So instead of conditional primal optimization problem one can solve

$$
\langle b, \lambda\rangle-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} \rightarrow \max _{\lambda} \text { (dual problem - unconditional!) }
$$

and reestablish solution of the primal problem from $x(\lambda)=A^{T} \lambda$.
If matrix A is not a full rank matrix then dual problem have many solutions (affine manifold). But all of them lead to the same (unique) primal solution $x(\lambda) \equiv x_{*}$.

When it is worth to solve dual problem instead of primal one?

$$
\tilde{F}(x)=\langle c, x\rangle+\|x\|_{a}^{2}+\gamma \sum_{k=1}^{n} x_{k} \ln x_{k} \rightarrow \min _{x \in S_{n}(1)}, / / \text { see Lecture } 5
$$

or equivalently

Using Sion-Kakutani theorem we can build dual problem (strong duality)

$$
\tilde{G}(\lambda)=\min _{\substack{0 \leq \leq \leq n^{n}, a \\ 0 \leq x_{k} \leq 1, k=1, \ldots n}}\left\{\sum_{k=1}^{n} c_{k} x_{k}+t+\lambda_{1} \cdot\left(\sum_{k=1}^{n} x_{k}-1\right)+\lambda_{2} \cdot\left(\sum_{k=1}^{n} x_{k}^{a}-t^{a / 2}\right)+\gamma \sum_{k=1}^{n} x_{k} \ln x_{k}\right\} \rightarrow \max _{h_{1} \in \mathbb{R}, \lambda_{2} \geq 0} .
$$

We can connect primal variables (t, x) with dual $\lambda=\left(\lambda_{1}, \lambda_{2}\right)(1<a<2)$:

$$
t(\lambda)=\min \left\{\left(\frac{\lambda_{2} a}{2}\right)^{\frac{2}{2-a}}, n^{\frac{2}{a}}\right\}
$$

and to find $x(\lambda)$ we have to solve n one-dimensional convex optimization sub-problems on finite line segments. So we can obtain $x(\lambda)$ with precision ε after $\mathrm{O}(n \ln (n / \varepsilon))$ arithmetic operation using half partition line segment method. Using Demyanov-Danskin's formula one can obtain

$$
\frac{\partial \tilde{G}}{\partial \lambda_{1}}=\sum_{k=1}^{n} x_{k}(\lambda)-1, \frac{\partial \tilde{G}}{\partial \lambda_{2}}=\sum_{k=1}^{n} x_{k}(\lambda)^{a}-t(\lambda)^{a / 2}
$$

We'd like to solve dual problem with ellipsoid method. Since that we have to bound somehow the dual variables. We use Slater's approach

$$
\begin{gathered}
-\|c\|_{\infty}-\gamma \ln n \leq \tilde{F}_{*}=\tilde{G}_{*} \leq \sum_{k=1}^{n} c_{k} \bar{x}_{k}+\bar{t}+\lambda_{1} \cdot\left(\sum_{k=1}^{n} \bar{x}_{k}-1\right)+ \\
+\lambda_{2} \cdot\left(\sum_{k=1}^{n} \bar{x}_{k}^{a}-\bar{t}^{a / 2}\right)+\gamma \sum_{k=1}^{n} \bar{x}_{k} \ln \bar{x}_{k}
\end{gathered}
$$

If $\lambda_{1} \geq 0$, then put $\bar{t}=1, \bar{x}_{k}=1 /(2 n), k=1, \ldots, n$. Hence

$$
\frac{1}{2} \lambda_{1}+\frac{1}{2} \lambda_{2} \leq 2\|c\|_{\infty}+2 \gamma \ln (n)+1
$$

If $\lambda_{1}<0$, then put $\bar{t}=8, \bar{x}_{k}=2 / n, k=1, \ldots, n$. Hence

$$
\left|\lambda_{1}\right|+\frac{1}{2} \lambda_{2} \leq 3\|c\|_{\infty}+2 \gamma \ln (2 n)+8 .
$$

Anyway, we have

$$
\left\|\lambda_{*}\right\|_{1} \leq 6\|c\|_{\infty}+4 \gamma \ln (2 n)+16 \stackrel{\text { def }}{=} C .
$$

So we can restrict ourselves by solving bounded dual problem

$$
-\tilde{G}(\lambda) \rightarrow \min _{\lambda_{1} \in \mathbb{R}, \lambda_{2} \geq 0,\|\lambda\|_{1} \leq c} .
$$

Using ellipsoid method (Lecture 3) we can find ε-solution of this problem after $\mathrm{O}\left(r^{2} \ln (C / \varepsilon)\right)$ iterations, the cost of one iteration $\mathrm{O}\left(r^{2}+n \ln (n / \varepsilon)\right), r=2$.

$\mathfrak{T} \mathfrak{b e} \mathfrak{c o n t i n u e d}$...

